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Foreword

It is a great pleasure to introduce Stochastic Dynamics of Structures by Jie Li and Jianbing

Chen. The book beginswith a brief history of the early discovery and developments of the field,

starting with Einstein�s introduction of the Brownian motion, followed by the classical

developments, including the mathematical formulations of Fokker, Planck, and Kolmogorov.

It is a timely and much needed exposition of the existing state of knowledge of stochastic

dynamics and its potential applications in structural dynamics and the reliability of dynamical

systems.

The topical coverage of stochastic dynamics starts properly with an introduction of the

fundamentals of random variables, random vectors, and stochastic processes including random

fields, which are the essentials necessary for the study of random vibration and stochastic

structural analysis, and culminates with the presentation of the probability density evolution

theory and its corollary the equivalent extreme value distribution; the latter is especially

significant for evaluating the dynamic reliability of structures and other engineering systems.

This book is a valuable contribution to the continuing development of the field of stochastic

structural dynamics, including the recent discoveries and developments by the authors of the

probability density evolution method (PDEM) and its applications in the assessment of the

dynamic reliability and control of complex structures through the equivalent extreme-value

distribution. The traditional analytical approach to such a dynamic reliability problem is to

formulate it as a �barrier-crossing problem� that leads to the solution of the Fokker-Planck

equation; the limitations of this approach are well known, even for single-degree-of-freedom

systems. The authors thoroughly discuss this classical approach and show its limitations,

following with the PDEM, including the numerical solution of complex multi-degree-of-

freedom systems. These are preceded with new insights, derivations, and interpretations of the

classical formulations and solutions—such as the Liouville equation, the Kolmogorov

equation, and the Itô stochastic equations—are provided through the concept of the preser-

vation of probability.

Besides elucidating the principles of stochastic dynamics from an engineer�s viewpoint, the
most significant contribution of this book is its lucid presentation of the PDEM and its

applications for the assessment of the dynamic reliability and control of structures under

earthquake excitations andwind andwave forces. In this regard, the PDEMshould serve to spur

further developments of stochastic structural dynamics; with the PDEM, solutions to the

dynamic reliability of multi-degree-of-freedom systems can be evaluated numerically, includ-

ing non-linear systems. Innovative numerical schemes are proposed; besides finite difference

schemes, spherical packing schemes are also suggested for solutions of highly complex

problems.



In other words, this book includes a novel approach to the field of stochastic dynamics with

special emphasis on the applications to the dynamic response and reliability of structures. It

should serve well to advance the research in the field of stochastic structural dynamics in

general and dynamic reliability in particular.

A. H-S. Ang, NAE, Hon. Mem. ASCE

Research Professor

University of California, Irvine

xiv Foreword



Preface

As a scientific discipline, stochastic dynamics of structures has evolved from its infancy in the

early 1940s to a relatively mature branch of dynamics today. In the process, basic random

vibration theory is believed to have been established in the late 1950s andmainly deals with the

response analysis of structures to stochastic excitations, such as the response of buildings and

bridges towind loading and earthquakes, the vibration of vehicles traveling over rough ground

and the dynamic behavior of aircraft induced by atmospheric turbulence and jet noise. In the

late 1960s, the importance of the effect of randomness in structural parameters on the structural

response was recognized gradually and this led to stochastic structural analysis, or stochastic

finite-element analysis as termed by many researchers. There has been a large amount of

literature published in the past 40 years; however, careful people may find that random

vibration theory and stochastic finite element analysis seem to have developed in two parallel

ways. It is very hard for most engineers, even those specialists who are familiar with stochastic

analysis, to organize their knowledge of the two branches of dynamics in a systematic

framework. Therefore, the first aim of this book is to present a coherent and reasonably

self-contained theoretical framework of the stochastic dynamics of structures which may

bridge the gap between traditional random vibration theory and the stochastic finite-element

analysis method. We hope such a treatment will provide a comprehensive account for

stochastic dynamic response analysis, reliability evaluation and system control.

The second aim,whichmay bemore important and seems a little bit ambitious, is to dealwith

the basic content of stochastic dynamics of structures in a unified new theoretical framework.

We refer to this as the frame of the physical stochastic system.Most people know that, in many

practical applications, the system of concern usually exhibits nonlinearities. However, it is just

for nonlinear dynamical systems that the foundational stochastic dynamics theory involves

huge complexities. After considerable research efforts in the field of random vibration and

stochastic finite-element analysis, although some important progress has beenmade for simple

structural models, people still cannot solve the problem of nonlinear stochastic dynamical

systems rationally, especially for practical complex structures. Motivated by the need to

provide a rational description of a nonlinear stochastic system and of developing appropriate

analytical tools, we undertook a systematic investigation on the difficult area in the past

15 years. Tracing back to the source of the discipline, we find that there are two historical

traditions in the study of stochastic dynamics: the phenomenological tradition and the physical

tradition. Because of the introduction of theWiener process, the two traditions gain an intrinsic

relation. However, if we return to the physical processes themselves (that is, investigating

random phenomena from a physical viewpoint), then we will be led to another possible way:

approaching the stochastic system based on physics. Using this approach, we give a rational



description of the relationship between the physical sample trajectories of a dynamic system

and its probabilistic description and, therefore, establish a family of generalized probability

density evolution equations for dynamical systems which could deal with both linear and

nonlinear systems in a unified form. Furthermore, bearing in mind the physical stochastic

system, we find that traditional random vibration theory and the stochastic finite-element

methods can be appropriately brought into a new theoretical frame. Obviously, this provides a

foundation to rearrange the content of stochastic dynamics of structures in a comprehensive

framework. This book tries to present such a development, as well as pragmatic methods and

algorithms where possible.

We assume that the book will be used by graduate students and professionals in civil

engineering,mechanical engineering, aircraft andmarine engineering, aswell as inmechanics.

The level of the preparation assumed of the reader corresponds to that of the bachelor’s degree

in science or engineering, especially those who have a basic understanding of the concept of

probability theory and structural dynamics. In addition, to make the book self-sufficient, the

essential concepts of random variables, stochastic processes and randomfields are presented in

the book.

Our sincere appreciations go first to Professor P.D. Spanos at RiceUniversity, for his friendly

encouragement, and to Professor R.G. Ghanem at theUniversity of Southern California, for his

constructive comments and fruitful discussions. For their valuable help and advice, special

thanks are also due to Professor W.D. Iwan at California Institute of Technology, Professor

Jinping Ou at Dalian University of Technology and Professor Yangang Zhao at Nagaya

Institute of Technology. The first author would also like to take this opportunity to express his

deep appreciation to Professor J.B. Roberts of SussexUniversity, who is greatlymissed, for the

generous support given for the chance to complete the investigation on stochastic analysis and

modeling during 1993 and 1994 when the author spent one year as a senior visiting scholar at

Sussex University, and to his colleagues Professor Xilin Lu, Professor Guoqiang Li, Professor

Ming Gu, Professor Yiyi Chen and Professor Menglin Lou at Tongji University for their

continuous cooperation and support.

Much of the research work of the authors was developed with support from the National

Natural Science Foundation of China, over a period of decade, including the National

Outstanding Young Scientist Foundation (received by the first author in 1998), the Young

Scholars Foundation (received by the second author in 2004), and the Innovative Research

Groups Plan. All the support is gratefully acknowledged.

Finally, a votes of thanks go to Mr James Murphy, editor at John Wiley & Sons, Ltd, for his

patience and encouragement during the preparation of this book, and to Mr Roger Bullen,

Project Editor, for his patience and scrutiny in the editing of this book.

Jie Li and Jianbing Chen

Shanghai

June 2008
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1

Introduction

1.1 Motivations and Historical Clues

Structural dynamics deals with the problems of response analysis, reliability evaluation and

system control of any given type of structure subjected to dynamic actions.1 Structures (such as

buildings, bridges, aircraft, ships and so on) refer to those bodies or systems composed of

various materials in a certain way that are capable of bearing loads and actions. On the other

hand, when we say an action applied on structures is dynamic, this not only indicates that the

action is time varying, but also that the induced inertial effects cannot be ignored. For example,

earthquakes, wind, sea waves, jet noise and turbulence in the boundary layer and the like are

typical dynamic actions. The task of dynamic response analysis of structures is to capture the

internal forces, deformations or other state quantities of structures when they are subjected to

dynamic actions. At the same time,wemay need to studywhether the structural responsemeets

some specified limit in a sense, which is generally referred to as reliability evaluation.

Furthermore, to make a structure subjected to dynamic actions response in a desired way

to an extent is what to be done in system control.

Most dynamic actions exhibit appreciable randomness. Actually, investigators frequently find

that the results observed under almost identical conditions have obvious deviation, but simul-

taneously exhibit some statistical rules. In essence, the randomness results from the uncontrolla-

bility of causation of the realized phenomenon. For example, consider wind turbulence in the

atmospheric boundary layer. It is well known that the observedwind speeds recorded at the same

positionbutduringdifferent timeintervalsarequitedifferent(Figure1.1).However, if thestatistics

ofa largenumberofsamplesareexamined, thenwefind that theprobabilistic characteristicsof the

wind speed are relatively stable (Figure 1.2). In fact, the randomness involved stems from a

complicated physical mechanism in the wind flows, say the mechanism of turbulence. The

underlying reason is the uncontrollable nature of the motion of air molecules.

In addition, the randomness involved in the physical parameters of structures is also one of

the sources that induce randomness in the dynamic responses of structures. For instance, in the

1 The dynamic properties of structures, such as the frequencies and mode shapes, are also research topics of structural

dynamics. But, in a general sense, the dynamic properties of structures can be regarded as part of the dynamic analysis

of structures.

Stochastic Dynamics of Structures      Jie Li and Jianbing Chen
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dynamic response analysis of building structures, the soil–structure interaction is one of the

basic problems where the properties of soil must be considered in the establishment of a

reasonable structural analysis model. Evidently, it is impossible to measure the physical

properties of soil completely at all points in the groundwork. Thus, a reasonable modeling

approach is to regard the physical properties of soil, such as the shear wave speed and the

damping ratio, as random variables or random fields. This will lead to the structural analysis

involving random parameters, usually known as stochastic structural analysis.

Stochastic dynamic response analysis, reliability evaluation and system control compose the

basic research scope of the stochastic dynamics of structures.

Although the studies on stochastic dynamical systems can be dated back to the investigations

on statisticalmechanics byGibbs andBoltzmann (Gibbs, 1902;Cercignani, 1998), it is generally

considered more reasonable to regard the studies on Brownian motion by Einstein (1905) as the

origin of the discipline.

Figure 1.1 Records of wind speed.

Figure 1.2 Contour of probability density of wind speed.
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Figure 1.3 Typical trajectories of Brownian motions.

In 1905, Einstein studied the problem of the irregular motion of particles suspended in

fluids, which was first observed by the Scottish botanist Robert Brown in 1827 (Figure 1.3).

Einstein believed that Brownian motion of the particles was induced by the highly frequent

random impacts of the fluid molecules. Based on this physical interpretation, Einstein made

the following assumptions:

(a) the motion of different Brownian particles is mutually independent;

(b) themotion of Brownian particles is isotropic and no external actions except the collision of

fluid molecules are applied;

(c) the collision of fluid molecules is instantaneous, such that the time of collision can be

ignored (rigid collision).

Based on the above assumptions, the probability density of the particle group at two different

instants of time can be derived by examining the phenomenological evolution process of the

particle group; that is:

f ðx; tþ tÞ ¼
ðþ¥

�¥
f ðxþ r; tÞFðrÞ dr ð1:1Þ

where f(x, t þ t) is the probability density of the position of the particles at time t þ t,
f (x þ r, t) is the probability density by transition of the particleswith distance r during the time

interval t, and F(r) is the probability density of displacement of the particles.

Using the rigid collision assumption, expanding the functions by using the Taylor series and

retaining the first-order term with respect to f (x, t þ t) and the second-order termwith respect

to f (x þ r, t) will yield

qf ðx; tÞ
qt

¼ D
q2f ðx; tÞ
qx2

ð1:2Þ
where

D ¼ 1

t

ðþ¥

�¥

1

2
r2FðrÞ dr ð1:3Þ

Clearly, Equation (1.2) is a diffusion equation, where D is the diffusion coefficient.
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In 1914 and 1917, Fokker and Planck respectively introduced the drift term for a similar

physical problem, leading to the so-called Fokker–Planck equation (Fokker, 1914; Planck,

1917; Gardiner, 1983), of which the rigorous mathematical basis was later established by

Kolmogorov (1931).2

We note that, initially, the studies on Brownian motion were based on physical concepts;

however, a statistical phenomenological interpretation was subsequently introduced in the

deductions. In this book, we call this historical clue the Einstein–Fokker–Planck tradition or

phenomenological tradition. In this tradition, a large number of studies on the probability

density evolution of stochastic dynamical systems have been done (Kozin, 1961; Lin, 1967;

Roberts and Spanos, 1990; Zhu, 1992, 2003; Lin and Cai, 1995). However, for the multi-

degree-of-freedom (MDOF) systems or multidimensional problems, advancement is still quite

limited (Schu€eller, 1997, 2001).
Soon after Einstein’s work, Langevin (1908) came up with a completely different research

approach. In his investigation, the physical interpretation of Brownian motion is the same as

that of Einstein, but Langevin contributed to two basic aspects. He:

(a) introduced the assumption of random forces;

(b) employed Newton’s equation of motion to govern the motion of the Brownian particles.

Based on this, he established the stochastic dynamics equation, which was later called the

Langevin equation:

m€x ¼ � g _xþ jðtÞ ð1:4Þ

where m is the mass of the Brownian particles, €x and _x are the acceleration and velocity of

motion respectively, g is the viscous damping coefficient and j(t) is the force induced by the

collision of the fluid molecules, which is randomly fluctuating.

Using the ensemble average, Langevin obtained a diffusion coefficient identical to that given

by Einstein.

In contrast to the diffusion equation derived by Einstein, the Langevin equation is more

direct and more physically intuitive. However, the physical features of the random forces are

not completely clear in Langevin’s work.
In 1923, Wiener proposed a stochastic process model for Brownian motion (Wiener, 1923).

Around 20 years later, Itô introduced the Itô integral and gave the more generic Langevin

equation based on the Wiener process (Itô, 1942, 1944; Itô and McKean, 1965):

dxðtÞ ¼ a½xðtÞ; t� dtþ b½xðtÞ; t� dWðtÞ ð1:5Þ

where a(�) and b(�) are known deterministic functions and W(t) is a Wiener process.

The form of Equation 1.5 is nowadays called the Itô stochastic differential equation. Clearly,

this equation is in essence a physical equation. It is generally believed that the Itô equation

2 Interestingly, Kolmogorov did not at first know about the work of Fokker and Planck and developed his equation

independently.
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provides a sample trajectory description for stochastic dynamical systems. In this book, we

refer to this historical clue as the Langevin–Itô tradition or physical tradition. In this approach,

the mean-square calculus theory was established, based on which correlation analysis and

spectral analysis in classical random vibration analysis were well developed (Crandall, 1958,

2006; Lin, 1967; Zhu, 1992; Øksendal, 2005).

There were intrinsic and countless ties between the phenomenological tradition and the

physical tradition in stochastic dynamics. As a matter of fact, upon the assumption that the

system inputs are white-noise processes, it is easy to obtain the Fokker–Planck–Kolmogorov

(FPK) equation via the Itô equation. This demonstrates that in the physics approach we can

discover the intrinsic arcanumof the evolution of stochastic systems. Unfortunately, white noise

is physically unrealizable. In other words, although mathematically it plays a fundamental role

in a sense, the various singular or even ridiculous features of white noise (say, continuous but

indifferentiable everywhere) are rare in the real world.

Thewhite-noise process is, of course, an idealized model for various real physical processes.

Noticing this,wenaturallyhope to return to the real physical processes themselves. For a specific

physical dynamical process, the problem is usually easily resolvable. Thus, once further

introducing the intrinsic ties between the sample trajectories and the probabilistic description,

wewill be led to an approach of studying stochastic systems based on physics. In this approach,

we not only can establish the generalized probability density evolution equation (Li and Chen,

2003, 2006c, 2008), but also find that the nowadays available major research results, such as

traditional random vibration theory and stochastic finite element methods, can be appropriately

brought into the new theoretical frame (Li, 2006). In fact, correlation analysis and the spectral

analysis in classical random vibration theory can be regarded as the results of combining the

formal solution of physical equations and the evolution of moment characteristics of the

response processes. Perturbation theory and orthogonal expansion theory in the analysis of

structureswith randomparameters can also be reasonably interpreted in this sense. The classical

FPK equation, as mentioned before, can be viewed as the result of the idealization of physical

processes. In addition, the thoughts of physical stochastic systemcan also be used inmodeling of

general stochastic process, such as seismic groundmotion, wind turbulence and the like (Li and

Ai, 2006; Li and Zhang, 2007).

On the basis of the above thoughts on physical stochastic systems, we prefer to entitle this

book Stochastic Dynamics of Structures: a Physical Approach.

1.2 Contents of the Book

This book deals with the basic problems of the stochastic dynamics of structures in the

theoretical frame of physical stochastic systems.

In Chapter 2 the prerequisite fundamentals of probability theory are outlined, including the

basic concepts of random variables, stochastic processes, random fields and the orthogonal

expansion of random functions.

Chapter 3 deals with stochastic process models for typical dynamic excitations of struc-

tures, including the phenomenological and physical modeling of seismic ground motions,

fluctuating wind speed and sea waves. Simultaneously, we introduce the standard orthogonal

expansion of stochastic processes, which can be applied to random vibration analysis of

structures.
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The approaches for analysis of structures with random parameters mainly include the

random simulation method, the perturbation method and the orthogonal expansion method.

These approaches are discussed in detail in Chapter 4.

Chapter 5 deals with the response analysis of deterministic structures subjected to stochastic

dynamic excitations, including correlation analysis, spectral analysis, the statistical lineariza-

tion method and the FPK equation approach. In particular, in this chapter we introduce the

pseudo-excitation method for linear systems. We believe these contents are valuable to

in-depth understanding of classical random vibration theory.

Probability density evolution analysis of stochastic responses of dynamical systems is an

important topicof thebook.Wewill dealwith this topic inChapters 6 and7. InChapter 6we trace

in some detail the historical origin of probability density evolution analysis of stochastic

dynamical systems. Using the principle of preservation of probability as a unified basis,

we derive the Liouville equation, the FPK equation, the Dostupov–Pugachev equation and the

generalized probability density evolution equation proposed by the authors. In Chapter 7 we

study the numerical methods for probability density evolution analysis in detail, including

the finite difference method, the strategy of selecting representative points via tangent spheres,

lattices and the number theoretical method. For all these methods, we discuss the problems of

numerical convergence and stability where possible.

The aim of structural dynamical analysis is to realize reliability-based design and

performance control of structures. We discuss the problem of dynamic reliability and global

reliability of structures in Chapter 8. Based on the random event description of the evolution

of probability density, the absorbing boundary condition for the first-passage problem is

introduced. The theory on evaluation of the extreme value distribution is elaborated through

introducing a virtual stochastic process related to the extreme value of the response process.

Furthermore, the principle of equivalent extreme value and its application to the global

reliability evaluation of structures is discussed. It is worth pointing out that the principle of

equivalent extreme value is of significance and applicable to static reliability evaluation of

generic systems.

We come to the problem of the dynamic control of structures in Chapter 9. On the basis of

classical dynamic control, the concept of stochastic optimal control is introduced and the

approach for design of the control systems based on probability density evolution analysis is

proposed. For realization of ‘real’ stochastic optimal control of dynamical systems, the

proposed approach is undoubtedly promising.
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2

Stochastic Processes
and Random Fields

2.1 Random Variables

2.1.1 Introduction

By an experimentwemean taking a kind of action or operation devised to seek for a certain truth or

fact. For some experiments, the results possess basic properties of deterministic phenomena once

all underlying conditions arewell controlled and all experimental phenomena are exactly observed.

In other words, the results of these experiments are predictable. Owing to uncontrollable or

immeasurable facts, however, those experiments may obtain varied results, though fundamental

conditions remain invariant in some respects.This is the so-called randomphenomenon.The results

occurring in a set of random experiments are generally called random events, or events for

simplicity. The basic property of a random event lies in that the predicted eventmay be observed or

not when the observational conditions differ by a small amount. However, we can always identify

the set whose elements consist of all the possible results for a given experiment. In other words, the

union of all experimental results can be determined beforehand. This set is called the sample space

anddenotedbyW. Eachpossible result inW is calleda samplepoint, denotedbyv. EacheventAcan
be understood as a subset ofW. An event is called an elementary event if it contains only a single

sample point. On the other hand,we can say that a compound event is a certain set of sample points.

A family of events, denoted byF or termed s-algebra, refers to the subset of Awhich satisfies the

following statements:

(a) W 2 F ;

(b) A 2 F implies �A 2 F , where �A is the complement of A;

(c) An 2 F ðn ¼ 1; 2; . . .Þ implies [¥
n¼1An 2 F .

Tomeasure a sample space,we need to assign a numerical value tomeasure the possibility of an

event occurring. This gives rise to the concept of probability measure, by which every event in

F is mapped into the unit interval [0, 1]. That is, the possibility of each occurrence can be

represented by a nonnegative number smaller than unity. In general, we call this number the
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probability measure ofW, or the probability of the given event A, denoted by P(A) or Pr{A}. In

addition, in Kolmogorov�s Foundations of the Theory of Probability, the triple ðW;F ;PÞ is
defined as the probability space (Kolmogorov, 1933; Loeve, 1977; Kallenberg, 2002).

We have already noted that the probability measure gives a gauge of an event�s occurrence,
but does not give a similar one for the sample points. In mathematics, this problem is resolved

by defining on the probability space a measurable function X(v), which is generally called a

random variable, and denoted by X for short.1 It has two basic properties:

(a) A random variable is a single-valued real function of sample points. That is, each random

variable produces a mapping from a probability space to a field of real numbers.

(b) For any real number, {v :X(v)< x} is a random event.

With the concept of a random variable, we can adopt numerical values to describe the results of

any random experiment. For instance, an elementary event is expressed in the form that a

random variable X is equal to one deterministic number (i.e. X¼ x), while any arbitrary event

can be expressed in a way that X takes values over an interval x1�X� x2 and its probability of

occurring is denoted by Pr{x1�X� x2}. There are two basic types of random variable:

discrete random variable and continuous random variable. The former take values in a finite or

countable infinite set, while the latter can be assigned any value in one or several intervals.

When the Dirac delta function is introduced later, the discrete random variable and continuous

random variable will be seen to operate in a unified way (see Appendix A), but in this book it

is mainly the continuous random variables that are discussed.

In general, FX(x)¼ Pr{X(v)< x} (�¥< x<¥) is called the cumulative distribution

function (CDF) of the random variable X. It satisfies the following basic properties:

(a) limx! �¥ FXðxÞ ¼ 0; limx!¥ FXðxÞ ¼ 1;

(b) if x1< x2, then FX(x1)�FX(x2);

(c) FX(x� 0)¼FX(x);

(d) Pr{x1�X< x2}¼FX(x2)�FX(x1).

By introducing random variables, we can further deal with probability measure problems

of complicated systems. This is done by the use of operations performed on random variables.

2.1.2 Operations with Random Variables

Two of the most important operations are the distributions of random variables� functions and
the moments of random variables. They are both based on calculations of the probability

density functions (PDFs). Thus, the concept of the PDF is introduced first.

For a continuous random variable X, the PDF is defined as the derivative of its CDF:

pXðxÞ ¼ d

dx
FXðxÞ ð2:1Þ

where pX(x) is a nonnegative function; that is, there always exists pX(x)� 0.

1A random variable is usually denoted by a capital letter or Greek character, say X or j, while the sample value of a

randomvariable is usually denoted by the corresponding lower case character, sayx.The convention is used in the book

except for special statements.
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The inversion of Equation 2.1 gives

FXðxÞ ¼
ðx
�¥

pXðxÞ dx ð2:2Þ

where the condition FX(�¥)¼ 0 has been used.

As the upper limit of the integral goes to infinity, we have

ð¥
�¥

pXðxÞ dx ¼ 1 ð2:3Þ

Figure 2.1 depicts a typical PDF and the CDF.

If a random variable Y is the function of another one X, namely Y¼ f(X), and f(�) only has a
finite number of discontinuity points, then the CDF of Y is given by

FYðyÞ ¼ Prff ðXÞ < yg ¼
ð
f ðxÞ < y

pXðxÞ dx ð2:4Þ

This integral is calculated over all the segments in the x axis which satisfy the inequality

below the integral symbol.

Theoretically, according to Equation 2.1, it is easy to obtain the PDF of Y from

Equation 2.4. However, we may encounter difficulties when making specific operations,

because sometimes f(�) may be a very complicated function. Thus, in general we only

consider two cases as follows:

Figure 2.1 PDF and CDF.
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(a) Suppose f(x) is a monotonic function. Then there exists g(y) as the unique inverse function

of f(x). Using Equations 2.1 and 2.4, the PDF of Y is given by

pYðyÞ ¼ pX gðyÞ½ � dgðyÞ
dy

����
���� ð2:5Þ

(b) Suppose f(x) is notmonotonic but a single-valued function (see Figure 2.2). In this case, we

can try to divide the domain ofx-values into several intervals such that, over each interval, f

(x) is a monotonic function. Then, similar to Equation 2.4, there is

pYðyÞ ¼
X
k

pX gkðyÞ½ � dgkðyÞ
dy

����
���� ð2:6Þ

where gk(y) is the inverse function of f(x) in the kth interval.

As already noted, the CDF or PDF describes the distribution properties of random variables

in a precise way. On the other hand, somewhat rough descriptions of random variables are the

moments, among which two of the most useful ones are the expectation and the variance.

The expectation of a continuous random variable is defined as the first origin moment of its

density function; that is,

E½X� ¼
ð¥
�¥

xpXðxÞ dx ð2:7Þ

Its variance is the second central moment of its density function:

D½X� ¼ EfðX�E½X�Þ2g ¼
ð¥
�¥

ðx�E½X�Þ2pXðxÞ dx ð2:8Þ

The basic property of the expectation is its linear superposition; that is:

E½aXþ b� ¼ aE½X� þ b ð2:9Þ
where a and b are any two constants.

Correspondingly, the variance obeys

D½aXþ b� ¼ a2D½X� ð2:10Þ

( )y f x=

y

1 2 3 4 5

x0

Figure 2.2 A single-valued function.
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In general, we call

mn ¼ E½Xn� ¼
ð¥
�¥

xnpXðxÞ dx ð2:11Þ

the nth origin moment of X and denote the expectation m1 by m.

Kn ¼ E½ðX�mÞn� ¼
ð¥
�¥

ðx�mÞnpXðxÞ dx ð2:12Þ

is called the nth centralmoment ofX, ands2 is used to denoteK2 orD½X�.s ¼ ffiffiffiffiffiffiffiffiffiffiD½X�p
is usually

called the standard deviation of X.

The central moments can be expressed by the linear combination of origin moments:

E½ðX�mÞn� ¼
Xn
i¼0

n

i

� �
ð� E½X�Þn� iE½Xi� ð2:13Þ

where
n

i

� �
¼ n!

i!ðn� 1Þ!
Similarly, the origin moments can also be computed by the central moments.

For a continuous random variable X, the characteristic function, denoted by fX(q), is the
Fourier transform of its PDF; that is:

fXðqÞ ¼
ð¥
�¥

eiqxpXðxÞ dx ð2:14Þ

As noted, the characteristic function can serve as amode of describing randomvariables like

the PDF.More significantly,moment functions of a randomvariable can be given by derivatives

of its characteristic function. In fact:

dnfXðqÞ
dqn ¼ in

ð¥
�¥

eiqxxnpXðxÞ dx ð2:15Þ

Let q¼ 0, then

dnfXðqÞ
dqn

����
q¼0

¼ in
ð¥
�¥

xnpXðxÞ dx ¼ inE Xn½ � ð2:16Þ

where i is the imaginary number unit. Meanwhile, we obtain the Maclaurin series expansion

of fX(q):

fXðqÞ ¼ fXð0Þþ
X¥
n¼1

dnfX

dqn

�����
q¼0

qn

n!
¼ 1þ

X¥
n¼1

ðiqÞn
n!

E Xn½ � ð2:17Þ

Equation 2.17 implies that the lower-order moments contain the major parts of information

about a distribution. For many practical problems, second-order statistics are enough to

describe them.
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2.1.3 Random Vectors

In many cases there is more than one random variable of interest. If the random variables

X1(v),X2(v), . . .,Xn(v) belong to the same probability space ðW; F ;PÞ, then
X ¼ ðX1ðvÞ;X2ðvÞ; . . . ;XnðvÞÞ ð2:18Þ

is an n-dimensional random vector.

The joint CDF of a random vector is defined by

FXðx1; x2; . . . ; xnÞ ¼ PrfX1 <x1;X2 <x2; . . . ;Xn < xng

¼
ðx1
�¥

ðx2
�¥

. . .

ðxn
�¥

pXðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxn
ð2:19Þ

where pX(x1,x2, . . .,xn) is the joint PDF ofX. The joint density function satisfies the following
properties:

pXðx1; x2; . . . ; xnÞ � 0 ð2:20Þ
ð¥
�¥

ð¥
�¥

. . .

ð¥
�¥

pXðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxn ¼ 1 ð2:21Þ

and there exists

pXðx1; x2; . . . ; xnÞ ¼ qnFXðx1; x2; . . . ; xnÞ
qx1qx2 . . . qxn

ð2:22Þ

For a certain component Xi, the marginal distribution and the marginal density function are

respectively defined by

FXi
ðxiÞ ¼ PrfXi <xig ¼ FXð¥; . . . ;¥; xi;¥; . . . ;¥Þ ð2:23Þ

and

pXi
ðxiÞ ¼

ð¥
�¥

. . .

ð¥
�¥

pXðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxi� 1 dxiþ 1 . . . dxn ð2:24Þ

Generally speaking, the marginal distribution can be uniquely determined by the joint

probability distribution function, but the converse is not true. In other words, the joint PDF

contains more information than each marginal density function separately, since the latter can

be obtained from the former. This implies that the correlation between random variables is an

important profile of a random vector.

For an n-dimensional random vector, the conditional cumulative distribution and the

conditional PDF with respect to a certain component Xi are respectively defined by

FXjXi
ðx1; . . . ; xi� 1; xiþ 1; . . . ; xnjxiÞ

¼ PrfX1 <x1; . . . ;Xi� 1 < xi� 1;Xiþ 1 < xiþ 1; . . . ;Xn <xnjXi ¼ xig ð2:25Þ
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and

pXjXi
ðx1; . . . ; xi� 1; xiþ 1; . . . ; xnjxiÞ ¼ pXðx1; x2; . . . ; xnÞÐ¥

�¥ pXðx1; x2; . . . ; xnÞ dx1 . . . dxi� 1 dxiþ 1 . . . dxn

ð2:26Þ
If for all the x1,x2, . . .,xn there exists

FXðx1; x2; . . . ; xnÞ ¼ FX1
ðx1ÞFX2

ðx2Þ . . .FXn
ðxnÞ ð2:27Þ

or

pXðx1; x2; . . . ; xnÞ ¼ pX1
ðx1ÞpX2

ðx2Þ . . . pXn
ðxnÞ ð2:28Þ

thenwe callX1,X2, . . .,Xn statistically independent random variables. In this case, themarginal

probability distribution of a certain component is equal to the corresponding conditional

probability distribution.

Let a function Y¼ f(X1,X2, . . .,Xn). Then its probability distribution function is given by

FYðyÞ ¼ Prff ðX1;X2; . . . ;XnÞ < yg ¼
ð
f ðx1;x2;...;xnÞ < y

pXðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxn

ð2:29Þ
Similarly, for m functions Yi¼ fi(X1,X2, . . .,Xn), i¼ 1, 2, . . .,m, there is

FYðy1; y2; . . . ; ymÞ ¼ PrffiðX1;X2; . . . ;XnÞ < yi; i ¼ 1; 2; . . . ;mg
¼
ð
fiðx1;x2;...;xnÞ < yi ;1�i�m

pXðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxn ð2:30Þ

Like the one-dimensional case, Equations 2.29 and 2.30 require that fi(�) obey some

restrictions. In particular, consider the case m¼ n. To be exact, assume that there exist the

unique inverse functions of yi¼ fi(x1,x2, . . ., xn), denoted by xi¼ xi(y1, y2, . . ., yn), and the

continuous partial derivativesqxi/qyj. Then, the PDFof the n-dimensional randomvectorY can

be given by

pYðy1; y2; . . . ; ynÞ ¼ pXðx1; x2; . . . ; xnÞjJj if ðy1; y2; . . . ; ynÞ 2 Wf1;f2;...;fn

0 otherwise

�
ð2:31Þ

where Wf1; f2;...; fn is the value domain of (f1, f2, . . ., fn) and |J| is the absolute value of the

determinant of the Jacobian matrix

jJj ¼

qx1
qy1

qx2
qy1

. . .
qxn
qy1

qx1
qy2

qx2
qy2

. . .
qxn
qy2

. . . . . . . . . . . .

qx1
qyn

qx2
qyn

. . .
qxn
qyn

���������������

���������������
ð2:32Þ
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When the inverse functions are not one-to-one, namely yi¼ fi(x1,x2, . . .,xn), i¼ 1, 2, . . ., n,
havemore than one solution, then one point in the space Y corresponds tomultiple points in the

spaceX. In such a case, it is necessary to partitionX into several sub-domains so as to yield one-

to-one transformations from Y to each sub-domain of X. Then, the probability that Y takes

values over a certain subset of Y is equal to the sum of probabilities thatX takes the values over

the corresponding sets in each sub-domain of X; that is:

pYðy1; y2; . . . ; ynÞ ¼
P

k pXðx1;k; x2;k; . . . ; xn;kÞjJkj ifðy1; y2; . . . ; ynÞ 2 Wf1;f2;...;fn

0 otherwise

�
ð2:33Þ

where Wf1;f2;...;fn is the value domain of (f1, f2, . . ., fn).
To describe the distribution of an n-dimensional random vector completely, its n-dimen-

sional joint probability distribution function is needed. This may be difficult for most practical

cases. In many practical applications, it is feasible to use a family of expected values of the

random vectors.

For a random vector (X1,X2, . . .,Xn), the expectation is given by ðE½X1�; E½X2�; . . . ; E½Xn�Þ,
where

E½Xi� ¼
ð¥
�¥

xipXi
ðxiÞ dxi ð2:34Þ

and its variance is ðD½X1�;D½X2�; . . . ;D½Xn�Þ, where

D½Xi� ¼ EfðXi �E½Xi�Þ2g ¼
ð¥
�¥

ðxi �E½Xi�Þ2pXi
ðxiÞ dxi ð2:35Þ

It is obvious that the above expectations and variances only reflect the information of each

random variable itself. Apart from these, in practical problems, the correlated information

between two random variables is equally worth noting. The covariance of two components Xi

and Xj is defined by

cij ¼ cov½Xi;Xj � ¼ EfðXi �E½Xi�ÞðXj �E½Xj�Þg
¼
ð¥
�¥

ð¥
�¥

ðxi �E½Xi�Þðxj �E½Xj�ÞpXiXj
ðxi; xjÞ dxi dxj

ð2:36Þ

The matrix

C ¼
c11 c12 . . . c1n

c21 c22 . . . c2n

. . . . . . . . . . . .

cn1 cn2 . . . cnn

2
664

3
775 ð2:37Þ

is called the covariance matrix of (X1,X2, . . .,Xn).

Sometimes it is convenient to define the parameter

rij ¼
cov½Xi;Xj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiDðXiÞDðXjÞ

p ð2:38Þ
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as the correlation coefficient of Xi and Xj. This parameter indicates whether two random

variables are linearly dependent or uncorrelated. That is, if r¼�1, then Xi and Xj are said to be

completely correlated. In other words, they are equivalent in the sense of probability. If r¼ 0,

thenXi andXj are said to be completely uncorrelated. However, the uncorrelation does not imply

independence. The latter usually means no function relation between the two random variables.

Note that the correlation coefficient is essentially the covariance of standardized random

variables ðXi �E½Xi�Þ=
ffiffiffiffiffiffiffiffiffiffiffiD½Xi�

p
and ðXj �E½Xj�Þ=

ffiffiffiffiffiffiffiffiffiffiffiD½Xj�
p

. Therefore, the matrix

r ¼

r11 r12 . . . r1n

r21 r22 . . . r2n

. . . . . . . . . . . .

rn1 rn2 . . . rnn

2
6664

3
7775 ð2:39Þ

is called the normalized covariance matrix or the correlation coefficient matrix.

The expectation of a random function g(X1,X2, . . .,Xn) is defined by

E½gðX1;X2; . . . ;XnÞ� ¼
ð¥
�¥

. . .

ð¥
�¥

gðx1; x2; . . . ; xnÞpXðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxn
ð2:40Þ

Comparing Equation 2.40 with Equation 2.29, we find that the expectation of a function of a

random vector, Y¼ g(X1,X2, . . .,Xn), can be computed directly fromEquation 2.40 without the

need to first obtain its PDF pY (y).

For more complicated functions, we can expand the random function g(�) in a series form:

Y ¼ gðE X1½ �; E X2½ �; . . . ; E Xn½ �Þ þ
Xn
i¼1

qg
qXi

���� X1¼E½X1�
...

Xn¼E½Xn�

ðXi �E Xi½ �Þ

þ 1

2

Xn
i¼1

q2g
qXiqXj

���� X1¼E½X1�
...

Xn¼E½Xn�

ðXi �E Xi½ �ÞðXj �E Xj

� �Þþ . . . ð2:41Þ

Retaining only the linear terms, we get the mean and the variance of Y respectively as below:

E½Y� ¼ gðE½X1�; E½X2�; . . . ; E½Xn�Þ ð2:42Þ
and

D Y½ � ¼
Xn
i¼1

qg
qXi

���� X1¼E½X1�
...

Xn¼E½Xn�

2
666664

3
777775

2

D Xi½ � þ
Xn
i¼1

Xn
j¼1

qg
qXi

���� X1¼E½X1�
...

Xn¼E½Xn�

qg
qXj

���� X1¼E½X1�
...

Xn¼E½Xn�

cov Xi;Xj

� � ð2:43Þ
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The expansion formula (Equation 2.41) is actually a basis for the perturbation theory of

stochastic structure analysis (see Chapter 4).

2.1.4 Decomposition of Correlation Matrix

As noted in Equation 2.37, the covariance matrix is both symmetric and nonnegative definite.

This fact implies that, for the covariance matrix C, there exists a diagonal matrix

l ¼

l1 0 . . . 0

0 l2 . . . 0

0 . . . . .
.

0

0 . . . 0 ln

2
666664

3
777775 ð2:44Þ

and an n-dimensional matrix

f ¼ ½c1;c2; . . . ;cn� ¼

f11 f12 . . . f1n

f21 f22 . . . f2n

. . . . . . . . . . . .

fn1 fn2 . . . fnn

2
6664

3
7775 ð2:45Þ

such that

Cf ¼ lf ð2:46Þ

where li, i¼ 1, 2, . . ., n, are the eigenvalues of C and f is the eigenvector matrix of C. Note
that f is an orthogonal matrix; that is, fTf¼ I, where the superscript T denotes the

vector transpose.

The matrix f leads to a similarity transformation, through which the formerly nondiagonal

matrix C is transformed to a diagonal matrix l; that is:

l ¼ fTCf ð2:47Þ

Thus, for a random vectorX¼ (X1,X2, . . .,Xn), we are sure to obtain the eigenvalues and the

eigenvectors with respect to a covariancematrix by adopting the eigenvalue theory ofmatrices.

This process is the so-called decomposition of the correlation matrix, through which the

former correlated random vector (X1,X2, . . .,Xn) can be transformed into a set of uncorrelated

random variables Y¼ (Y1,Y2, . . .,Yn) by a linear transform:

X ¼ X0 þfY ¼ X0 þ
Xn
i¼1

ciYi ð2:48Þ

where X0 is the mean vector of X.

In fact, let Xs¼fY; since adding vectors with constants makes no change to the

corresponding covariance, there is
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CX ¼ CXs ¼ E½XsX
T
s� ð2:49Þ

Combining Equations 2.49 and 2.47 gives

l ¼ fTE½XsX
T
s�f ¼ fTE½fYYTfT �f ¼ E½YYT � ð2:50Þ

This indicates that l is nothing but the covariance matrix of Y.
Let Yi ¼

ffiffiffiffi
li

p
zi, then (z1, z2, . . ., zn) is a standardized sequence of uncorrelated random

variables such that

X ¼ X0 þ
Xn
i¼1

ci

ffiffiffiffi
li

p
zi ð2:51Þ

This shows that a randomvector can be represented in the form of a sequence of standardized

uncorrelated random variables.

2.2 Stochastic Processes

2.2.1 Specification of Stochastic Processes

The so-called ‘stochastic process’ refers to a family of random variables defined over a

parameter set. Every point of the set is associatedwith a randomvariable. In this point of view, a

one-dimensional stochastic process may be understood as an extension of a random vector

(Figure 2.3). Therefore, those basic concepts that hold for multidimensional random vectors

are still true for one-dimensional stochastic processes.

Assume that {X(t), t2 T} is a stochastic process,where t is a timeparameter that belongs to a set

T (a time interval). To describe its probability properties, what first counts is the distribution of

everyone-timerandomvariable (or the randomvariableatacertain time t, t2 T).This isdenotedby

Fðx; tÞ ¼ PrfXðtÞ <xg t 2 T ð2:52Þ

and called the one-dimensional distribution of {X(t), t2T}.

x

to

x

to

x

to
1t 2t jt

x

p(x,t )

o

(b) one-dimensional PDF (a) stochastic samples  

Figure 2.3 A stochastic process and the one-dimensional PDF.
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It is obvious that the one-dimensional distribution alone is insufficient to describe

a stochastic process. Then, it naturally comes into our minds to study how the random

variables of a stochastic process at different time instants are correlated. For this purpose we

introduce

Fðx1; t1; x2; t2Þ ¼ PrfXðt1Þ < x1;Xðt2Þ <x2g t1; t2 2 T ð2:53Þ

as the two-dimensional distribution of {X(t), t2T}.

In increasing order of completeness, for any finite {t1, t2, . . ., tn2 T}, there is

Fðx1; t1; x2; t2; . . . ; xn; tnÞ ¼ PrfXðt1Þ <x1;Xðt2Þ <x2; . . . ;XðtnÞ < xng ð2:54Þ
which is called the n-dimensional distribution of {X(t), t2 T}.

For a stochastic process {X(t), t2 T}, its one-, two-, . . ., and n-dimensional distributions

constitute its complete probabilistic structure. In fact, once this family of finite-dimensional

distributions is given, we can determine the correlation of any finite random variables of the

stochastic process at different time instants. That is, the probabilistic structure of {X(t), t2 T} is

obtained.

The family of finite-dimensional distributions satisfies the following three properties:

(a) Nonnegative; that is:

0 � Fðx1; t1; x2; t2; . . . ; xn; tnÞ � 1 ð2:55Þ
(b) Symmetry; that is, for any permutation (j1, j2, . . ., jn) of (1, 2, . . ., n), there is

Fðxj1 ; tj1 ; xj2 ; tj2 ; . . . ; xjn ; tjnÞ ¼ Fðx1; t1; x2; t2; . . . ; xn; tnÞ ð2:56Þ

(c) Compatibility; that is, as m< n, there is

Fðx1; t1; . . . ; xm; tm;¥; tmþ 1; . . . ;¥; tnÞ ¼ Fðx1; t1; x2; t2; . . . ; xm; tmÞ ð2:57Þ
According to Equation 2.57, the lower dimensional distributions can be obtained from the

higher dimensional ones.

Similar to the cases of a random variable and a random vector, for a stochastic process the

finite-dimensional density functions are defined by the derivatives of the corresponding

distribution functions; that is:

pðx; tÞ ¼ qFðx; tÞ
qx

pðx1; t1; x2; t2Þ ¼ q2Fðx1; t1; x2; t2Þ
qx1qx2

. . .

pðx1; t1; x2; t2; . . . ; xn; tnÞ ¼ qnFðx1; t1; x2; t2; . . . ; xn; tnÞ
qx1qx2 . . . qxn

ð2:58Þ

Certainly, this family can completely describe the probabilistic structures of a stochastic

process as well.
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A stochastic process may also be specified by a sequence of characteristic functions. In fact,

performing a Fourier transformon everymember of the above family yields the family offinite-

dimensional characteristic functions:

Mðq; tÞ ¼ Efexp½iqXðtÞ�g ¼
ð¥
�¥

pðx; tÞeiqx dx
Mðq1; t1;q2; t2Þ ¼ Efexp½iq1Xðt1Þþ iq2Xðt2Þ�g

¼
ð¥
�¥

pðx1; t1;x2; t2Þeiq1x1 þ iq2x2 dx1 dx2

. . .

Mðq1; t1;q2; t2; . . . ;qn; tnÞ ¼ E exp½i
Xn
j¼1

qjXðtjÞ�
( )

¼
ð¥
�¥

pðx1; t1;x2; t2; . . . ;xn; tnÞexp i
Xn
j¼1

qjxj

 !
dx1 dx2 . . . dxn

ð2:59Þ
where qj are arbitrary real numbers.

A higher order characteristic function can be reduced to a lower order one by setting some of

the qj as zero:

Mðq1; t1;q2; t2; . . . ;qm; tm; 0; tmþ 1; . . . ; 0; tmþ kÞ ¼ Mðq1; t1;q2; t2; . . . ;qm; tmÞ ð2:60Þ
Generally, characteristic functions are continuous and complex-valued. Since they form the

Fourier transform pairs with the corresponding density functions, the family is an equivalent

description of the probabilistic structure of a stochastic process.

2.2.2 Moment Functions of a Stochastic Process

A stochastic process can also be described by moment functions of various orders, which are

defined as

E½Xðt1Þ� ¼
ð¥
�¥

x1pðx1; t1Þ dx

E½Xðt1ÞXðt2Þ� ¼
ð¥
�¥

x1x2pðx1; t1; x2; t2Þ dx1 dx2
. . .

ð2:61Þ

when these moments exist.

From the MacLaurin series expansion of a characteristic function

Mðq1; t1;q2; t2; . . . ;qn; tnÞ ¼ 1þ i
Xn
j¼1

qjE½XðtjÞ�� 1

2!

Xn
j¼1

Xn
k¼1

qjqkE½XðtjÞXðtkÞ� þ . . .

ð2:62Þ
it is noted that all the moment functions give a complete description of a stochastic process.

Stochastic Processes and Random Fields 19



The first moment function of a stochastic process X(t) is called the expectation, which is

defined by

mXðtÞ ¼ E½XðtÞ� ¼
ð¥
�¥

xpðx; tÞ dx ð2:63Þ

Clearly, for a specific section of random samples, the above equation represents the

first origin moment of the random variable of the stochastic process at time t. For the whole

process, it represents the locus of average centers of the X(t) sample functions xi(t) in the time

domain.

A stochastic process is said to be stationary of first order ifmX(t)¼ constant. The stochastic

process of this type can be easily reduced to a process with zero mean.With this transform, we

may concentrate our attention on the deviation of the process from its expectation; that is, its

variance.

The correlation function serves as a measure of interrelation of any two different states of

stochastic processes. It quantifies how close the values of the random variables specified at two

different time instants are in the sense of probability. There are auto- and cross-correlation

functions according to whether the correlation information of one or between two stochastic

processes needs to be characterized.

The autocorrelation function of X(t) is defined for two random variables from the same

process by

RXðt1; t2Þ ¼ E½Xðt1ÞXðt2Þ� ¼
ð¥
�¥

ð¥
�¥

x1x2pðx1; t1; x2; t2Þ dx1 dx2 ð2:64Þ

On the other hand, the cross-correlation function is assigned to those from two different

processes. Suppose X(t) and Y(t) are two stochastic processes, then the cross-correlation

function is defined by

RXYðt1; t2Þ ¼ E½Xðt1ÞYðt2Þ� ¼
ð¥
�¥

ð¥
�¥

x1y2pðx1; t1; y2; t2Þ dx1 dy2 ð2:65Þ

where p(x1, t1; y2, t2) is the joint PDF of X(t1) and Y(t2).

The cross-correlation function describes the interrelation between two stochastic processes

in the time domain. In other words, it indicates the degree of probabilistic similarity between

two stochastic processes at different time instants.

The normalized correlation functions are called as correlation coefficient. The auto-

correlation coefficient is denoted by

rXðt1; t2Þ ¼ RXðt1; t2Þ
sXðt1ÞsXðt2Þ ð2:66Þ

for a zero-mean stochastic process. Correspondingly, the cross-correlation coefficient is

rXYðt1; t2Þ ¼ RXYðt1; t2Þ
sXðt1ÞsYðt2Þ ð2:67Þ

As noted, the correlation is based on the second origin moments of processes, whereas the

following covariance is on the second central moments.
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For a stochastic process X(t), the auto-covariance function is defined as

KXðt1; t2Þ ¼ E ½Xðt1Þ�mXðt1Þ�½Xðt2Þ�mXðt2Þ�f g
¼
ð¥
�¥

ð¥
�¥

½x1 �mXðt1Þ�½x2 �mXðt2Þ�pðx1; t1; x2; t2Þ dx1 dx2
ð2:68Þ

As t1¼ t2¼ t, the above definition gives

KXðt; tÞ ¼ Ef½XðtÞ�mXðtÞ�2g ¼ D½XðtÞ� ð2:69Þ
where D½XðtÞ� is called the variance of X(t), which is used to gauge how extensively X(t)

varies around its expectation. The standard deviation ofX(t) refers to the square root ofD½XðtÞ�;
that is:

sXðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½XðtÞ�

p
ð2:70Þ

For two stochastic processes, the cross-covariance function is defined as

KXYðt1; t2Þ ¼ Ef½Xðt1Þ�mXðt1Þ�½Yðt2Þ�mYðt2Þ�g
¼
ð¥
�¥

ð¥
�¥

½x1 �mXðt1Þ�½y2 �mYðt2Þ�pðx1; t1; y2; t2Þ dx1 dy2
ð2:71Þ

It is easy to verify the following relationships:

KXðt1; t2Þ ¼ RXðt1; t2Þ�mXðt1ÞmXðt2Þ ð2:72aÞ

KXYðt1; t2Þ ¼ RXYðt1; t2Þ�mXðt1ÞmYðt2Þ ð2:72bÞ
These two equations imply that, for stochastic processes with zero mean, the covariance

function equals the correlation function.

A stochastic process is called aweakly stationary process if its expectation is a constant and its

autocorrelation function depends only on the time difference t¼ t2� t1 (independent of t1 and

t2). In contrast, a strictly stationary process refers to onewhose finite-dimensional distributions

are time invariant. Generally speaking, a weakly stationary process is not necessarily a strictly

stationary one, while a strictly stationary process must be a weakly stationary one. Only for a

normal process, if weakly stationary, is it also strictly stationary. In practical applications, the

weak stationarity is much more widely used than the strict stationarity. Thus, the stationary

processes mentioned below, unless specified otherwise, mean the weakly stationary ones.

The autocorrelation function of a stationary process is expressed as

RXðtÞ ¼ RXðt2 � t1Þ ð2:73Þ
and its cross-correlation function as

RXYðtÞ ¼ RXYðt2 � t1Þ ð2:74Þ
Notice that, for a stationary process, the variance D½XðtÞ� in Equation 2.69 becomes

D½XðtÞ� ¼ s2
X ¼ KXð0Þ ð2:75aÞ
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and if X(t) has zero mean, then from Equation (2.72a) there exist

D½XðtÞ� ¼ s2
X ¼ KXð0Þ ¼ RXð0Þ ð2:75bÞ

The following properties hold true for the autocorrelation function:

(a) It is symmetric

RXðtÞ ¼ RXð� tÞ ð2:76Þ
(b) It is nonnegative definite

Xn
i¼1

Xn
j¼1

RXðti � tjÞhðtiÞh�ðtjÞ � 0 ð2:77Þ

where h(t) is any arbitrary complex function and h*(t) is the complex conjugate.

(c) It is bounded

jRXðtÞj � RXð0Þ ð2:78Þ
(d) If X(t) does not contain periodic components, then for a zero-mean stochastic process

lim
t!¥

RðtÞ ¼ 0 ð2:79Þ

A typical autocorrelation function of a zero-mean stationary process is shown in Figure 2.4.

The importance of the first- and second-order statistical properties of a stochastic process

may be realized not only from the fact that the lower moments contain the major parts of

information about the process (see Equation 2.62), but also from the fact that an upper-bound

estimate of the probability of the event fjXðtÞ�mXðtÞj � eg at any t can be made from the

mean and variance functions for an arbitrary stochastic process. In fact, let s2
XðtÞ and s2

_X
ðtÞ be

the variance function of X(t) and its derivative respectively; it can be verified that (Lin, 1967)

Pr jXðtÞ�mXðtÞj � e for a � t � bf g � 1

2e2
s2
XðaÞþs2

XðbÞ
� �þ 1

e2

ðb
a

sXðtÞs _XðtÞ dt e > 0

ð2:80Þ

( )R τ

τo

Figure 2.4 Autocorrelation function of a zero-mean stationary process.
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2.2.3 Spectral Description of a Stochastic Process

In a general sense, the power spectral density (PSD) function is the Fourier transform of the

covariance function of a stochastic process. However, it is easy to transform a stationary

process to a zero-mean process. Thus, the PSD of a stationary process is defined as the Fourier

transform of its correlation function.

Consider a stationary process X(t). Its auto-PSD function is

SXðvÞ ¼
ð¥
�¥

RXðtÞe� ivt dt ð2:81aÞ

while the inverse Fourier transform gives

RXðtÞ ¼ 1

2p

ð¥
�¥

SXðvÞeivt dv ð2:81bÞ

The above pair is the celebrated Wiener–Khintchine formula.

The auto-PSD SX(v) satisfies the following properties:

(a) SX(v) is nonnegative; that is:

SXðvÞ � 0 ð2:82Þ
(b) SX(v) is real and even (or symmetric); that is:

SXðvÞ ¼ SXð�vÞ ð2:83Þ
Using Equation 2.83, we get ð¥

�¥
SXðvÞ dv ¼ 2

ð¥
0

SXðvÞ dv ð2:84Þ

which leads to the definition of the unilateral PSD

GXðvÞ ¼ 2SXðvÞ 0 � v <¥
0 otherwise

�
ð2:85Þ

Accordingly, SX(v) is called the bilateral PSD. Obviously, over the nonnegative real number

field, GX(v) is twice that of SX(v).
The cross-PSD SXY(v) of two stochastic processes X(t) and Y(t) is the Fourier transform of

their cross-correlation function RXY(t):

SXYðvÞ ¼
ð¥
�¥

RXYðtÞe� ivt dt ð2:86aÞ

while the inverse Fourier transform gives

RXYðtÞ ¼ 1

2p

ð¥
�¥

SXYðvÞeivt dv ð2:86bÞ
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The cross-PSD SXY(v) satisfies the following properties:

(a) SXY(v) is generally a complex function;

(b) SXY(v) satisfies

SXYðvÞ ¼ S*YXðvÞ ¼ SXYð�vÞ ð2:87Þ

(c) SXY(v) satisfies the inequality

jSXYðvÞj2 � SXðvÞSYðvÞ ð2:88Þ
A relationship between the PSD function of a stochastic process and the Fourier spectrum of its

samples can be established. Actually, for stationary processes X(t) and Y(t), we have (Bendat

and Piersol, 2000) (for proof, see Appendix C)

SXðvÞ ¼ lim
T!¥

1

2T
E X�Tðv;vÞX�

�Tðv;vÞ� � ð2:89aÞ

SXYðvÞ ¼ lim
T!¥

1

2T
E X�Tðv;vÞY�

�Tðv;vÞ� � ð2:89bÞ

where [�T, T] is the time interval over which the stochastic processes are specified and

X�T(v,v) and Y�T(v,v) are the finite Fourier transform ofX(t) and Y(t) in the sense of sample

defined respectively by (see Equations C.1 and C.2 in Appendix C)

X�Tðv;vÞ ¼
ðT
�T

Xðv; tÞe� ivt dt ð2:89cÞ

Y�Tðv;vÞ ¼
ðT
� T

Yðv; tÞe� ivt dt ð2:89dÞ

For a nonstationary stochastic process, the power spectrum is defined as the Fourier

transform of the covariance function. As an example, consider a general stochastic process

X(t) and let KX(t1, t2) denote its covariance; the power spectrum is then given by

SXðv1;v2Þ ¼
ð¥
�¥

ð¥
�¥

KXðt1; t2Þe� iðv1t1 �v2t2Þ dt1 dt2 ð2:90aÞ

while the inverse Fourier transform gives

KXðt1; t2Þ ¼ 1

ð2pÞ2
ð¥
�¥

ð¥
�¥

SXðv1;v2Þeiðv1t1 �v2t2Þ dv1 dv2 ð2:90bÞ

However, one of the problems of the above pair is that the physical significance of the double-

frequency spectral density function of a nonstationary stochastic process (given by

Equations 2.90a and 2.90b) is not as clear as that of the PSD function of a stationary stochastic

process (cf. Equations 2.81a and 2.81b). Moreover, the integral in Equation 2.90a exists
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provided that KX(t1, t2) ! 0 as t1 and t2 tend to infinity. This condition is too strict for many

idealizedbutwidelyusedstochasticprocessmodels.Thus, theconceptofanevolutionaryPSDis

preferred by many investigators. We will deal with this issue elaborately in Section 5.3.2.

2.2.4 Some Operation Rules about Expectation, Correlation and Spectrum

To deal with a stochastic process, the following computation formulae may be important in

practical applications.

2.2.4.1 The Expectation Operation

The expectation is a linear operatorwhich is homogeneous and summative.Consider stochastic

processes Xi(t), i¼ 1, 2, . . ., n, if wi(t) and n(t) are deterministic functions, and

YðtÞ ¼
Xn
i¼1

wiðtÞXiðtÞþ nðtÞ ð2:91Þ

Then:

mYðtÞ ¼
Xn
i¼1

wiðtÞmXi
ðtÞþ nðtÞ ð2:92Þ

For an operation of expectation, the interchange order of differentiation (or integration) and

expectation is allowed (Lin, 1967); that is:

dE½XðtÞ�
dt

¼ E dXðtÞ
dt

	 

ð2:93Þ

E
ða
b

XðtÞ dt
	 


¼
ða
b

E½XðtÞ� dt ð2:94Þ

Here, the differentiation and integration should be understood in the sense of mean-square

calculus.2

Since both the correlation and thevariance are expectation operators, these rules are the basis

of the differentiation and the integration with respect to them.

2.2.4.2 The Correlation Function

Suppose w(t) is a deterministic function and

YðtÞ ¼ wðtÞXðtÞ ð2:95Þ
then

RYðt1; t2Þ ¼ wðt1Þwðt2ÞRXðt1; t2Þ ð2:96Þ
Noticing that the autocovariance function of a deterministic function (say n(t)) is zero, then if

XiðtÞ�s are zero-mean and

2The mean-square calculus is the calculus used most in stochastic analysis. One of the advantages is that operations in

the mean-square calculus are almost the same as that of ordinary calculus. For details, refer to Gardiner (1983) for

example.
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YðtÞ ¼
Xn
i¼1

wiðtÞXiðtÞþ nðtÞ ð2:97Þ

using Equation 2.96, this will lead to

RYðt1; t2Þ ¼
Xn
i¼1

Xn
j¼1

wiðt1Þwjðt2ÞRXiXj
ðt1; t2Þ þ nðt1Þnðt2Þ ð2:98Þ

If X(t) and Y(t) are mutually independent, and let

ZðtÞ ¼ XðtÞYðtÞ ð2:99Þ
then

RZðt1; t2Þ ¼ RXðt1; t2ÞRYðt1; t2Þ ð2:100Þ
According to Equation 2.93, it can be deduced that the autocorrelation functions of the

derivative process of X(t) equal the partial derivatives of the autocorrelation functions of X(t)

with respect to t1 and t2; that is:

RXðnÞXðmÞ ðt1; t2Þ ¼ qnþmRXðt1; t2Þ
qtn1qt

m
2

ð2:101aÞ

where X(n) denotes the nth derivative of X(t).

In particular, for a stationary process we get

RXðnÞ ðtÞ ¼ ð� 1Þn d
2nRXðtÞ
dt2n

ð2:101bÞ

where RX(n) (t) denotes the autocorrelation function of X(n).

Similarly, consider a stochastic process:

YðtÞ ¼
ðt
0

XðtÞ dt ð2:102Þ

and note Equation 2.94; then

RYYðt1; t2Þ ¼
ðt1
0

ðt2
0

RXXðt1; t2Þ dt1 dt2 ¼
ðt1
0

ðt2
0

R _Y _Yðt1; t2Þ dt1 dt2 ð2:103Þ

where _Y denotes the first derivative of Y.

2.2.4.3 The Power Spectral Density Function

Since the PSD function of a stationary process is the Fourier transform of its autocorrelation

function, its operation rules can sometimes be deduced from those of the latter.3 Therefore, we

only list two widely used equations here.

3A more direct and physical treatment is given in Section 5.3.1.1.
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(a) The derivative equation:

SXðnÞ ðvÞ ¼ v2nSXðvÞ ð2:104Þ

where SX(n) (v) denotes the PSD function of the nth derivative of X(t).

(b) Let X(t) and Y(t) be two stationary processes, and

ZðtÞ ¼ XðtÞþ YðtÞ ð2:105Þ

then

SZðvÞ ¼ SXðvÞþ SYðvÞþ SXYðvÞþ SYXðvÞ ð2:106Þ

2.2.5 Karhunen–Lo�eve Decomposition

According to the above description, a stochastic process is understood as a family of random

variables with respect to the time parameter. In another point of view, however, it can also be

understood as a random combination of some deterministic time functions. The Karhunen–-

Lo�eve decomposition establishes the intrinsic relationship between these two views.

Denote the mean process of X(t) by X0(t); then:

XðtÞ ¼ X0ðtÞþXsðtÞ ð2:107Þ

where Xs(t) is a stochastic process with zero mean. Noting that the covariance of a stochastic

process remains invariant when a deterministic function is added, Xs(t) thus has the same

covariance function as X(t).

Assume the covariance function of Xs(t) is KX(t1, t2). As mentioned before, it is a bounded,

symmetric and nonnegative function. Ifð
T

KXðt1; t2Þfnðt1Þ dt1 ¼ lnfnðt2Þ ð2:108Þ

has nonzero solutions, then ln (n¼ 1, 2, . . .) are called the eigenvalues of KX(t1, t2), and fn(t)

(n¼ 1, 2, . . .) are the eigenfunctions corresponding to the eigenvalues. Note that fn(t) are

orthogonal, as below: ð
T

fnðtÞfmðtÞ dt ¼ dnm ¼ 1 if n ¼ m

0 otherwise

�
ð2:109Þ

where T is the interval of integration.

The above property makes fn(t) satisfy conditions for forming a group of orthogonal bases.

With such a set of orthogonal functions, and using the generalized Fourier expansion,KX(t1, t2)

can be expanded as

KXðt1; t2Þ ¼
X¥
n¼1

lnfnðt1Þfnðt2Þ ð2:110Þ
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where

ln ¼ 1

fnðt2Þ
ð
T

KXðt1; t2Þfnðt1Þ dt1 ð2:111Þ

Note that Equation 2.111 is just Equation 2.108. In fact, multiplying both sides of

Equation 2.110 by fn(t1), integrating them, and noting Equation 2.109, we can obtain the

expression of ln. Meanwhile, this deduction process shows that t1 and t2 on both sides of

Equation 2.108 can be exchanged with one another.

On the basis of the above knowledge, Karhunen and Lo�eve both pointed out that the

stochastic process Xs(t) could be represented by the linear combination of fn(t) and that the

combination factors are a set of uncorrelated random variables (Lo�eve, 1977); that is:

XsðtÞ ¼
X¥
n¼1

zn
ffiffiffiffiffi
ln

p
fnðtÞ ð2:112Þ

where zn (n¼ 1, 2, . . .) are mutually uncorrelated random variables and

E½zkz‘� ¼ dk‘ ¼ 1 for k ¼ ‘
0 otherwise

�
ð2:113Þ

The expression in Equation 2.112 can be proved as follows.

From the definition of the covariance and Equation 2.107, there is

KXs
ðt1; t2Þ ¼ E½Xsðt1ÞXsðt2Þ� ¼ KXðt1; t2Þ ð2:114Þ

Substituting Equation 2.112 in it yields

KXðt1; t2Þ ¼
X¥
n¼1

X¥
m¼1

E½znzm�
ffiffiffiffiffiffiffiffiffiffi
lnlm

p
fnðt1Þfmðt2Þ ð2:115Þ

Multiplying both sides of the above equation by fk(t2), integrating themoverT and noting the

orthogonal relationship shown in Equation 2.109, we haveð
T

KXðt1; t2Þfkðt2Þ dt2 ¼
X¥
n¼1

E½znzk�
ffiffiffiffiffiffiffiffiffi
lnlk

p
fnðt1Þ ð2:116Þ

From Equation 2.108, the right-hand side of the above equation becomes

X¥
n¼1

E½znzk�
ffiffiffiffiffiffiffiffiffi
lnlk

p
fnðt1Þ ¼ lkfkðt1Þ ð2:117Þ

Multiplying both sides by f‘ðt1Þ, integrating them over T and noting the orthogonal

relationship shown in Equation 2.109, we are led to

X¥
n¼1

E½znzk�
ffiffiffiffiffiffiffiffiffi
lnlk

p
dn‘ ¼ lk

ð
T

fkðt1Þf‘ðt1Þ dt1 ¼ lkdk‘ ð2:118Þ
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Noting the basic property of the Kronecker d symbol, there is

E½z‘zk�
ffiffiffiffiffiffiffiffiffi
l‘lk

p
¼ lkd‘k ¼ lk if k ¼ ‘

0 otherwise

�
ð2:119Þ

Hence:

E½z‘zk� ¼ 1 if k ¼ ‘
0 otherwise

�

This is nothing but Equation 2.113. Thus, Equation 2.112 is proved.

Substituting Equation 2.112 in Equation 2.107 yields

XðtÞ ¼ X0ðtÞþ
X¥
n¼1

zn
ffiffiffiffiffiffi
ln

p
fnðtÞ ð2:120Þ

Generally, the above equation is referred to as the Karhunen–Lo�eve decomposition with

respect to a stochastic process.

The Karhunen–Lo�eve decomposition implies that a stochastic process can be expanded

somehow into the random superposition of a set of deterministic functions fn(t). From the

viewpoint of functional analysis, Equation 2.120 is the result that a stochastic process is

respectively projected on the uncorrelated variables zn in terms of those orthogonal functions.

Therefore, the significance of the Karhunen–Lo�eve decomposition is that it provides the

possibility of studying stochastic processes through a set of independent random variables.

It is this possibility that enables us to settle many practical problems with respect to stochastic

processes in a simplified way.

2.3 Random Fields

2.3.1 Basic Concepts

Extending the concept of stochastic process to a field domain, we will reach the concept of

random field. What is different between the two concepts, however, is that the indexing

parameter is timevariable t for the stochastic processes, but spacevariableu¼ {u, v,w}4 for the

random fields. Therefore, a random field is a family of random variables defined over a field-

parameter set inwhich any point ui corresponds to a randomvariable. In fact, the parameter sets

of random fields may contain time as well as space variables, while in practice we mostly take

into account random fields with space variables as indexing parameters, and denote them by

fBðuÞ; u 2 D 	 �ng. Here, D is the field domain of B(u), and �n is the n-dimensional

Euclidean space. The space coordinate u can have one, two or three components, correspond-

ing to which B(u) is called a one-, two- or three-dimensional random field respectively.

For a random field, a family of finite-dimensional probability distribution functions can be

used to describe the probabilistic structure. For example, the n-dimensional probability

distribution of B(u) is given by

Fðx1; u1; x2; u2; . . . ;xn; unÞ ¼ PrfBðu1Þ <x1;Bðu2Þ <x2; . . . ;BðunÞ < xng ð2:121Þ

4 To avoid confusion because x is used as a sampled value of the random field at a given point, here we use u¼ (u, v,w)

instead of (x, y, z) to denote the space coordinates.
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The family of finite-dimensional probability distribution functions is nonnegative, symmet-

ric and consistent, too. Thus, the lower order probability distributions can be deduced from the

higher order ones.

The finite-dimensional PDFs are defined as the partial derivatives of their corresponding

probability distribution functions. Taking a three-dimensional scalar random field as an

example, there is

pðx1; u1; x2;u2; . . . ; xn; unÞ ¼ qnFðx1;u1; x2; u2; . . . ; xn; unÞ
qx1qx2 . . . qxn

ð2:122Þ

where ui¼ (ui, vi,wi).

Obviously, it seems unfeasible to describe the probabilistic structure of a given random field

with the family of finite-dimensional probability distribution functions in practical applica-

tions. Therefore, the moment functions of a random field are of great value in applications.

Let B(u) denote a random field. Its expectation is defined by

mðuÞ ¼ E½BðuÞ� ¼
ð¥
�¥

xpðx; uÞ dx ð2:123Þ

Geometrically,m(u) represents the average surface centers of sample functions ofB(u) in the

field domain.

The autocorrelation function of B(u) is defined by

RBðu1; u2Þ ¼ E½Bðu1ÞBðu2Þ� ¼
ð¥
�¥

ð¥
�¥

x1x2pðx1; u1; x2; u2Þ dx1 dx2 ð2:124Þ

where u1 and u2 are two points in the space. The autocorrelation function here has a similar

interpretation as that of a stochastic process.

The auto-covariance function of B(u) is defined by

KBðu1; u2Þ ¼ Ef½Bðu1Þ�mðu1Þ�½Bðu2Þ�mðu2Þ�g
¼
ð¥
�¥

ð¥
�¥

½x1 �mðu1Þ�½x2 �mðu2Þ�pðx1; u1; x2; u2Þ dx1 dx2
ð2:125Þ

Between the autocorrelation and the auto-covariance functions, there exists

KBðu1; u2Þ ¼ RBðu1; u2Þ�mðu1Þmðu2Þ ð2:126Þ

Note that

KBðu; uÞ ¼ s2
BðuÞ ð2:127Þ

is the variance function of B(u). Hence, the normalized covariance can be defined by

rBðu1; u2Þ ¼
KBðu1; u2Þ

sBðu1ÞsBðu2Þ ð2:128Þ

Corresponding to the concept of stationarity for stochastic processes,wemay conceive of the

analogous one for random fields, called homogeneity. A random field is said to be strictly

homogeneous on condition that its finite-dimensional probability distribution functions
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remain invariant under any translation of the space coordinates. A random field can be

homogeneous along a line, on a certain plate or in the whole space. In practical applications,

a randomfield is usually just required to have homogeneity of second order. A randomfield, if it

satisfies

mðuÞ ¼ constant ð2:129Þ

RBðu1; u2Þ ¼ RBðu1 � u2Þ ¼ RBðrÞ ð2:130Þ
where r¼ u1� u2, is called a weakly homogeneous random field. In what follows in the book

the homogeneous field means this type, unless specified otherwise.

‘Isotropy’ is another important concept for a random field. A random field is isotropic if

its finite-dimensional probability distributions make no change when the group of points

u1, u2, . . .,un takes any possible rotation around the axis passing through the origin, or a

mirror reflection in any plate including the origin. Generally speaking, the so-called isotropic

random fields refer to the isotropic homogeneous ones. This means their probabilistic

properties are invariant under all the translations, rotations and mirror reflections of u1,u2, . . . ,
un. Obviously, there is some trouble in understanding the ‘isotropy’ in a visual way. However, if

we loosen the constraint conditions of the finite-dimensional probability distributions,

only thinking about the isotropy of second-order characteristics of a random field, then it

becomes somewhat easier to understand. A random field, if satisfying Equation 2.129, and

further

RBðrÞ ¼ RBðjrjÞ; ð2:131Þ
is called a weakly isotropic random field. The term ‘isotropy’ clearly indicates that, for

this kind of random field, the probabilistic properties are relevant only to distance, not to

direction.

2.3.2 Correlation Structures of Random Fields

A homogeneous random field fBðuÞ; u 2 D 	 �ng can be written in the form

BðuÞ ¼ B0ðuÞþBsðuÞ ð2:132Þ
where B0(u) is the mean function of B(u) and Bs(u) is a random field with zero mean.

The covariance function of Bs(u) is equal to its correlation function. Therefore, studying

the correlation structure of Bs(u) usually refers to its covariance or its correlation. For most

practical problems, a correlation structure is generally an empirically hypothetical model. The

frequently useful patterns (expressed via normalized covariance) include the:

(a) triangular pattern

rBðu1; u2Þ ¼ 1� ju1 � u2j
a

ju1 � u2j < a
0 otherwise

(
ð2:133Þ
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(b) exponential pattern

rBðu1; u2Þ ¼ exp � ju1 � u2j
a

� �
ð2:134Þ

(c) Gaussian pattern

rBðu1; u2Þ ¼ exp � ju1 � u2j2
a2

 !
ð2:135Þ

where the constant a is called the correlation scale parameter.

For a certain physical problem, whether or not there is a widely used hypothesis about the

correlation structures may serve as a mark of how developed studies of this field are.

2.3.3 Discretization of Random Fields

For a continuous randomfield, we can transform it into a set of randomvariables by dividing the

space domain over which it is defined. This partition resembles that in the finite-element

method (FEM) in some respects. Themain discretization methods of random fields include the

midpoint method, the shape-function method and the local average method (Vanmarcke,

1983). A two-dimensional random field will now be used to illustrate the basic concepts of

these three methods.

Without loss of generality, Figure 2.5 shows a two-dimensional random field over the

domainD(x, y) and the form of its discretization. For a certain element,Di denotes the area, uci
(i¼ 1, 2, . . ., n) denotes the geometrical centroid, uj (j¼ 1, 2, . . .,m) is the nodal position, and n

and m are the number of elements and nodes respectively.

2.3.3.1 The Midpoint Method

Themidpointmethod is to substitute a set of randomvariablesB(uci) at geometrical centroiduci
for the element random field {B(u), u2Di}, namely

BðuÞ ¼ BðuciÞ for u 2 Di ð2:136Þ

Figure 2.5 Discretization of a random field.
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By this principle, the original random field is discretized into a random variable set {ji¼B

(uci), i¼ 1, 2, . . ., n}. Then, the expectation of each variable and the correlation between

variables depend on the corresponding values of ji, the random variables at each element�s
geometrical centroid. For example, there are

E½ji� ¼ E½BðuciÞ� ð2:137Þ

s2½ji� ¼ s2½BðuciÞ� ð2:138Þ

cij ¼ cov½ji; jj� ¼ cov½BðuciÞ;BðucjÞ� ð2:139Þ

Certainly, only when the partitioned elements are very small or the original field is of little

variability will the midpoint method obtain good accuracy.

2.3.3.2 The Shape Function Method

To improve the accuracy, a reasonable method is to replace the original random field with a set

of random variables at nodes and then to approximate the random field inside any element by

interpolation of shape functions. In other words, an element random field can be obtained from

random variables at nodes by the interpolation of shape functions; that is:

BðuÞ ¼
Xq
j¼1

NjðuÞBðujÞ u 2 Di ð2:140Þ

where q is the number of nodes of the given element and Nj(u) are the shape functions. In

general, the interpolation function can take the form of polynomials (Lawrence, 1987).

In this sense, the original random field is discretized into a random variable set {jj¼B

(uj), j¼ 1, 2, . . .,m}. Then, the descriptive properties of every random variable and the

correlation between random variables depend on the corresponding values of the random

variables at nodes. There are expressions analogous to Equations 2.137–2.139.

For an element randomfield and the corresponding variables at nodes, themoment functions

can be given by

E½BðuÞ� ¼
Xq
j¼1

NjðuÞE½BðujÞ� u 2 Di ð2:141Þ

s2½BðuÞ� ¼
Xq
k¼1

Xq
‘¼1

NkðuÞN‘ðuÞcov½BðukÞ;Bðu‘Þ� u 2 Di ð2:142Þ

If the shape functions are obtained appropriately, then the shape function method is far

more accurate than the midpoint method. In the perturbed FEM, however, this method

is not as concise as the local average method discussed below in generation of the stiffness

matrix.
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2.3.3.3 The Local Average Method

In the local average method, any element random field is represented by its local average

random variable; that is:

ji ¼
1

Di

ð
Di

BðuÞ du u 2 Di ð2:143Þ

Consequently, the original random field is discretized into a random variable set {ji, i¼ 1,

2, . . ., n}, of which the mean is defined by

E ji½ � ¼ 1

Di

ð
Di

E½BðuÞ� du u 2 Di ð2:144Þ

while the variance is given by

s2½ji� ¼ 1

Di
2

ð
Di

fBðuÞ� E½BðuÞ�g du
� �2

¼ 1

Di
2

ð
Di

ð
Di

cov½Bðu1Þ;Bðu2Þ� du1 du2
ð2:145Þ

and the covariance between ji and jj is

cij ¼ cov ji; jj
� � ¼ 1

DiDj

ð
Di

ð
Dj

cov½Bðu1Þ;Bðu2Þ� du1 du2 u1 2 Di; u2 2 Dj ð2:146Þ

Utilizing the definition of correlation coefficient (see Equation 2.128), Equation 2.146

becomes

cij ¼ 1

DiDj

ð
Di

ð
Dj

sðu1Þsðu2Þrðu1; u2Þ du1 du2 u1 2 Di; u2 2 Dj ð2:147Þ

The local average method is between themidpoint method and the shape functionmethod in

accuracy. Nevertheless, it is still broadly accepted because of its facilitating the use of general

formulae of the perturbed FEM.

For the discretization of random fields, there are also some other methods, such as the

weighted integral method, the optimal discretization method and so on. Readers who are

interested in them can refer to the relevant literature (Takada, 1990; Li and Der Kiureghian,

1993).

2.3.4 Decomposition of Random Fields

The discretization of a randomfield, as noted, only finishes the transition from randomfield to a

set of discrete random variables. However, every two of those variables may be correlated,

which sometimes brings inconvenience and even difficulty in applied problems. Then, the

question arises as to whether it is possible to find a set of uncorrelated random variables to

replace a random field.

The answer is ‘yes’ for most problems. Two approaches are discussed in detail hereafter.

34 Stochastic Dynamics of Structures



2.3.4.1 Karhunen–Lo�eve Decomposition

Consider a homogeneous randomfield fBðuÞ; u 2 D 	 �ng. QuotingEquation 2.132, repeated
here for convenience:

BðuÞ ¼ B0ðuÞþBsðuÞ ð2:132Þ
let KB(u1,u2) denote the covariance function of Bs(u). Ifð

D

KBðu1; u2Þfnðu1Þ du1 ¼ lnfnðu2Þ ð2:148Þ

is solvable, then according to the method of Karhunen–Lo�eve decomposition we have

BðuÞ ¼ B0ðuÞþ
X¥
n¼0

zn
ffiffiffiffiffi
ln

p
fnðuÞ ð2:149Þ

where zn (n¼ 1, 2, . . .) are mutually uncorrelated random variables, satisfying

E½zkz‘� ¼ dk‘ ð2:150Þ
where d is the Kronecker delta (see Appendix A).

As noted, the method of Karhunen–Lo�eve decomposition is not counted as a method for the

discretization of a random field, but one of decomposition of a random field. The distinction

between ‘discretization’ and ‘decomposition’ is that the former refers to the geometrical

partition of a field domain while the latter means decomposition with respect to the subspaces

of a probability space.

2.3.4.2 Decomposition of Discretized Random Fields

Upon using Karhunen–Lo�eve decomposition, we need to solve the integral equation in

Equation 2.148, which is not so easy in most cases. In contrast, a two-step transition method

can be used without such mathematical difficulty.

In the two-step transition method, a random field is first discretized by methods described in

the preceding subsection and represented by j¼ (j1, j2, . . ., jn), a set of correlated random

variables. It is obvious that j can be written as

j ¼ j0 þ js ð2:151Þ
where j0 is themean of j, and js is a randomvectorwith zeromean, having the same covariance

matrix as j.
Then, by decomposition of the correlation matrix in Section 2.1.4, j can be expressed via a

sequence of normalized uncorrelated random variables:

j ¼ j0 þ
Xn
i¼1

ci

ffiffiffiffi
li

p
zi ð2:152Þ

where {zi, i¼ 1, 2, . . ., n} is the sequence of normalized uncorrelated random variables,

satisfying
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E½zi� ¼ 0 ð2:153Þ

Var½zi� ¼ 1 ð2:154Þ

cov½zi; zj� ¼ dij ð2:155Þ
where li andci are respectively the eigenvalues and eigenvectors of the covariance matrix of j,
obtained from the following eigenvalue equation:

Cjci ¼ lici ð2:156Þ

2.4 Orthogonal Decomposition of Random Functions

2.4.1 Metric Spaces and Normed Linear Spaces

In mathematics, a space means a kind of set possessing certain structures. For example, a real

straight-line l forms a one-dimensional space, and properties such as ‘there exists distance

between any two points’ are structures in this space. In a given space, according to functional

analysis theory, each point represents a function generally. Thus, the content of functional

analysis mainly covers basic properties of spaces of continuous functions as well as the

relations among the point sets that belong to these spaces.

The most basic concept in the investigation of functional spaces is the ‘metric’ between

points. Consider a set denoted byX. If for any two points x and y inX , there always exists one

deterministic real number d(x, y), such that

(a) d(x, y)� 0, d(x, y)¼ 0 if and only if x¼ y; and

(b) d(x, y)� d(x, z) þ d(y, z) is true for any z.

Then, we call d(x, y) the metric between x and y.

A space, if given ametric between any two of its points, is called ametric space, and denoted

by X ¼ ðX ; dÞ. The Euclidean space �n and the space of continuous functions C[a, b] are

typical examples of metric spaces.

For a Euclidean space �n, the metric between two points

x ¼ ðx1; x2; . . . ; xnÞ and y ¼ ðy1; y2; . . . ; ynÞ ð2:157Þ
is given by

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � yiÞ2
s

ð2:158Þ

For the union of continuous functions over a closed interval [a, b], there is

dðx; yÞ ¼ max
a�t�b

jxðtÞ� yðtÞj ð2:159Þ

Assume fxng¥n¼1 is a sequence of points in the metric space X . If, for any arbitrary number

e> 0, there is always a natural number N¼N(e), such that as n,m>N, there exists
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dðxn; xmÞ < e ð2:160Þ
then we call fxng¥n¼1 the Cauchy point sequence or basic point sequence in X .

A metric space is said to be complete if in it every Cauchy point sequence is convergent.

In functional analysis theory, the normed linear space is of great value and utility. In the

normed linear spaces, elements can be added up or multiplied by scalars, and between two

elements there is a metric. In addition, like a general vector, every element in the space is

assigned a scalar of length that is called the norm.

Let X be a real (or complex) linear space. If for any x 2 X there is a deterministic real

number, denoted by ||x||, such that

(a) ||x||� 0, and ||x||¼ 0 is equivalent to x¼ 0; and

(b) ||ax||¼ |a|�||x||, where a is any arbitrary real (complex) number; and

(c) ||x þ y||� ||x|| þ ||y||, for any x; y 2 X

then ||x|| is called the norm of x, and X is thus a normed linear space with norm ||x||.

The normed linear space may be illustrated with Euclidean space �n and the space of

continuous functions C[a, b].

For any arbitrary vector x ¼ ðx1; x2; . . . ;xnÞ 2 �n, we can define

jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ . . . þ x2n

q
ð2:161Þ

and for any arbitrary function f(t)2C[a, b], we can define

jjf jj ¼ max
a�t�b

jf ðtÞj ð2:162Þ

Comparing Equations 2.158 and 2.159 with Equations 2.161 and 2.162, we find that for a

normed linear space X the metric d(x, y) can be determined from the norm by setting

dðx; yÞ ¼ jjx� yjj ðx; y 2 XÞ ð2:163Þ
Equations 2.162 and 2.163 clearly showus the difference between the ‘norm’ and ‘metric’: the

norm is defined for a single element, whereas the metric is given to associate any two elements.

2.4.2 Hilbert Spaces and General Orthogonal Decomposition

The metric and the norm, defined in the normed linear spaces, make it possible to think over

such properties as continuity and convergence for functional spaces (spaces of continuous

functions). However, compared with ordinary spaces of finite-dimensional vectors, normed

linear spaces still lack a geometrical property analogous to ‘angle.’ A functional space inwhich

an angle is defined is called an inner product space.

Consider X a complex linear space. If for any two elements5 x and y in X there exists a

complex number hx, yi, such that

5 In linear spaces, element is equivalent to vector in concept. Therefore, they are not distinguished in this book.
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(a) hx, xi� 0 and hx,xi¼ 0, x¼ 0; and

(b) hax þ by, zi¼ahx, zi þ bhy, zi, for any arbitrary z 2 X, where a and b are complex

numbers; and

(c) hx, yi¼ hy, xi�, where h�i� is the complex conjugate,

then hx, yi is called the inner product of x, y.

For an inner product space X , if

jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
ð2:164Þ

then ||x|| is a norm onX . Notice that ||x|| here is determined by the inner product. Thus, the inner

product spaces are a type of special normed linear space. In other words, any inner product

space, with the norm given by Equation 2.164, is a normed space.

An inner product space, if it is complete as a normed linear space, is called a Hilbert

space.

In a Hilbert space, the inner product of two functions f(t) and g(t), a� t� b, is often

defined by

hf ; gi ¼
ðb
a

f ðtÞgðtÞ dt ð2:165Þ

Note that the above integration is in the sense of the Lebesgue integral.

From Equation 2.165, it follows that the norm

jjf jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb
a

f 2ðtÞ dt
s

ð2:166Þ

This definition shows that the Hilbert spaces with inner products defined by Equation 2.165

is a type of special Hilbert space associated with the union of square integrable functions

L2[a, b].

The metric, determined by the above norm, is in the form

dðf ; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb
a

½f ðtÞ� gðtÞ�2 dt
s

ð2:167Þ

For inner product spaces, the Schwarz inequality

jhf ; gij � jjf jj � jjgjj ð2:168Þ

is always true.

From this inequality, in a Hilbert space there certainly exists

j Ð b
a
f ðtÞgðtÞ dtjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ b

a
f 2ðtÞ dt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ b
a
g2ðtÞ dt

q ð2:169Þ�1
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Thus, the left-hand side of the above can be treated as the cosine of an angle q; that is:

cosq ¼
Ð b
a
f ðtÞgðtÞ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ b

a
f 2ðtÞ dt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ b
a
g2ðtÞ dt

q ¼ hf ; gi
jjf jj � jjgjj ð2:170Þ

In a Hilbert space, q is called the angle between f(t) and g(t). If hf, gi¼ 0, then we get

cosq¼ 0, or q¼ 90
 by using Equation 2.170. Thus, f and g are considered perpendicular or

orthogonal. Meanwhile: ðb
a

f ðtÞgðtÞ dt ¼ 0 ð2:171Þ

Assume A and B are two subsets in the spaceX . Then A and B are orthogonal if any vector in

A is orthogonal to any one in B. With the concept of orthogonality, we are able to advance the

concept of orthogonal decomposition in the inner product spaces.

SupposeF denotes a subset which includes all the nonzero points in a Hilbert space; that is:

F ¼ fw1ðtÞ;w2ðtÞ; . . . ;wnðtÞ; . . .g ð2:172Þ
If in F any two functions are orthogonal to each other, namelyðb

a

wiðtÞwjðtÞ dt ¼ 0 ði„jÞ ð2:173Þ

then the set F is called a system of orthogonal functions. Meanwhile, if the norm of every

element equals unity; that is:ðb
a

w2
kðtÞ dt ¼ 1 ðk ¼ 1; 2; . . . ; n; . . .Þ ð2:174Þ

then F is a system of standard orthogonal functions and {wk(t), k¼ 1, 2, . . .} are orthogonal

basis functions.A systemof orthogonal functions is complete if there is no possibility of adding

to this system a nonzero function which is orthogonal to all its functions.

The aim of introducing the systemof standard orthogonal functions in an inner product space

is to expand any function in the space into the series in terms of these orthogonal functions. For

a nonzero Hilbert space X there certainly exists a complete system of standard orthogonal

functions. Suppose this system is denoted by

w1ðtÞ;w2ðtÞ; . . . ;wnðtÞ; . . .
then any function f(t) inX can be decomposed into a convergent series (or generalized Fourier

series) in the form

f ðtÞ ¼ lim
i!¥

Xn
i¼1

aiwiðtÞ ¼
X¥
i¼1

aiwiðtÞ ð2:175Þ

where the coefficients ai are equal to the projections of x(t) on wi(t) and are called the Fourier

coefficients of f(t) associated with wi; that is:
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ai ¼ hf ;wii ¼
ðb
a

f ðtÞwiðtÞ dt ð2:176Þ

Equation 2.175 is an orthogonal decomposition of f(t) with respect to the system of standard

orthogonal functions.

It is easy to verify that

jjf jj2 ¼
ðb
a

f 2ðtÞ dt ¼
X¥
i¼1

a2i ð2:177Þ

Note that ai are projections of f(t) onwi(t). Thus, we can use the partial sumof the above series

~f ðtÞ ¼
Xn
i¼1

aiwiðtÞ ð2:178Þ

to approximate the function f(t). The error of such an approximation depends on the sum of

squares of projections of f(t) on the complementary set {wnþ 1(t),wnþ 2(t), . . .}. Actually, there
is an error function in the form

e ¼ jjf �~f jj2 ¼
X¥

i¼nþ 1

a2i ð2:179Þ

2.4.3 Orthogonal Decomposition of Random Functions

When extending the functional space concepts to the probability spaces, we can deal with

problems of orthogonal decomposition with respect to spaces of random functions. In these

spaces, a random function can be denoted by X(j, t), where j2W and t2 T. In other words, in

the space of random functions, every point in it is a function of the given random variables.

Therefore, using the variables separation method for reference, there are two ways of

orthogonal decomposition with respect to a random function. The first way is similar to

Equation 2.175. The only difference is that, in a space of random functions, the expanding

coefficients ai should be viewed as random variables. We will discuss these situations in detail

in Section 3.5. On the other hand, if we choose a system of standard orthogonal functions with

respect to random variables as basic functions, then the second orthogonal decomposition

method can be derived.

Consider H, as an example, a space of random functions of random variables having

standard normal distributions. Note that the PDF of the standard normal variables is given by

pjðuÞ ¼ 1ffiffiffiffiffiffi
2p

p e� u2=2 ð2:180Þ

Here, we use lower case u to represent a sample value of jwithout risk of confusion.We can

define

HnðjÞ ¼ HenðjÞffiffiffiffi
n!

p ð2:181Þ
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where HenðjÞ are Hermite polynomials (see Appendix B). It is easy to prove that

E½HnðjÞHmðjÞ� ¼
ð¥
�¥

pjðuÞHnðuÞHmðuÞ du ¼ 1 if n ¼ m

0 otherwise

�
n ¼ 0; 1; 2; . . . ð2:182Þ

Thus, Hn(j) form a system of standard orthogonal functions on H.

The inner product of H is written as

hf ; gi ¼ E½f ðjÞgðjÞ� ¼
ð¥
�¥

pjðuÞf ðuÞgðuÞ du ð2:183Þ

Meanwhile, we can obtain the corresponding norm, and then themetric. Finally, we find that

H is aHilbert space. Thus, any random functionX(j, t) inH can be expanded in terms ofHn(j);
that is:

Xðj; tÞ ¼
X¥
i¼1

aiðtÞHiðjÞ ð2:184Þ

where the coefficients

aiðtÞ ¼ hX;Hii ¼ E½Xðj; tÞHiðjÞ� ¼
ð¥
�¥

pjðuÞXðu; tÞHiðuÞ du ð2:185Þ

are considered as the projections of X(j, t) on the basis functions Hn(j).
The expansion in the form of Equation 2.184 is called the second kind of orthogonal

decomposition of a random function.

1 A random variable is usually denoted by a capital letter or Greek character, say X or j, while
the sample value of a random variable is usually denoted by the corresponding lower case

character, say x. The convention is used in the book except for special statements.

2 The mean-square calculus is the calculus used most in stochastic analysis. One of the

advantages is that operations in the mean-square calculus are almost the same as that of

ordinary calculus. For details, refer to Gardiner (1983) for example.
3 A more direct and physical treatment is given in Section 5.3.1.1.
4 To avoid confusion because x is used as a sampled value of the random field at a given point,

here we use u¼ (u, v,w) instead of (x, y, z) to denote the space coordinates.
5 In linear spaces, element is equivalent to vector in concept. Therefore, they are not

distinguished in this book.
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3

Stochastic Models of Dynamic
Excitations

3.1 General Expression of Stochastic Excitations

3.1.1 Dynamic Excitations and Modeling

Most dynamic actions applied to civil engineering structures exhibit an obvious character of

randomness; therefore, they are termed stochastic excitations. Typical stochastic excitations

include the effects of seismic ground motions, wind gusts or turbulence in wind and ocean

waves and so on. In general, these dynamic actions vary in spatial location and time. Therefore,

to reflect them, the spatial random field model should be adopted as the basic model. However,

owing to difficulties in observation and modeling, some simplifications must be introduced in

the modeling process.

One of the most common simplifications is to neglect the variation of the dynamic actions in

space and simplify the spatial random fields as a series of random processes with the same

statistical characteristics. That is, use the time sequence at one point to reflect the effect of the

random excitation on the structure and assume the excitation at various points to be identical

within an acceptable range. A typical example is the seismic groundmotion input to the bottom

of building structures with a relatively small planar size. Considering the building base within

the scope of the foundation as a rigid plate, the input of seismic groundmotions can be reflected

by using the stochastic process model at one point.

If the difference of the dynamic actions applied to different points of the structure cannot be

ignored, the random field model should be adopted to reflect the spatial dynamic actions. In

these cases, the homogeneous and isotropic assumption may be used to simplify the model. In

the homogeneous assumption, the difference among the points in the random fields is only

related to the distance between two points and has nothing to do with the location, whereas the

probability distribution of the random fields is independent of the orientation according to the

isotropic assumption. Owing to the lack of adequate actual measurement tests, it is usually

believed that the homogeneity and isotropy are theoretical assumptions introduced to facilitate

the modeling and analysis.
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The third assumption commonly used in the establishment of stochastic excitationmodels is

the stationary assumption, which means the homogeneity of dynamic actions in the time scale.

If a process meets the stationary assumption, then its variance is a constant and not changing

with time. For example, it is usually assumed that wind turbulence in the atmospheric boundary

layer has the characteristics of stationary stochastic processes.

In fact, when considering stochastic excitations acting on structures, one problem concerns

whether the energy exchange between the structure and the external environment is taken into

account. When this energy exchange is so small as to be ignored, the dynamic action on the

structures may be determined only with the external environmental conditions. If this energy

exchange is sufficient to impose a significant impact on the input dynamic action, then the

interaction between the structure and the external media should be considered to determine the

excitations affected by the structure. For example, the determination of seismic groundmotions

of large-scale engineering structures will encounter such a problem.

There are two basic methods for modeling stochastic dynamic excitations: phenomenology-

based modeling and physics-based modeling. Owing to the difficulties in establishing finite-

dimensional probability distributions, the correlation function or the PSD function is used

commonly in phenomenology-based modeling. In essence, the method is based on statistical

moments. In contrast, physics-based modeling focuses on giving a random function model of

dynamic excitations considering the real physical background. Not only can these models give

a completemathematical description for the stochastic processes or randomfields, but they also

enable experimental verification of the random processes or random fields possible because of

their physical significance.

This chapterwill outline themathematicalmodels and physicalmodels for the common types

of stochastic dynamic excitations in structural analysis and design. In addition, the relevant

mathematical models are introduced for modeling stochastic excitations.

3.1.2 Models of Stationary and Nonstationary Processes

If a stochastic excitation is a stationary process, particularly if it can be regarded as a Gaussian

process, then, as long as the mean and the correlation function or the PSD function are known,

the statistical characteristics of the excitation model can be totally determined. According to

the description in Chapter 2, the mean of a stationary process X(t) is a constant and the

correlation function is only a function of time interval t¼ t2� t1; that is:

mXðtÞ ¼ c ð3:1Þ

RXðtÞ ¼ RXðt2 � t1Þ ð3:2Þ
If c¼ 0, then the correlation function and the PSD function of X(t) have the following

relationship (see Equations 2.81a and 2.81b):

SXðvÞ ¼
ð þ¥

�¥
RXðtÞe� ivt dt ð3:3Þ

RXðtÞ ¼ 1

2p

ð þ¥

�¥
SXðvÞeivt dv ð3:4Þ
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This indicates that SX(v) and RX(t) consist of a Fourier transform pair. If c 6¼ 0, then there is

the same relationship as above between the covariance function KX(t) and the PSD function

SX(v).
To determine a specific stationary excitation model, the ergodicity assumption is generally

introduced. This indicates that, for an ergodic process, various random behaviors could appear

in a long enough time-series. Therefore, the ensemble average can be replaced by the time

average. For an ergodic process, the estimated values of the mean and the correlation function

can be obtained using the measured samples as

m̂X ¼ 1

N

XN
i¼1

Xi ð3:5Þ

R̂Xðtk ¼ kÞ ¼ 1

N � k

XN� k

i¼1

XiXiþ k ð3:6Þ

where Xi¼X(ti) is the amplitude of the sampled process at the time instant ti, k is the lag

number,N is the total number of the sampled points and the hat symbol represents the estimated

value. The PSD function can be obtained from the discrete Fourier transform of RX(tk).
However, such spectral estimation results are usually biased. In order to obtain unbiased

results, the maximum entropy spectral method can be adopted (Burg, 1967).

If a number of measured samples are available, then the sample set could be used to achieve

the estimation of the PSD. In this case, the PSD is given as (see. Equation C.6, Appendix C)

ŜXðvÞ ¼ 1

M

XM
i¼1

1

T
jXiðvÞj2

� �
ð3:7Þ

whereM is the sample number of the sample set, T is the observation time duration and Xi(v) is
the Fourier spectrum of the time history sample.

A stationary process is the result that is scientifically abstracted from the actual dynamic

action. The majority of actual random excitations do not completely possess stationary

characteristics. If there is a significant difference between the stationary assumption and

the actual background, then it is necessary to adopt a nonstationary model to establish the

model of random excitations. The modeling of seismic ground motions is a representative

example.

For nonstationary stochastic processes, the ergodicity assumption is no longer valid.

Therefore, the ensemble average cannot be replaced by the time average. In other words, the

model should be established based on sample sets. In practice, a type of uniformly modulated

nonstationary random process model is usually employed to establish a nonstationary random

excitation model. This model can be expressed as a product of a deterministic time function f(t)

and a stationary process Xs(t), namely

XðtÞ ¼ f ðtÞXsðtÞ ð3:8Þ
Here, we suppose the mean of X(t)¼ 0. For those processes X0(t) with a nonzero mean, we

can always let X(t)¼X0(t)�mX0(t) to construct a zero-mean process.
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When the correlation function or the PSD function ofXs(t) is given, then it is easy to calculate

the correlation function or the PSD function of the nonstationary random excitationX(t); that is

(see Equation 2.96):

RXðt1; t2Þ ¼ f ðt1Þf ðt2ÞRXs
ðtÞ ð3:9Þ1

SXðt;vÞ ¼ f 2ðtÞSXs
ðvÞ ð3:10Þ

In order to get the model of the nonstationary random excitations, the first requirement is to

isolate f(t) from the sample functions. For a time history sample xi(t), this can be done by a

variety of approaches. For example, we can first define

yiðtÞ ¼ jxiðtÞj ð3:11Þ

and then use the technique employed in empirical mode decomposition to determine the upper

and lower envelope curves in the sifting process (Huang et al., 1998) to specify the upper

envelope fi(t) of yi(t).

For a sample set, the specific expression of f(t) can be determined by assuming the function

form of f(t) and using the least-squares method to fit f(t) through fi(t) (i¼ 1, 2, . . . ,M).

Once f(t) is determined, it is easy to derive the sample set of the stationary process

Xs(t) according to Equation 3.8 and then the aforementioned modeling methods on stationary

random processes can be used to complete the modeling of nonstationary random excitations.

3.1.3 Random Fourier Spectrum Model

It is very difficult to model nonstationary random excitations based on the previous classical

correlation function or PSDmethod. In fact, only for random excitations with Gaussian normal

nature can all the statistical features of the random excitations be obtained by the previous

modeling methods. Unfortunately, for most practical engineering cases, the Gaussian nature

cannot be fully verified.

The random Fourier spectrum model tries to build a dynamic excitation model by starting

from the point of view of a random function and combining the understanding of the physical

mechanism of the random excitations. For the time history sample assemble X(t), the random

Fourier spectrum is defined by (Li, 2006) (also see Appendix C)

Xðh;vÞ ¼ 1ffiffiffiffi
T

p
ðT
0

Xðh; tÞe� ivt dt ð3:12Þ

where h is a random variable or random vector which affects the stochastic development

process and has physical significance.

Obviously, the random Fourier spectrum is not confined just to stationary processes, but is

also suitable formodeling general excitations. Using probability density evolution theory, to be

(3.9)

(3.10)1

1 Equation 3.10 is an evolutionary spectral density, of which the physical sense will be elaborated in Section 5.3.2.
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stated in Chapter 6, the finite-dimensional probability distribution of the stochastic excitation

process and its evolution with time can be observed. Thereby, the probability characteristics of

the excitation can be completely determined.

When h inX(h,v) is given a specific realization value z, the definite sample functionX(z,v)
will be given, which provides the possibility of using the observed sample sets to complete the

modeling. There are two basic modeling channels: sample-based modeling and modeling

based on the statistical moments of the sample assemble.

3.1.3.1 Sample-Based Modeling

For samples in a sample assemble, the realized values of the basic random variables can be

identified by using the best uniform approximation or the mean-square approximation on the

basis of the observed sample values.

The best uniform approximation takes the following formula as the basic criterion to identify

the parameter h:

J1 ¼ max½~xðvÞ�Xðh;vÞ� � e1 ð3:13Þ

where ~x is the observed value of samples, e1 is the specified error bound.

The mean-square approximation takes J2 as the basic criterion to identify the parameter h:

J2 ¼ maxðEf½~xðvÞ�Xðh;vÞ�2gÞ � e2 ð3:14Þ

where E½ � � expresses the mean of the sum of error square and e2 is the specified error bound.

After the sample realized values of the basic random variables are identified, common

mathematical statistics can be used to obtain the probability distribution of the random

variables.

3.1.3.2 Modeling Based on the Statistical Moments of the Sample Assemble

If the probability distribution function ph(h) of the random variable h is known, then the mean

and the standard deviation of the random Fourier function can be obtained by

mXðvÞ ¼
ð
W
Xðh;vÞphðhÞ dh ð3:15Þ

sXðvÞ ¼
ð
W
½Xðh;vÞ�mXðvÞ�2phðhÞ dh

� �1=2

ð3:16Þ

where W is the integral domain about h.
After the mean m̂XðvÞ and the standard deviation ŝXðvÞ of the sample set Xi(v) (i¼ 1, 2,

. . . , n) are obtained through mathematical statistical methods (see Equations 3.5 and 3.6), the

objective random functions can be identified by using the following modeling criterion:

J ¼ aJm þbJs !min ð3:17Þ
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where a and b are weighted coefficients and

Jm ¼ 1

L

XL
i¼1

½mXðviÞ� m̂XðviÞ�2 ð3:18Þ

Js ¼ 1

L

XL
i¼1

½sXðviÞ� ŝXðviÞ�2 ð3:19Þ

where L is the number of scatter points within the effective frequency range.

By adjusting the distribution parameters and the probability distribution types of the basic

random variables, the PDF of the identified variables can be determined.

3.2 Seismic Ground Motions

3.2.1 One-Dimensional Model

When an earthquake happens, the seismic wave produced by the seismic source is a time

process. Through propagation in the Earth media, the wave shape will undergo complex

changes. For a given site, the seismic ground motion at all points within a certain range of the

ground surface or the vibration process under the ground surface can be characterized by

the time history of ground motion displacements, velocities or accelerations. Usually, for the

near-field strong groundmotion records, the actual observation data is acceleration. Therefore,

the seismic ground motion model usually refers to the acceleration model. The ground motion

at one point usually has three spatial coordinate components. According to the studies of

Penzien and coworkers (Penzien and Watabe, 1975; Kubo and Penzien, 1979), there are

directions of principal axes and the components along the principal directions are uncorrela-

ted. Therefore, for three-dimensional groundmotions, only one-dimensional groundmotions

along the principal axis directions need to be considered.

Owing to the influence of a series of uncontrollable factors like themechanismof the seismic

source, the earthquake propagation paths and the geotechnical media distribution at the

engineering site, the ground motion process is a typical stochastic process. Actual earthquake

records show that the time history of the ground motion accelerations usually includes three

stages of vibrations: the initial, the strong and the attenuating stages (Figure 3.1). Therefore,

the ground motion is a typical nonstationary process. When the stationary process model is

used to establish the ground motion models, it is usually believed that this only reflects its

strong motion stage.

As a simplification, the ground motion on the surface may be regarded as a filtered white

noise. In this consideration, if the ground motion on the bedrock is assumed as a zero-mean

white-noise process with spectral density S0, and the soil surface is simulated as a single-

degree-of-freedom linear system, then the Kanai–Tajimi spectrum model can be obtained

(Kanai, 1957; Tajimi, 1960):

SðvÞ ¼ 1þ 4z2ðv=v0Þ2
½1�ðv=v0Þ2�2 þ 4z2ðv=v0Þ2

S0 ð3:20Þ
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where S(v) is the PSD function of the stationary ground motion process, z is the damping

ratio of the soil on the site and v0 is the natural frequency of the site.

The physical meaning of the model above is clear that the influence of the soil property on

the ground motion frequency spectrum is taken into account. However, this model inappro-

priately exaggerates the low-frequency content of the ground motions. Meanwhile, the

ground-motion velocity and displacement obtained according to the model have a singular

point where the frequency is zero; therefore, a finite variance of the ground displacement and

velocity cannot be achieved. To overcome these shortcomings, the following correction

model has been introduced (Hu and Zhou, 1962):

SðvÞ ¼ 1þ 4z2ðv=v0Þ2
½1�ðv=v0Þ2�2 þ 4z2ðv=v0Þ2

vn

vn þv2
c

S0 ð3:21Þ

where vc is the low-frequency decrease factor and n¼ 4–6.

There are many similar correction models; for example, adding a filter to the model in

Equation 3.20 forms a double white-noise process (Ruiz and Penzien, 1969):

SðvÞ ¼ 1þ 4z2ðv=v0Þ2
½1�ðv=v0Þ2�2 þ 4z2ðv=v0Þ2

ðv=v1Þ4
½1�ðv=v1Þ2�2 þ 4z1

2ðv=v1Þ2
S0 ð3:22Þ

where z1 and v1 are parameters of the assumed second filter.

In contrast to the model in Equation 3.20, in which the PSD is a finite value different from

zero at v¼ 0, both the models in Equations 3.21 and 3.22 can ensure that the PSD is zero at

v¼ 0 (Figure 3.2).

If there is a need to reflect the rising and decaying sections of theground-motion process – that

is, to reflect the nonstationary nature of the ground motion – then a modulated nonstationary

random process model can be introduced (see Equation 3.8). The modulated envelope function

can be given by, say (Amin and Ang, 1968; Jennings, et al., 1968).
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Figure 3.1 Three stages of a typical ground motion record.

Stochastic Models of Dynamic Excitations 49



f ðtÞ ¼
ðt=taÞ2 for t � ta
1 for ta < t � tb
e�aðt� tbÞ for t � tb

8<
: ð3:23Þ

where ta and tb are respectively the starting time and the end time of the stationary section of the

strong groundmotion anda is a parameter controlling the decay speed of the attenuation section

(Figure 3.3).

3.2.2 Random Field Model

When the difference between ground motions at two points with a certain distance cannot be

ignored, then the use of random fields is required to describe seismic ground motions. Using

the spatial discretizationmethod (see Section 2.3), the continuous randomfield description can

be transformed into a set of stochastic processes. Therefore, a homogeneous and isotropic

random field B can be represented by the following PSD matrix:

Figure 3.2 Comparison of different PSD models. Parameters: v0¼ 15.71, vc¼ 0.1v0, z¼ 0.64,

v1¼ 0.1v0, z1¼ z.
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Figure 3.3 Envelope function for ground motion.
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SBðvÞ ¼
S11ðvÞ; S12ðvÞ; . . . ; S1mðvÞ
S21ðvÞ; S22ðvÞ; . . . ; S2mðvÞ
. . . . . . . . . . . .
Sm1ðvÞ; Sm2ðvÞ; . . . ; SmmðvÞ

2
664

3
775 ð3:24Þ

wherem is the number of spatial points; Skj(v) is the cross-spectral density, which is a complex

function and characterizes the correlation degree between the stochastic ground motions at the

points k and j (see Equation 2.86a). If k¼ j, then this is the auto-spectral density of the ground

motion at one point.

In the study of special earthquake groundmotions, the coherency function usually represents

the correlation feature between the ground motions at two different points and is defined as

gkjðvÞ ¼
SkjðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SkkðvÞSjjðvÞ
p if SkkðvÞSjjðvÞ„0
0 otherwise

8<
: ð3:25Þ

Obviously, the coherency function is also a complex function. Using the amplitude and

phase-angle expression, there is

gkjðvÞ ¼ jgkjðvÞjexp½iqkjðvÞ� ð3:26Þ

The amplitude |gkj(v)| of the coherency function is also called the lagged coherency

function, and we always have (see Equation 2.88)

jgkjðvÞj � 1 ð3:27Þ

The phase angle qkj(v) is related to the propagation speed of the harmonic wave v and the

distance between two points (Oliveira, et al., 1991):

qkjðvÞ ¼
vdL

kj

va
ð3:28Þ

where dL
ij is the projection of dij (the link line between points i and j) along thewave propagation

direction and va is the apparent wavevelocity of the groundmotions. Setting a certain reference

point as the starting point of the time coordinate, denoting the time instantswhen the earthquake

waves arrives at the points k and j respectively by tk and tj, there is obviously

dL
kj

va
¼ tk � tj ð3:29Þ

Therefore, Equation 3.26 can also be written as

gkjðvÞ ¼ jgkjðvÞjexp½ivðtk � tjÞ� ð3:30Þ

Theprecedingdeductiondemonstrates that exp[iqkj(v)] represents the difference of the arrival
time of ground motions at two points, which is the traveling wave effect; thus, exp[iqkj(v)] is
generally called the traveling wave effect factor, whereas gkj(v) reflects the coherency effect of
the ground motions between two points.
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By analyzing the earthquake records at densely packed stations, an empirical expression

for the lagged coherency function of ground motions can be deduced. Some typical examples

follow.

3.2.2.1 Feng–Hu Model

Through analysis of theobserveddata from the strong earthquakes inHaicheng in1975 inChina

and in Niigata in 1964 in Japan, the following formula has been proposed (Feng andHu, 1981):

jgðv; dkjÞj ¼ exp½ � ðr1vþ r2Þdkj � ð3:31Þ
where r1 and r2 are the coherency parameters, for which the identified values from the

Haicheng and Niigata earthquakes are

Haicheng earthquake : r1 ¼ 2� 10� 5 s=m; r2 ¼ 88� 10� 4 s=m
Niigata earthquake : r1 ¼ 4� 10� 4 s=m; r2 ¼ 19� 10� 4 s=m

3.2.2.2 Loh–Yeh Model

Through modeling using observed data from the SMART-1 Array, the following formula was

obtained (Loh and Yeh, 1988):

jgðv; dkjÞj ¼ exp �a
vdkj
2pva

� �
ð3:32Þ

where a is the wave number of the ground motions; according to 40 acceleration records,

a¼ 0.125 is identified (Loh, 1991).

3.2.2.3 Qu–Wang Model

Through modeling according to the observed data from four earthquake observation stations

including SMART-1 Array, the following lagged coherence function is suggested (Qu, et al.,

1996):

jgðv; dkjÞj ¼ exp½ � aðvÞdbðvÞ
kj � ð3:33Þ

where

aðvÞ ¼ ð12:19þ 0:17v2Þ � 10� 4 ð3:34Þ

bðvÞ ¼ ð76:74� 0:55vÞ � 10� 2 ð3:35Þ
Figure 3.4 shows the comparison of the preceding three models as v¼ 10p.
If the auto-power spectral densities of all points are the same, then the PSD matrix of the

ground motion random fields can be simplified as

SBðvÞ ¼ G�RG � SðvÞ ð3:36Þ
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where S(v) is the PSD at each point and G is a diagonal matrix representing the phase-angle

change of each point compared with the reference points:

G ¼ diag½eivt1 ; eivt2 ; . . . ; eivtm � ð3:37Þ
and R is the matrix of the lagged coherency function:

R ¼
1 jg12j . . . jg1mj
jg12j 1 . . . jg2mj
. . . . . . . . . . . .
jgm1j jgm2j . . . 1

2
664

3
775 ð3:38Þ

3.2.3 Physical Stochastic Model

The seismic ground motion process is mainly affected by the earthquake magnitude, the

seismicwave propagation distance, the site conditions and some other factors. Becausemost of

these factors are beyondhuman control, a notable randomnature is seen in the observed seismic

ground motion processes. If the impact of earthquake magnitude and dissemination factors is

not considered in the present stage and the objective is focused on the ground-motion

mechanism at a specific site, then the physical relationship can be set up between the surface

ground motions and the input motions at the bedrock (Li and Ai, 2006, 2007).

Without loss of generality, the actual engineering site can be simulated as an equivalent

single-degree-of-freedom system (Figure 3.5) with the equation of motion

€xþ 2zv0 _xþv2
0x ¼ 2zv0 _ug þv2

0ug ð3:39Þ
where €x, _x and x respectively represent the absolute acceleration, the absolute velocity and the
displacement of a point in the fixed coordinate system, v0 and z are respectively the frequency
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Figure 3.4 Lagged coherence functions.
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and damping ratio of the site, and _ug and ug are respectively thevelocity and the displacement of

the input seismic waves at the bedrock.

Performing a Fourier transform on both sides of Equation 3.39 and noting the relationship

between displacement and acceleration, the Fourier transform of the absolute acceleration is

given as

€XðvÞ ¼ v2
0 þ i2zv0v

v2
0 �v2 þ i2zv0v

€UgðvÞ ð3:40Þ

where €UgðvÞ is the Fourier transform of the acceleration of the input seismic waves.

Introducing the concept of a randomFourier function, the equation above can be transformed

as

FXðvÞ ¼ 1þ 4z2ðv=v0Þ2
½1�ðv2=v2

0Þ�2 þ 4z2ðv=v0Þ2
( )1=2

Fgðh;vÞ ð3:41Þ

where h is a random variable related to the amplitude of the input seismic waves.

As h, z and v0 are random variables, FX(v) is a random function. When the basic random

variables and their probability distribution are given, the finite-dimensional probability

distribution of €xðtÞ can be obtained.

The random Fourier function of the input seismic acceleration at the bedrock Fg(h,v) may

be determined according to the relationship between the physical mechanism of the source and

the earthquake attenuation, or given according to the statistics of seismic records at the bedrock.

When the energy density of the seismic input is assumed to be in the form in Figure 3.6, it is

written as

Fgðh;vÞ ¼

F0vffiffiffiffi
T

p
v1

0 � v � v1

F0ffiffiffiffi
T

p v1 � v � v2

F0ffiffiffiffi
T

p ve �v

ve �v2

v2 � v � ve

8>>>>>><
>>>>>>:

ð3:42Þ

where F0 is the amplitude value of the input Fourier spectrum.

Figure 3.5 Equivalent single-degree-of-freedom system.
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According to the statistics of the acceleration records, it is found that the basic random

variables obey a lognormal distribution. The identified mean value and the coefficient of

variation of v0 and z are listed in Tables 3.1 and 3.2. Comparisons between the actual

measurement records and the results calculated by the random Fourier spectrum are shown in

Figure 3.7 (Li and Ai, 2006).

g( )F ω

ω
eω2ω1ω0

0F
T

Figure 3.6 Energy distribution of the accelerations at bedrock.

Table 3.1 Identified mean values of the random variables.

Type of soil I II III IV

v0 15 12 11 9

z 0.65 0.80 0.60 0.90

Table 3.2 Identified coefficients of variation of the random variables.

Type of soil I II III IV

v0 0.40 0.40 0.42 0.42

z 0.30 0.30 0.35 0.35
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Figure 3.7 Comparison between the physical model and the measured data.
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3.3 Fluctuating Wind Speed in the Boundary Layer

3.3.1 Structural Wind Pressure and Wind Speed

Themovement of air forms wind. In the scope of the atmospheric boundary layer, if the flow of

thewind is obstructed by structures, then therewill be a lift forceFZ, a downwind forceFD and a

horizontal force FL (Figure 3.8) applied to the structures (Simiu and Scanlan, 1996)

FZ ¼ 1

2
mZrv

2B ð3:43aÞ

FD ¼ 1

2
mDrv

2B ð3:43bÞ

FL ¼ 1

2
mLrv

2B ð3:43cÞ

where mZ, mD and mL are respectively the lift force coefficient, the downwind resistance

coefficient and the horizontal resistance coefficient of the wind. These coefficients will change

with different structure shapes and can be determined normally by wind tunnel experiments.

r is the mass density of the air, v is the wind speed and B is the characteristic scale of the

structures.

Figure 3.8 Three-component wind forces.
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Dividing byB on both sides of Equations 3.43a–3.43cwill give thewindward pressure of the

structures; that is:

Fiðx; z; tÞ ¼ 1

2
rmiðzÞv2ðx; z; tÞ ði ¼ 1; 2; 3Þ ð3:44Þ

where F1¼FZ/B, F2¼FD/B, F3¼FL/B, m1¼mZ, m2¼mD, m3¼mL and z is the height above

the surface.

A large number of observations of natural wind show that, as a process of time, the wind

speed can be expressed as the sum of the average wind speed and the fluctuating wind speed;

namely:

vðx; z; tÞ ¼ vsðzÞþ vDðx; z; tÞ ð3:45Þ
Introducing Equation 3.45 into Equation 3.44 and omitting the square items of the

fluctuating wind speed, the wind pressure can be decomposed to an average wind pressure

and a fluctuating pressure:

Fiðx; z; tÞ ¼ Fi;sðx; zÞþFi;Dðx; z; tÞ ði ¼ 1; 2; 3Þ ð3:46Þ
where

Fi;sðx; zÞ ¼ 1

2
rmiðzÞv2s ðzÞ ð3:47aÞ

Fi;Dðx; z; tÞ ¼ rmiðzÞvsðzÞvDðx; z; tÞ ð3:47bÞ
Owing to the existence of a variety of uncontrollable factors, the process of the wind speed

is a typical stochastic process, where the average wind speed (Figure 3.9) can be described

Figure 3.9 Average wind speed.
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by a random variable. Generally, it is considered as the extreme-value type I distribution

(Zhang, 1985):

pvsðvÞ ¼ expf� exp½ � aðv� bÞ�g ð3:48Þ

where a and b are the distribution parameters, which can be expressed by the mean and the

standard deviation of the standard wind speed (i.e. the wind speed at a height of 10m):

a ¼ pffiffiffi
b

p
svs

ð3:49aÞ

b ¼ mvs
� 0:45svs ð3:49bÞ

Within the atmospheric boundary layer, the average speed along the height of the ground

may change at the logarithm rate:

vsðzÞ ¼ 1

k
m�ln

z

z0
ð3:50Þ

where k	 0.4, z0 is the roughness length and m� is the shear velocity of the flow:

m� ¼
t0
r

� �1=2

ð3:51Þ

where t0 is the surface shear force.

3.3.2 Power Spectral Density of Fluctuating Wind Speed

In Equation 3.45, vD reflects the fluctuating component of the wind speed. In essence, this

component is due to the turbulence in the flowing wind.Most of the actual measured data show

that fluctuating wind speedmay be simulated as a zero-mean stationaryGaussian randomfield.

Introducing this basic assumption, the longitudinal velocity fluctuations at one point can be

described by the Davenport spectrum (Davenport, 1961) or the Simiu spectrum (Simiu, 1974).

The Davenport spectrum is given by

SvDðvÞ ¼ 4Kv210
f 21

vð1þ f 21 Þ4=3
ð3:52aÞ

f1 ¼ c1v

pv10
ð3:52bÞ

whereK is a parameter related to the ground situation (Table 3.3), v10 is the mean wind speed at

a height of 10m above the surface and c1¼ 600m.
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The Simiu spectrum is expressed as

SvDðz;vÞ ¼ b
2pm2

�
v

f � 2=3 ð3:53aÞ

f ¼ v

2p
z

vsðzÞ ð3:53bÞ

where b	 0.26.

Clearly, the Simiu spectrum is related to the height, while the Davenport spectrum is not.

This is because Equations 3.52a and 3.52b are derived from an average of the actual measured

wind speeds at different heights above the surface; therefore, the relationship between the

spectrum and the height cannot be reflected. Generally, it is considered that, in the Davenport

spectrum, the energy of the wind speed is overestimated in the high-frequency regions but

underestimated in the low-frequency regions.

An actual measured spectrum close to the Simiu spectrum is the Kaimal spectrum given by

(Kaimal et al., 1972)

SvDðz;vÞ ¼
2pm2

�
v

200f

ð1þ 50f Þ5=3
ð3:54Þ

It is generally believed that Equations 3.53a and 3.54b are suitable for the low-frequency

regions where f� 0.2 while Equation 3.54 is applied to the high-frequency regions where

f > 0.2. Similar to the Simiu spectrum, the Kaimal spectrum cannot meet the condition that

S(v)¼ 0 and the first-order derivative is zero as v¼ 0. On the other hand, the Davenport

spectrum can meet the condition. A comparison of the different PSD functions is shown in

Figure 3.10.

The fluctuating wind speeds between two points within a certain distance at the same height

or different height are correlated. Generally, the cross-PSD is used to measure the probabilisti-

cally correlated degree of two stochastic processes. Noting that the spectrum is a complex

Table 3.3 The value of K.

Location Height (ft) Site description K

Severn Bridge 100 River bend 0.003

Sale 503 Open grass land with few trees 0.005

Sale 201

Sale 40

Cardington 50

Ann Arbor 25–200

Cranfield 50 Fenced square 0.008

Brookhaven 300 Bush and 30 ft trees 0.015

London Ontario 150 Urban area 0.030
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function, there is

Sm1m2
ðd;vÞ ¼ SCm1m2

ðd;vÞþ iSam1m2
ðd;vÞ ð3:55Þ

where m1 and m2 are the wind speed records at the points M1 and M2 and d is the distance

between the two points.

Usually, the imaginary part contributes less to the coherence function than the real part and

its effect can be omitted. Therefore, the cross-PSD is expressed as (Davenport, 1968)

Sm1m2
ðd;vÞ ¼ SCm1m2

ðd;vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðz1;vÞSðz2;vÞ

p
expð� f̂ Þ ð3:56Þ

f̂ ¼ v½C2
Zðz1 � z2Þ2 þC2

Yðx1 � x2Þ2�1=2
p½vsðz1Þþ vsðz2Þ� ð3:57Þ

where x1, x2 and z1, z2 are the coordinates of the pointsM1 andM2 respectively. The link line

between M1 and M2 with the mean wind direction is vertical. CZ and CY are the attenuation

coefficients to be determined by experience; normally, they take the values CZ¼ 10 and

CY¼ 16 (Simiu and Scanlan, 1996).

3.3.3 Random Fourier Spectrum of Fluctuating Wind Speed

The PSD model is essentially the second-order numerical characteristic which is adopted to

express the main features of a stochastic process. If the probability distribution is Gaussian

for the process, then a sequence of finite-dimensional probability distributions can be given

by the first two-dimensional distributions; thereby, the statistical properties of the process can

be completely determined by the first two moments of the process. Unfortunately, this

condition is close to a hypothetical character, rather than to the summary of the facts observed

by experience. In fact, for fluctuating wind speed, the stationary assumption is right only

within a certain time-scale, while the assumption of a Gaussian normal distribution is not

supported by sufficient observed facts.
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Figure 3.10 Comparison between different wind PSDs.

60 Stochastic Dynamics of Structures



The randomFourier spectrummodel introduced in Section 3.1 brings about the possibility of

establishing a random function model for characterizing a comprehensive probabilistic

character of fluctuating wind speed (Li and Zhang, 2007). It has been said that random

Fourier spectrum modeling establishes a physical model based on the physical mechanism in

the process and, thus, can reflect the nature of the observed facts. A number of studies show that,

in a uniform flow field, the energy produced approximately balances the energy consumed

(Lumley and Panofsky, 1964). Therefore, the energy dissipation rate can be expressed as

e ¼ t0
r

dvsðzÞ
dz

ð3:58Þ

where

vsðzÞ ¼ 1

k
m�ln

z

z0
ð3:59Þ

Noting Equation 3.51, we have

e ¼ m3
*

kz
ð3:60Þ

According to Kolmogorov’s second hypothesis, in the inertial subrange, the eddy motion

may be assumed to be independent of the viscosity, and thus determined only by the energy

transfer rate. For a sufficiently high wave number k, this is given as

F½EðkÞ; k; e� ¼ 0 ð3:61Þ
where E(k) is the energy per unit wave number.

According to dimensional analysis, the above equation will give (Simiu and Scanlan, 1996)

EðkÞ ¼ a1e2=3k� 5=3 ð3:62Þ

in which a1 is a universal constant. Note that

k ¼ 2p
l

ð3:63Þ

and

l ¼ vn

n
ð3:64Þ

where l is the wavelength and vn is the vortex velocity with the frequency n.

For the vibration process formed by several whirlpools, it can be approximated that vn equals

the average speed vs(z). Thus, the wave number can be written as

k ¼ v

vsðzÞ ð3:65Þ
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At the same time, noting that

EðkÞ dk ¼ EðvÞ dv
and substituting Equations 3.60 and 3.62 in Equation 3.65, this leads to

EðvÞ ¼ a1e2=3k� 5=3 1

vsðzÞ ¼ am2
�z

� 2=3v 2=3
s ðzÞv� 5=3 ð3:66Þ

As the energy spectrum of the process and the Fourier spectrum have a square relationship, it

follows immediately that

FðvÞ ¼ am�z
� 1=3v1=3s ðzÞv� 5=6 ð3:67Þ

Introducing the Monin coordinate

f ¼ nz

vsðzÞ ð3:68Þ

Equation 3.67 can be changed to

FðvÞ ¼ b
m�ffiffiffiffi
v

p f � 1=3 ð3:69Þ

Becausem� and vs(z) are random variables, the above equation is a random Fourier function.

In fact, the application scope of Equation 3.69 is the region of f > 0.2. For general cases,

Equation 3.69 can be extended to

Fðh; z;vÞ ¼ m�ffiffiffiffi
v

p Gðf Þ ð3:70Þ

After the probability distribution of the basic random variables and the specific form ofG(�)
are identified by the measured wind speed records, the probability distribution of the random

function F(h, z,v) can be fully determined. As an example, assuming

Gðf Þ ¼ C1f
ðC3C4 � 1Þ

ð1þC2f C3ÞC4
ð3:71Þ

and taking 310 groups of measured wind speed records as the basis, the parameters can be

identified and are given as: C1¼ 4.25, C2¼ 0.1, C3¼ 0.8, C4¼ 0.3. The roughness length Z0
obeys the lognormal distribution and the 10m high mean wind speed obeys the extreme-value

type I distribution. Thus, the random Fourier spectrum of the fluctuating wind speed can be

expressed as (Li and Zhang, 2007)

FðnÞ ¼ 7:02v
4=5
10 n� 1=3

lnð10=Z0Þ½1þ 3:5� 104ðn=v10Þ9=5�1=3
ð3:72Þ

Figure 3.11 shows the comparison between the mean Fourier spectrum and the standard

deviation spectrum of the actual measured wind-speed records with the counterparts of the

random Fourier spectrum.
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3.3.4 Random Fourier Correlation Spectrum

In order to reflect the correlation characteristic of the fluctuating wind speed between two

arbitrary points in space, the cross random Fourier correlation spectrum can be introduced and

defined by
Fm1m2

ðvÞ ¼ Fm1
ðvÞFm2

ðvÞgm1m2
ðvÞ ð3:73Þ

where Fm1
ðvÞ and Fm2

ðvÞ are respectively the random Fourier spectrums at the pointsM1 and

M2, and

gm1m2
¼ C1expð� f̂ Þ ð3:74Þ

is a coherence function, where C1 is a coefficient and f̂ is defined by Equation 3.57.
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Figure 3.11 Comparison between the theoretical and measured Fourier spectrum.
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When considering only the coherence of two points at different heights in the same vertical

direction, the coherence function is given as

gm1m2
ðvÞ ¼ C1exp � CZ jz1 � z2jv

p½vsðz1Þþ vsðz2Þ�
� �

ð3:75Þ

In the case C1 and CZ are both random variables, the above equation expresses a random

coherency function.

According to the statistical analysis of the actual measured data of sampled wind-speed

records, it has been confirmed that C1 and CZ obey the normal distribution with mC1
¼ 0:492,

sC1
¼ 0:034, mCZ

¼ 0:03 and sCZ
¼ 0:042 (Zhang and Li, 2006).

Figure 3.12 shows the comparison between the Fourier correlation spectrum of the actual

measured wind-speed records and the mean and the standard deviation of random Fourier

correlation spectrum calculated by Equation 3.73.
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Figure 3.12 Comparison between the theoretical and measured Fourier correlation spectrum.
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3.4 Wind Wave and Ocean Wave Spectrum

3.4.1 Wind Waves and Wave Forces

In the scope of its main energy distribution, an ocean wave is generated by wind power as a

drive and gravity as a restoring force and thus is also termed awindwave. In the classical theory

ofwave analysis, if it is assumed that the amplitude of awave (wave height)H, thewavelength l
and the water depth h are small, then the fluid particle velocity v caused by the wave can be

regarded as small. Therefore, the equation and the boundary conditions for the wave potential

function w are linear:

q2w
qx2

þ q2w
qz2

¼ 0 ð3:76aÞ

h ¼ � 1

g

qw
qt

for z ¼ 0 ð3:76bÞ

qh
qt

� qw
qz

¼ 0 for z ¼ 0 ð3:76cÞ

qw
qz

¼ 0 for z ¼ � h ð3:76dÞ

According to the above equations and the boundary conditions, the horizontal displacement

of the free surface water particle of the wind wave can be obtained as

hðx; tÞ ¼ H

2
cosðkx�vtÞ ð3:77Þ

where k and v are the wave number and wave frequency respectively and can be expressed by

the wavelength l and the period T:

k ¼ 2p
l

ð3:78aÞ

v ¼ 2p
T

ð3:78bÞ

Figure 3.13 shows the waveform expressed in Equation 3.77. Similarly, the horizontal

velocity of the water particle at a certain depth z may be obtained as

vðx; z; tÞ ¼ vcosh½kðzþ hÞ�
sinhðkhÞ hðx; tÞ ð3:79Þ
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and the horizontal acceleration of the water particle is

aðx; z; tÞ ¼ vcosh½kðzþ hÞ�
sinhðkhÞ _hðx; tÞ ð3:80Þ

The above solution is commonly known as the Airy solution (Wen and Yu, 1985).

Introducing

Hðv; zÞ ¼ vcosh½kðzþ hÞ�
sinhðkhÞ ð3:81Þ

Equations 3.79 and 3.80 can be simplified as follows:

vðx; z; tÞ ¼ Hðv; zÞhðx; tÞ ð3:82Þ

aðx; z; tÞ ¼ Hðv; zÞ _hðx; tÞ ð3:83Þ
The forces generated bywindwaves applied on structures inwater are known aswave forces.

When the ratio of the characteristic scale D of the object to the wavelength l is comparatively

small, its effect on the wave field can be neglected. In these cases, the above solution related to

the wave can be applied directly.

For a vertical cylinder under the action of an ocean wave, if D/l < 0.2, then the Morison

formula can be adopted to calculate the wave forces (Morison et al., 1950):

Fðx; z; tÞ ¼ 1

2
rCDvðx; z; tÞjvðx; z; tÞj þ rCI

pD2

4
aðx; z; tÞ ð3:84Þ

where r is the density of the seawater, D is the diameter of the pile, CD is the resistance

coefficient, CI is the inertial coefficient.

TheMorison formula consists of the resistance and the inertia components, amongwhich the

resistance results from the speed when the seawater flows through the piles while the inertial

forces result from the acceleration by the seawater particles. The distribution of thewave forces

along the height of the piles is schematically shown in Figure 3.14.

Figure 3.13 Wind wave.
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If we define

KD ¼ 1

2
rCDD ð3:85aÞ

KI ¼ rCI

pD2

4
ð3:85bÞ

then the Morison formula can be simplified to

Fðx; z; tÞ ¼ KDvðx; z; tÞjvðx; z; tÞj þKIaðx; z; tÞ ð3:86Þ
The formation of wind waves is affected by many uncontrollable factors. Therefore, the

wave process is a typical stochastic process. However, this does not change the physical

relationships between the displacement, the velocity and the acceleration of thewater particles

in the wave process. For the stochastic process, Equations 3.82 and 3.83 still hold. Assuming

that the waves at different points are completely correlated along the x direction, then the

random field h(x, t) can be simplified as a stochastic process h(t).
For the random speed process v(z, t), through the statistical equivalent linearization, the

random resistance

Fvðz; tÞ ¼ KDvðz; tÞjvðz; tÞj ð3:87Þ
can be changed to

Fvðz; tÞ ¼
ffiffiffi
8

p

r
svKDvðz; tÞ ð3:88Þ

where sv is the standard deviation of v(z, t).

Substituting Equations 3.88 and 3.83 in Equation 3.86 and noting that the aforementioned

statistical relationship assumption will give

Fvðz; tÞ ¼
ffiffiffi
8

p

r
svKDHðv; zÞhðtÞþKIHðv; zÞ _hðtÞ ð3:89Þ

Figure 3.14 Distribution of wave forces.
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If h(t) is a stationary stochastic process, according to the uncorrelated nature of the

stationary process and its derivative, then from Equation 3.89 it is easy to obtain the PSD

of the wave force F(z, t):

SFðz;vÞ ¼ 8

p
s2
vK

2
D þK2

I v
2

� �
H2ðv; zÞShðvÞ ð3:90Þ

where Sh(v) is the PSD of h(t).

3.4.2 Power Spectral Density of Wind Waves

A large number of actualmeasured data indicate that the free surface particle displacementh(t)
of the ocean wave can be reflected by a zero-mean stationary stochastic process model. So far,

investigators have proposed various wind wave power spectral models, among which a

significant type follows the basic form brought forward by Neumann (1952):

ShðvÞ ¼ A

vp
exp �B

1

vq

� �
ð3:91Þ

where p often takes a value in the range 5–6, q ¼ 2–4 and the coefficients A and B are often

related to the wind speed, the wave height and some other physical parameters. In fact, in the

Neumann spectrum, the parameters take the values

p ¼ 6 q ¼ 2 A ¼ Cp
2

B ¼ 2g2

v27:5

whereC¼ 3.05m2 s�5, g is the acceleration due to gravity and v7.5 is the averagewind speed at

a height of 7.5m over the sea surface.

In the Pierson–Moscowitz (P–M) spectrum which keeps the basic form of the Neumann

spectrum, the parameters take (Pierson and Moskowitz, 1964)

p ¼ 5 q ¼ 4 A ¼ 0:0081g2 B ¼ 0:74
g

v19:5

� �4

where v19.5 is the average wind speed at a height of 19.5m over the sea surface.

If we take the dimensionless constants a¼ 8.1� 10�3 and b¼ 0.74, then the P–M spectrum

can be expressed as

ShðvÞ ¼ ag2

v5
exp �b

g

v19:5v

� �4
" #

ð3:92Þ

The P–M spectrum comes from an analysis on 460 spectrums observed and recorded in the

North Atlantic Ocean from 1955 to 1960. It reflects the basic characteristics of full growth of a

stormy wave.

The more convincing wind wave power spectral function model is the JONSWAP spectrum

(Hasselmann et al., 1973), which results from the integrated spectrum analysis of 2500
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observed spectra. Its form is

ShðvÞ ¼ ag2

v5
exp � 5

4

v0

v

	 
4
� �

gexp½ � ðv�v0Þ2=ð2s2v2
0
Þ� ð3:93Þ

wherev0 is the peak frequency,a is the energy scale parameter,which is a function of the length

~x ¼ gx=v10 in the dimensionlesswind region (wherex is the length of thewind region and v10 is

themeanwind speed at a height of 10 mover the sea surface).When ~x ¼ 10� 1--105, the energy

scale parameter is given as

a ¼ 0:07~x� 0:22 ð3:94Þ
g is the peak factor, defined by

g ¼ Sh;max

SPMh;max

ð3:95Þ

where Sh,max is the peak of the JONSWAP spectrum and SPMh;max is the peak of the P–M spectrum.

The observed values of g is between 1.5 and 6, with the average being 3.3, s is the peak shape

parameter with value

s ¼ 0:07 for v � v0

0:09 for v >v0

�
ð3:96Þ

The JONSWAP spectrum is applied to the wind wave under different stages of growth and

even under a hurricane. Figure 3.15 is the comparison between the average JONSWAP

spectrum and the P–M spectrum (Rye, 1974).

The preceding PSD model is, in essence, a type of observed statistical model. Using a

different approach,Wen et al. (1994a, 1994b) attempted to draw a theoreticalmodel of thewind

wave spectrum based on an analytical viewpoint. According to their research, the spectrum is

3.02.52.01.51.00.50.0
0.0

0.2
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0.6
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P-M
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S
( ω

)
 /
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2 ·s

ω / rad·s
-1

Figure 3.15 The average JONSWAP spectrum and P–M spectrum.
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expressed as

~Shð~vÞ ¼ 1:01~v� 4:25exp½ � 0:773ð~v� 5:5 � 1Þ� þ 1:1exp½ � 41:4ð~v� 1Þ2� ð3:97Þ

where

~Shð~vÞ ¼ v

m0

ShðvÞ ð3:98Þ

~v ¼ v

v0

ð3:99Þ

m0 ¼
ð¥
0

SðvÞ dv ð3:100Þ

The Wen model consists of the wind wave spectrum with full growth and the very young

wind wave spectrum. In fact, Wen’s model is a mathematical analysis for the wind wave

spectrum curve, but is not entirely a physical interpretation. Figure 3.16 shows the comparison

between the Wen spectrum and the JONSWAP spectrum.

3.4.3 Direction Spectrum

When investigating the reaction to ocean waves by floating objects or ocean wave refraction

and diffraction near large-size objects, it is essential to consider the direction distribution of the

wave. The direction spectrum of the ocean wave is generally defined as

Sðf ;qÞ ¼ Sðf ÞGðf ;qÞ ð3:101Þ
where S(f) is the displacement frequency spectrumof the oceanwave, f is the frequency,q is the

angle between the oblique wave and the principal direction and G( f,q) is the direction

3.02.52.01.51.00.50.0
0
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3

JONSWAP, γ =3.3

ω
S

(ω
 ) 

/ m
0

 

ω / ωp

Equation 3.97,Wen

Figure 3.16 The Wen spectrum and the JONSWAP spectrum.
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distribution function which satisfiesðp
� p

Gðf ;qÞ dq ¼ 1 ð3:102Þ

Longuet-Higgins et al. (1963) expressed the direction distribution function as

Gð f ;qÞ ¼ G0ðsÞ cosq
2

����
����

2s

ð3:103Þ

where

G0ðsÞ ¼
ðqmax

qmin

cos2s
q

2
dq

� �� 1

ð3:104Þ

Here, s is the concentration degree of the direction function and it is proper to determine it by

actually measured results in different sea areas (Mitsuyasu et al., 1975; Yu and Liu, 1994).

The direction distribution function advised by Donelan et al. (1985) is

Gð f ;qÞ ¼ 1

2
bsech2bq ð3:105Þ

where

b ¼

2:61
f

fp

� �1:3

for 0:56 � f

fp
� 0:95

2:28
f

fp

� �� 1:3

for 0:95 <
f

fp
< 1:6

1:4 otherwise

8>>>>>><
>>>>>>:

ð3:106Þ

where fp is the peak frequency.

Using an analytic method, Wen et al. (1995) gave the direction distribution function

Gðf ;qÞ ¼ Cðn0Þcosn0q ð3:107Þ
where

n0 ¼
9:91

v

v0

� �� 2

expð� 0:0757 p1:95Þ for
v

v0

� 1

9:91
v

v0

� �4:5

expð� 0:0757 p1:95Þ for
v

v0

< 1

8>>>><
>>>>:

ð3:108Þ

p ¼ fpShðfpÞ
m0

ð3:109Þ
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Figure 3.17 shows the Mitsuyasu direction spectrum and the comparison between the

Donelan and the Wen direction spectrum.

3.5 Orthogonal Decomposition of Random Excitations

The PSD of a random excitation describes the numerical characteristics of the stochastic

process in the phenomenological sense. Correspondingly, the orthogonal decomposition of a

random excitation gives the random function description of the stochastic process. The

descriptions can be regarded as equivalent forms of the Karhunen–Lo�eve decomposition

described in Chapter 2.

3.5.1 Orthogonal Decomposition of a Stochastic Process

In the Karhunen–Lo�eve decomposition of a stochastic process, to obtain the eigenvalues and

the eigenvectors of the decomposed process, it is necessary to solve a Fredholm integral

equation. This is usually quite difficult. To avoid the difficulty, the double expansionmethod of

a stochastic process can be achieved based on the standard orthogonal basis (Li and Liu, 2006).

For a real, zero-mean stochastic process {X(t), 0� t� T} in a random functional space,

introduce a standard orthogonal function set wj(t), j¼ 1, 2, . . ., which satisfies

hwi;wji ¼
ðT
0

wiðtÞwjðtÞ dt ¼ dij ð3:110Þ

Then in the interval [0, T], X(t) can be expanded as

Xðj; tÞ ¼
X¥
k¼1

jkwkðtÞ ð3:111Þ
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Figure 3.17 Direction spectrum.
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The expansion coefficients jk are random variables given by

jk ¼
ðT
0

Xðj; tÞwkðtÞ dt k ¼ 1; 2; . . . ð3:112Þ

This integral is defined in the sense of the mean-square Riemann integral. Usually,

a limited-itemN can be taken as the approximation of the expansion in Equation 3.111, namely:

X̂ðj; tÞ ¼
XN
k¼1

jkwkðtÞ ð3:113Þ

In this case, the mean square error is

e1 ¼ E
ðT
0

½XðtÞ� X̂ðtÞ�2 dt
� �

¼
X¥

k¼N þ 1

E½j2k� ð3:114Þ

Generally, the random variables jk, k¼ 1, 2, . . .,N, are correlated. Define the covariance

matrix of the random vector j¼ (j1, j2, . . ., jN)
T as

C ¼
c11 c12 . . . c1N
c21 c22 . . . c2N
. . . . . . . . . . . .
cN1 cN2 cNN

2
664

3
775 ð3:115Þ

where (see Equation 3.112)

cij ¼ E½jijj�
¼ E Ð T

0
Xðj; t1Þwiðt1Þ dt1

Ð T
0
Xðj; t2Þwjðt2Þ dt2

h i
¼ Ð T

0

Ð T
0
KXðt1; t2Þwiðt1Þwjðt2Þ dt1 dt2

ð3:116Þ

Here, KXðt1; t2Þ ¼ E½Xðj; t1ÞXðj; t2Þ� is the covariance function of the stochastic process.

According to the decomposition principle of the random vector described in Section 2.1.4,

the random vector j has the following forms of decomposition:

j ¼
XN
j¼1

zj
ffiffiffiffi
lj

p
cj ð3:117Þ

where theyj are the eigenvector ofmatrixC, the lj are the corresponding eigenvalues and the zj
are the standardized random variables, of which the distribution is determined by the nature of

the process.

Substituting Equation 3.117 in Equation 3.113 will yield

X̂ðz; tÞ ¼
XN
k¼1

XN
j¼1

zj
ffiffiffiffi
lj

p
fjkwkðtÞ ¼

XN
j¼1

zj
ffiffiffiffi
lj

p
fjðtÞ ð3:118Þ
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where fjk is the kth component of the eigenvector cj and

fjðtÞ ¼
XN
k¼1

fjkwkðtÞ ð3:119Þ

It is easy to prove that {fj(t), j¼ 1, 2, . . .,N} is a set of standard orthogonal functions; namely:

hfi; fji ¼
ðT
0

fiðtÞfjðtÞ dt ¼ dij ð3:120Þ

Equation 3.118 is termed the standard orthogonal decomposition of a stochastic process.

Obviously, as N ! ¥, the expression of such an orthogonal expansion is equivalent to the

Karhunen–Lo�eve decomposition.

For a stochastic process with nonzero mean, it can be apparently given as

Xðz; tÞ ¼ X0ðtÞþ
X¥
j¼1

zj
ffiffiffiffi
lj

p
fjðtÞ ð3:121Þ

Generally, for a specific random excitation, the former rth eigenvalue and the corresponding

eigenvector from the largest eigenvalue in order are taken to reflect the major characteristic of

the stochastic process; namely, Equation 3.118 can further be reduced to

~Xðz; tÞ ¼
Xr

j¼1

zj
ffiffiffiffi
lj

p
fjðtÞ ð3:122Þ

In the sense of the mean square, the error of Equation 3.122 compared with Equation 3.118 is

e2 ¼ E
ðT
0

½X̂ðz; tÞ� ~Xðz; tÞ�2 dt
� �

¼
XN

j¼rþ 1

lj ð3:123Þ

3.5.2 Hartley Orthogonal Basis Function

In the standard orthogonal decomposition of the stochastic process, the function {wj(t), j¼ 1,

2, . . .} can choose all possible orthogonal basis functions, such as the trigonometric functions

and the Legendre orthogonal polynomials and the like. In comparison, using the Hartley

orthogonal basis function can often obtain the best results (Li and Liu, 2006, 2008).

The Hartley transform of a real-valued function x(t) is expressed as (Bracewell, 1986)

Hxðf Þ ¼
ð¥
�¥

xðtÞcasð2pftÞ dt ð3:124Þ

where f is the frequency and

casðtÞ ¼ cosðtÞþ sinðtÞ ð3:125Þ
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The Hartley transform and its inverse transform have the same form of integral calculation;

namely:

xðtÞ ¼
ð¥
�¥

Hxðf Þcasð2pftÞ df ð3:126Þ

It is noted that theHartley transform of a real-valued function remains a real function. This is

why the Hartley transform is simpler than the Fourier transform.

For a real time sequence x(n) in a limited range, the discrete Hartley transform is

HxðkÞ ¼
XN � 1

n¼0

xðnÞcasð2pkDfnDtÞ k ¼ 0; 1; . . . ;N� 1 ð3:127Þ

where Df is the step of the frequency and Dt is the time step.

The corresponding inverse transform is

xðnÞ ¼ 1

N

XN� 1

k¼0

HxðkÞcas 2pkn
N

� �
n ¼ 0; 1; . . . ;N � 1 ð3:128Þ

In the interval [0, T], the integrated Hartley orthogonal basis is

wkðtÞ ¼
1ffiffiffiffi
T

p cas
2pkt
T

� �
k ¼ 0; 1; 2; . . . ð3:129Þ

while the integrated trigonometric orthogonal basis is given by

ws
0ðtÞ ¼ 1ffiffiffiffi

T
p

ws
2k� 1ðtÞ ¼

ffiffiffi
2

pffiffiffiffi
T

p cos
2kpt
T

� �
k ¼ 1; 2; . . .

ws
2kðtÞ ¼

ffiffiffi
2

pffiffiffiffi
T

p sin
2kpt
T

� �

8>>>>>>>><
>>>>>>>>:

ð3:130Þ

It is easy to know that

ws
2k� 1ðtÞþws

2kðtÞ ¼
ffiffiffi
2

p
wkðtÞ ð3:131Þ

This indicates that when the orthogonal Hartley basis is used to substitute the trigonometric

orthogonal basis as the expansion basis function of a stochastic process x(t), under the same

error scope, the expansion items related to the Hartley basis can be reduced by a half.

3.5.3 Orthogonal Expansion of Seismic Ground Motions

When the Hartley orthogonal basis indicated in Equation 3.129 is used to expand the process of

the seismic ground displacement, there is (see Equation 3.122)

~Xðz; tÞ ¼
Xr

j¼1

zj
ffiffiffiffi
lj

p
fjðtÞ ð3:132Þ
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where

fjðtÞ ¼
XN� 1

k¼0

fj;kþ 1wkðtÞ ð3:133Þ

Provided that the seismic groundmotion is a Gaussian process, zj (j¼ 1, 2, . . ., r) will be a set
of mutually independent standard Gaussian random variables.

Accordingly, the orthogonal expansion formula of the acceleration process is

€Xðz; tÞ ¼
Xr

j¼1

zj
ffiffiffiffi
lj

p
FjðtÞ ð3:134Þ

where

FjðtÞ ¼
XN� 1

k¼0

akþ 1fj;kþ 1€wkðtÞ ð3:135Þ

Here, the akþ 1 introduced is a set of coefficients to make up the truncated error and is

obtained by the principle of energy equivalence (Liu and Li, 2006).

Figure 3.18 shows the comparison between the PSD of the orthogonal expanded process of

the Hu–Zhoumodel (Hu and Zhou, 1962) by the preceding method and the PSD of the original

model. Figure 3.19 shows a typical time history sample given by the expansion function.

During this process, the intensity envelope function given in Equation 3.23 is used.

Figure 3.18 PSD of the orthogonal expanded process and the original spectrum.
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3.5.4 Orthogonal Expansion of Fluctuating Wind Speed Process

Research shows that direct use of the PSD function of fluctuating wind speed for orthogonal

expansion will bring more expansion items. Therefore, the concept of the virtual wind-

displacement time history, the integration of the wind-speed time process, is introduced

(Liu and Li, 2008).

For the time process of virtual wind displacement, Equation 3.122 is used for the orthogonal

expansion and the Hartley orthogonal basis is taken as a standard orthogonal function set. Then

the orthogonal expansion results of the fluctuating wind-speed stochastic process can be given

by taking time differentiation of the above results as follows:

Vðz; tÞ ¼
Xr

j¼1

zj
ffiffiffiffi
lj

p
GjðtÞ ð3:136Þ
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Figure 3.19 A typical acceleration sample.

Figure 3.20 PSD of the orthogonal expanded process and the original spectrum.
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where

GjðtÞ ¼
XN
k¼0

bkþ 1fj;kþ 1 _wkðtÞ ð3:137Þ

Here, the bkþ 1 introduced is a set of amendment coefficients to make up for the truncated

error and can be given using the principle of energy equivalence (Li and Liu, 2008).

Figure 3.20 shows the comparison between the PSDobtained from the orthogonal expansion

of the fluctuating wind-speed process of the Davenport spectrum and the PSD of the original

model. Figure 3.21 shows a typical random fluctuating wind process sample given by the

expanded function.
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Figure 3.21 A typical sample of fluctuating wind speed.
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4

Stochastic Structural Analysis

4.1 Introductory Remarks

It has been common practice in engineering to analyze structural systems by assuming that

the systems are exactly determined; for example, the system parameters and the system

inputs are deterministic parameters or excitations. However, such ideal situations are rarely

encountered in engineering reality. Not only the system inputs are stochastic processes

(such as the fluctuating wind excitations and the earthquake ground motions), but also the

structural parameters (such as the material mass density and the elastic modulus) need to be

considered as uncertain variables in the design process (Vanmarcke, 1983; Li, 1996a). In this

chapter, our basic concern is the uncertainties involved in the structural parameters. That is,

linear differential equations with random coefficients will be dealt with in the following

sections.

Three basic methodologies can be used to quantify the structural response uncertainties.

The first is theMonte Carlo simulation (MCS)method (Shinozuka, 1972; Shinozuka and Jan,

1972). In such a simulated process, a set of random samples is generated first to represent the

statistical uncertainties in the structures. These random samples are then substituted in the

finite-element model to obtain the response of the sample structures, whereby the statistical

characteristics of specified responses are analyzed to quantify the response uncertainty.

The second methodology, known as perturbation technology, relies on the use of a Taylor

series expansion to formulate the physical relationships between some characteristics of

the random responses and the random structural parameters (Collins and Thompson, 1969;

Hisada and Nakagiri, 1981, 1982; Liu et al.,1985, 1986; Kleiber and Hien, 1992). The third

methodology, which was developed in 1990s, is the orthogonal polynomial expansion

method or, as called in this book, the expanded-order system method (Spanos and Ghanem,

1989; Iwan and Jensen, 1993; Li,1995a, 1995b, 1995c, 1996a). In the approach, the responses

of structures with random parameters are expanded by a suitable orthogonal polynomial in a

probability space, then an expanded-order system equation can be deducedwhichwill govern

the responses of the stochastic structure. In this chapter, all these developed methodologies

will be introduced.
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4.2 Fundamentals of Deterministic Structural Analysis

In any quantitative approach for analysis of stochastic structures, the deterministic analysis

using the finite-element method may be an essential basis. There have been so many

textbooks on the finite-element method published during the last four decades that any

attempt to repeat the description would seem superfluous. However, considering that most

contents of this book deal with a special aspect of the method, we at least need to set up the

fundamentals of the finite-elementmethod in such away as tomake it possible to elaborate on

probabilistic issues.

4.2.1 The Basic Idea of Finite-Element Analysis

All the practical structures are essentially infinite degree-of-freedom systems. However, in

studies or applications, an infinite degree-of-freedom system may be transformed into a finite

degree-of-freedom system using some types of discretization method, among which the finite-

element discretization method is a typical one (Bathe and Wilson, 1985; Zienkiewicz and

Taylor, 2004). Using this approach, the structure is assumed to be partitioned into a system of

discrete elements which are interconnected only at a finite number of nodal points. According

to the nature and practical background of the problem, the connection form of element nodes

may be treated, for instance, as hinged or rigid connections. Figure 4.1 is a schematic plan of the

partitioning of finite elements of some typical structures.

The responses of structures under external loads, such as stresses, strains, internal forces and

displacements, are generally continuous functions. However, for those discretized structural

systems using finite-element discretization, the previous continuous functions are replaced

Figure 4.1 Finite-element partition of structures.
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by approximation functions that are smooth in each element. These functions should be

continuous and stepwise smooth in thewhole structure.Moreover, the physical quantities at the

element nodes are generally selected as the unknown variables to establish the approximate

function in an element. The approximation functions in each element are given in a unified form

and generally termed the shape function or interpolation function. The polynomials are usually

selected as shape functions. According to the selected shape functions, combining with the

stress–strain physical relationship and the boundary conditions, we can establish the

expression of element energy. Then, the governing equation can be obtained by the variational

principles. By solving the governing equation, the responses of the element nodes can be

obtained and, accordingly, the responses of the whole structure may be computed easily

through the shape functions.

According to differences in the selected physical variables and the corresponding variational

principles, the finite-element method can be classified into the finite-element displacement

method, the finite-element force method and the mixed finite-element method. The finite-

element displacement method is based on the principle of minimum potential energy and takes

the displacements of nodes as basic unknown variables. The finite-element force method is

based on the principle of minimum complementary energy and takes the forces of nodes as

basic unknown variables. The mixed finite-element method is based on the principle

of Reissner variation and takes the nodal displacements or nodal forces as basic unknown

variables in different regions (Washizu, 1975). Considering that this book is not a monograph

on the finite-element method, we only briefly introduce the analysis process of the finite-

element displacement method and take the common truss structure as the background.

4.2.2 Element Stiffness Matrix

Considering a typical element in a plane truss structure, let the serial numbers of its ends be i

and j. The coordinate system established for the element e, the end forces and the deformations

are shown in Figure 4.2. These forces and displacements can be expressed as

~Fei ¼ ðNei;Qei;MeiÞT ~Fej ¼ ðNej;Qej;MejÞT ð4:1Þ
and

~Dei ¼ ðuei; vei;qeiÞT ~Dej ¼ ðuej; vej;qejÞT ð4:2Þ
respectively.

ex
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i j
eiu

eiv eju
ejv
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eiN
eiϑ
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ejN

i ′

j ′

Figure 4.2 Member coordinate system.
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According tomaterialmechanics, the axial displacement ue of an arbitrary point in amember

is a linear function of the member end axial displacement; that is:

ueðxeÞ ¼ uei
le � xe

le
þ uej

xe

le
¼ ueiw1ðxeÞþ uejw2ðxeÞ ð4:3Þ

where xe is the horizontal coordinate of a point in the member in the local coordinate system

and le is the length of the member.

On the other hand, the deflection ve of a point in the member can be expressed by a cubic

curve:

veðxeÞ ¼ a1 þ a2xe þ a3x
2
e þ a4x

3
e ð4:4Þ

According to the small deformation assumption, the following relationship exists between

the rotation angle and the deflection of an arbitrary point in the member:

qeðxeÞ � tanqeðxeÞ ¼ dve

dxe
ð4:5Þ

and using the boundary conditions at the ends

veð0Þ ¼ vei
qeð0Þ ¼ qei

�
ð4:6Þ

veðleÞ ¼ vej
qeðleÞ ¼ qej

�
ð4:7Þ

there exists

veðxeÞ ¼ vei 1�3
x2e
l2e

þ2
x3e
l3e

� �
þvej 3

x2e
l2e

�2
x3e
l3e

� �
þqei xe�2

x2e
le

þ x3e
l2e

� �
þqej � x2e

le
þ x3e

l2e

� �

¼ veiw3ðxeÞþvejw4ðxeÞþqeiw5ðxeÞþqejw6ðxeÞ
ð4:8Þ

Let

feðxeÞ ¼ ½ueðxeÞ; veðxeÞ�T ð4:9Þ

NuðxÞ ¼ ½w1ðxeÞ; 0; 0;w2ðxeÞ; 0; 0� ð4:10Þ

NvðxÞ ¼ ½0;w3ðxeÞ;w5ðxeÞ; 0;w4ðxeÞ;w6ðxeÞ� ð4:11Þ

Then, from Equations 4.3 and 4.8, we obtain

feðxeÞ ¼ NuðxeÞ
NvðxeÞ
� �

~Dei
~Dej

� �
¼ NðxeÞ~De ð4:12Þ
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Here,Nu(xe) andNv(xe) are the interpolation shape functions, which have a unified form for

each structural element, and ~De is the element displacement in the local coordinate system.

According to material mechanics, the strain in the element is given by

ee ¼
due

dxe

� ye
d2ve

dx2e

2
664

3
775 ð4:13Þ

where ye is the distance from an arbitrary point in the sections to the neutral axis of themember.

Substituting the interpolation function expression in Equation 4.13 yields

ee ¼
dNu

dxe

� ye
d2Nv

dx2e

2
664

3
775 ~Dei

~Dej

� �
¼ B~De ð4:14Þ

where B is usually called the geometry matrix.

The element potential energy Pe is composed of two parts:

Pe ¼ We þVe ð4:15Þ
where We is the element load potential energy; in the case that only end forces are

applied:

We ¼ � ½~DT

ei
~D
T

ej�
~Fei
~Fej

� �
¼ � ~D

T

e
~Fe ð4:16Þ

in which ~Fe is the element nodal force vector in the local coordinate system.

In Equation 4.15, Ve is the strain energy (deformation energy). According to elasticity

mechanics, Ve is given by

Ve ¼ 1

2

ð
We

eTeEee dW ð4:17Þ

where E is the elastic modulus matrix and We is the integration domain of the element.

Substituting Equation 4.14 in Equation 4.17, we obtain

Ve ¼ 1

2
~DT

e

ð
We

BTEB dW ~De

� �

¼ 1

2
~D
T

e
~ke~De

ð4:18Þ

where

~ke ¼
ð
We

BTEB dW ð4:19Þ
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is the element stiffness matrix in the local coordinate system. For the coordinate system

determined in Figure 4.2, its explicit expression is

~ke ¼

EAe

le
0 0 � EAe

le
0 0

0
12EIe

l3e

6EIe

l2e
0 � EIe

l3e

6EIe

l2e

0
6EIe

l2e

4EIe

l2e
0 � 6EIe

l2e

2EIe

le

� EAe

le
0 0

EAe

le
0 0

0 � 12EIe

l3e
� 6EIe

l2e
0

12EIe

l3e
� 6EIe

l2e

0
6EIe

l2e

2EIe

le
0 � 6EIe

l2e

4EIe

l2e

2
6666666666666666664

3
7777777777777777775

ð4:20Þ

where Ae is the area of the element section and Ie is the inertia moment of the element section

with respect to the section central axial.

Substituting Equations 4.16 and 4.18 in Equation 4.15 yields

Pe ¼ 1

2
~D
T

e
~ke~De � ~D

T

e
~Fe ð4:21Þ

4.2.3 Transformation of Coordinates

The element analysis described in the preceding section is done in the local coordinate system,

such as in Figure 4.2; the position of the element in thewhole structure is not considered as yet.

In order to derive the governing equation of the whole structures, we should transform the

elements from the local coordinate system to the global coordinate system and locate the

positions of elements in the whole structures. The aim of the operations is to establish an

expression of the potential energy of the elements in the global coordinate system.

The relationship between the global coordinate systemOxy and the local coordinate system

is shown in Figure 4.3. According to the geometric relationship, the displacement uei, vei
of node i and the displacement ui, vi in the global coordinate system satisfy the following

ex
ey

eo

i

j

eiu

i ′
eiv

eiϑ
y

xo

iv

iu

eα

Figure 4.3 Coordinate transformation.
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relationship

uei ¼ ui cos ae þ vi sin ae

vei ¼ � ui sin ae þ vi cos ae

�
ð4:22Þ

and the angles of rotation in the two coordinate systems are identical; thus

qei ¼ qi ð4:23Þ

According to the same principle, to consider the nodal displacement of the element, we

have

~De ¼ TaDe ð4:24Þ
where

De ¼ ðui; vi;qi; uj; vj ;qjÞT ð4:25Þ

is the element displacement vector in the global coordinate system and

Ta ¼

cosae sinae 0 0 0 0

� sinae cosae 0 0 0 0

0 0 1 0 0 0

0 0 0 cosae sinae 0

0 0 0 � sinae cosae 0

0 0 0 0 0 1

2
6666664

3
7777775

ð4:26Þ

is the element coordinate transformation matrix. This is an orthogonal matrix; that is:

T� 1
a ¼ TT

a ð4:27Þ

Thus, the inverse transformation of Equation 4.24 gives

De ¼ TT
a
~De ð4:28Þ

In a similar way, the relationship between the nodal forces of the element in the local

coordinate system and that in the global coordinate system is as follows:

~Fe ¼ TaFe ð4:29Þ

Fe ¼ TT
a
~Fe ð4:30Þ

where

Fe ¼ ðNi;Qi;Mi;Nj ;Qj;MjÞT ð4:31Þ
is the nodal force vector of the element in the global coordinate system.
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In substituting Equations 4.24 and 4.29 in Equation 4.21, the element potential energy in the

global coordinate system is given by

Pe ¼ 1

2
DT
eT

T
a
~keTaDe �DT

eT
T
aTaFe

¼ 1

2
DT
e keDe �DT

eFe

ð4:32Þ

where

ke ¼ TT
a
~keTa ð4:33Þ

is the element stiffness matrix in the global coordinate system.

The transformation of element coordinates only performs the transformation between

the global coordinate system and the element local coordinate system. It does not resolve

the problem of locating the element position in the structures. This work is realized through the

concept of the position transformation matrix.

If a structure can be partitioned intoN elements, then its nodal displacements columnmatrix

can be denoted by

x ¼ ðx1; x2; . . . ; x3nÞT ¼ ðuT1 ; uT2 ; . . . ; uTn ÞT ð4:34Þ
where u‘ ¼ ðu‘; v‘;q‘ÞTð‘ ¼ 1; 2; . . . ; nÞ; n is the total number of the nodes.

The position of the eth element in x can be given by the following position transformation

relationship:

De ¼ Ti

Tj

� �
x ¼ Tex ð4:35Þ

where

Ti ¼ ½0; � � � ; I; 0; � � � ; 0� ð4:36Þ
in which I is the ith block and

Tj ¼ ½0; � � � ; I; 0; � � � ; 0� ð4:37Þ
in which I is the jth block and

I ¼
1 0 0

0 1 0

0 0 1

2
4

3
5; 0 ¼

0 0 0

0 0 0

0 0 0

2
4

3
5 ð4:38Þ

Therefore, Te is given by

Te ¼ Ti

Tj

� �
¼ 0; � � � ; I; 0; � � � ; 0; 0; � � � ; 0

0; � � � ; 0; 0; � � � ; I; 0; � � � ; 0
� �

ð4:39Þ

as the position transformation matrix of element e. Generally, the position transformation

matrix is not an orthogonal matrix.
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Equation 4.35 exists when the displacement is continuous, but there is no such relationship

among element nodal forces and structural nodal loads because of equilibrium among internal

nodal forces and external loads on a common node. However, by introducing the position

transformation matrix, it can be used to locate the nodal forces simultaneously. In fact, if

�Fe ¼ TT
eFe ð4:40Þ

then combining with Equation 4.35, Equation 4.32 can be rewritten as

Pe ¼ 1

2
xTTT

e keTex� xT�Fe ð4:41Þ

4.2.4 Static Equations

The total potential energy of the whole structure is the sum of all the element potential energy;

that is:

P ¼
X
e

Pe ¼ 1

2
xT
X
e

ðTT
e keTeÞx� xT

X
e

�Fe ð4:42Þ

According to the equilibrium relationship between the element end forces and the nodal

equivalent load, there exists X
e

�Fe ¼ F ð4:43Þ

whereF is the nodal force vector of the structure. For the non-nodal loads,F can be given by the

principle of equivalence of potential energy.

Let

K ¼
X
e

TT
e keTe ð4:44Þ

which is called the global stiffness matrix. Substituting this equation and Equation 4.43 in

Equation 4.42 yields

P ¼ 1

2
xTKx� xTF ð4:45Þ

According to the principle of minimum potential energy, for all the allowable displacement

functions, the real displacements minimize the total potential energy (Washizu, 1975); that is:

dP ¼ 0 d2P � 0 ð4:46Þ

where d denotes the variational symbol.

Utilizing the necessary condition of dP¼ 0, namely

qP
qx

¼ 0 ð4:47Þ
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we have

Kx ¼ F ð4:48Þ
This is the governing equation of deterministic structural static analysis, with x being the

unknowns.

4.2.5 Dynamic Equations

For dynamical analysis problems, new particularity only lies in the contribution of the

structural mass matrix and the damping matrix.

Still taking the previous plane truss structures as an example and using the shape functions

expressed by Equations 4.10 and 4.11, the velocity of each node in the element e can be

expressed by

_fe ¼ NðxeÞ _~De ð4:49Þ

and the kinetic energy of the element e is given by

Te ¼ 1

2

ð
We

_f
T

e r
_fe dW ¼ 1

2

_~DT

e

ð
We

NTrN dW
� �

_~De

¼ 1

2

_~DT

e ~me
_~De

ð4:50Þ

where r is themass density of thematerial,We is the integration domain of the element and ~me is

the element mass matrix in the local coordinate system; that is:

~me ¼
ð
We

NTrN dW ð4:51Þ

Because of the effect of damping, the energy of the structural system is gradually

dissipated during vibration. If the damping forces acting on a structure could be determined

quantitatively, then the finite-element concept could be used again to define the element

damping matrix. For example, assuming the damping is of viscosity – that is, the viscous

damping force of any particle mi is �h_f i, where h is the viscous damping coefficient and
_f i is the velocity of the particle mi – then the dissipation function R of the element e can

be given by

Re ¼ 1

2

ð
We

_f
T

eh
_fe dW ¼ 1

2

_~D
T

e~ce
_~De ð4:52Þ

where

~ce ¼
ð
We

NThN dW ð4:53Þ

is the element damping matrix in the local coordinate system.
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Analogous to Equation 4.33, the elementmassmatrix and the element dampingmatrix in the

global coordinate system are given by

me ¼ TT
a ~meTa ð4:54Þ

and

ce ¼ TT
a~ceTa ð4:55Þ

respectively. The position transformation relationship of displacements still satisfy

Equation 4.35; differentiating it will yield

_De ¼ Te _x ð4:56Þ
where _De is the element velocity vector in the global coordinate system and _x is the nodal

velocity vector of the structure.

Having performed the coordinate transformation and the element position transformation,

the kinetic energy and the dissipation functions of the element e are

Te ¼ 1

2
_xTTT

emeTe _x ð4:57Þ

and

Re ¼ 1

2
_xTTT

e ceTe _x ð4:58Þ

respectively. The total kinetic energy and dissipation functions of thewhole structure are given

by the sum of the corresponding values of all the elements; that is:

T ¼ 1

2
_xTM _x ð4:59Þ

R ¼ 1

2
_xTC _x ð4:60Þ

where

M ¼
X
e

TT
emeTe ð4:61Þ

is the mass matrix of the structure and

C ¼
X
e

TT
e ceTe ð4:62Þ

is the damping matrix.

The potential energy of the structure is similar to that in the previous section (see

Equation 4.45; it is denoted by V herein according to conventional notation in the Lagrange

equation):

V ¼ 1

2
xTKx� xTF ð4:63Þ
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It is noted that V is the potential energy with the boundary conditions having been imposed

on. Hence, x is the nodal displacement vector of the whole structure with imposed boundary

conditions, too. So is the velocity vector _x.
The general variational principle of dynamic systems is the Hamiltonian principle. Because

this principle is equivalent to the Lagrange equation, we often use the latter to establish the

governing equation of dynamical systems. The Lagrange equation for viscous damping system

is given by (Lanczos, 1970; Clough and Penzien, 1993)

d

dt

qT
q _x

� �
� qT

qx
þ qV

qx
¼ � qR

q _x
ð4:64Þ

Substituting Equations 4.59, 4.60 and 4.63 in Equation 4.64, we can obtain the equation of

motion of a deterministic structural system:

M€xþC _xþKx ¼ F ð4:65Þ
This equation can be solved by various methods, such as the time-domain method, the

frequency-domain method or the modal superposition technique (Clough and Penzien, 1993).

It is noted that the previously introduced mass matrix is the consistent mass matrix. In

practice, when the structural system is relatively regular and simple, we may use the lumped

mass matrix, and the preceding damping matrix is also generally replaced by the Rayleigh

damping matrix, which is usually given by

C ¼ aMþ bK ð4:66Þ
where a and b are coefficients that depend on the modal damping ratios.

4.3 Random Simulation Method

4.3.1 Monte Carlo Method

The Monte Carlo method is a numerical method to evaluate the approximate solutions of

physical and engineering problems by means of digital simulation and statistical analysis

of random variables (Robinstein, 1981; Shinozuka and Deodatis, 1991; 1996). The process of

solving a problem through theMonte Carlo method may be summarized as the following three

essential steps:

(a) Sampling of random variables. To generate random samples according to the known

probability distributions of the basic random variables.

(b) Obtaining the sample solutions. To get the response of each sample by solving determin-

istic mathematical or physical equations according to the nature of the problem.

(c) Computing the statistical estimation of the response quantities. For all the sample

responses, compute the mean and the variance or estimate the probability distributions

of the respective output random variables.

The theoretical foundation of the Monte Carlo method is the law of large numbers in

probability theory (Lo�eve, 1977). Let n be the occurrence number of event A and p(A) be the

occurrence probability of the event A in N independent trials; then, according to the Bernoulli
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law of large numbers, for any e > 0, as N ! ¥, the frequency n/N of event A will converge to

the probability of the event with unit probability; that is:

lim
N!¥

Pr
n

N
� pðAÞ

���� < e
����

�
¼ 1

�
ð4:67Þ

If the random variables are independently and identically distributed – that is, if the random

variable sequence j1, j2, . . ., jN have the same distribution and mathematical expectation

E½ji� ¼ a, i ¼ 1; 2; . . . ;N – then, according to the Kolmogorov law of large numbers, for any

e > 0, as N ! ¥, the variable ð1=NÞPN
i¼1 ji will converge with probability unity to the

expected value a; that is:

lim
N!¥

Pr
1

N

XN
i¼1

ji �a

����� � e

�����
)

¼ 0

(
ð4:68Þ

In the standard Monte Carlo method, the simple sampling method is applied to the digital

simulation of random variables. Therefore, each sample is an independent random variable

with the characteristic of identical distribution. According to the law of large numbers

mentioned above, as the numbers of samples are large enough, the mean of the samples will

converge with probability unity to the mean of the probability distribution. Meanwhile, the

frequency n/N of event A will converge to the occurrence probability of event A, so the

convergence of the Monte Carlo method can be ensured.

4.3.2 Sampling of Random Variables with Uniform Distribution

According to the background and characteristics of the problem to be resolved, the random

variables involved in the stochastic systemmay belong to different probability distributions. In

order to generate samples of the random variables with different types of probability

distribution, a sample value of the random variable with uniform distribution on [0, 1] is

usually generated first. Then the sample is converted into the desired variable according to the

given type of probability distribution. Therefore, the sampling technology of uniform random

variables is the basis for realization of theMonteCarlomethod (Robinstein, 1981;Niederreiter,

1992).

The foundation of generating a uniform random variable is a certain mathematical recursive

formula, of which the general form is

xnþ 1 ¼ f ðxn; xn� 1; . . . ; xn� kÞ ð4:69Þ

where f(xn, xn�1, . . ., xn�k) is a given function. According to the function, once a set of initial

values x0, x�1, . . .,x�k is given, the sequence x1,x2, x3, . . . can be obtained one by one.

The common recursive formula is the linear congruential generator, which states that

yn ¼ ðayn� 1 þ bÞðmodMÞ ð4:70aÞ

xn ¼ yn

M
ð4:70bÞ
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where the multiplier a, the increment b, the modulus M and the initial value y0 are all

nonnegative integers. The modulo notation (modM) means that

yn ¼ ayn� 1 þ b� knM ð4:70cÞ
where kn¼ [(ayn�1 þ b)/M] denotes the largest positive integer smaller than (ayn�1 þ b)/M.

Equation 4.70a expresses such a computing process that, for a given yn�1, if yn denotes the

remainder of ayn�1 þ b divided by M, then the recursive form of recursively computing yn
can be obtained by successively increasing ordinal numbers and using Equation 4.70a.

Equation 4.70b shows that yn/M gives rise to the pseudo-random numbers sequence xn over

interval [0, 1].

Example 4.1. Pseudo-RandomNumber Sequences Tables 4.1 and 4.2 are two sequences

generated by Equations 4.70a–4.70c for different values of a, b, M and y0.

&

The pseudo-random number sequences generated by the previous linear congruencemethod

have a definite period (see Tables 4.1 and 4.2; the periods are 3 and 5 respectively). However, in

most MCS algorithms for practical problems, random sampling usually demands thousands or

even millions of random numbers, so we hope that a simulation algorithm should have a long

period and relatively perfect statistical characteristics (mainly referring to homogeneity and

independence). In order to improve the property of random numbers generated by the linear

congruence method, we can use two effective methods as follows.

4.3.2.1 Mixed Shuffle Method

In the method we first generate a set of random variables v1, v2, . . ., vn using a generator of

standard pseudo-random numbers, and then a random positive integer j uniformly distributed

over [1, n] is generated using another generator of random numbers. Then, take vj as the

sampled value; the vacant position originally belonging to vjwill be filled with a new random

number generated by the generator of standard pseudo-random numbers. Continuing such a

processwill give a randomvariable sequence.The process is shown schematically inFigure 4.4,

where Y is the random positive integer sequence. The sequences generated according to the

Table 4.1 Sequence by Equations 4.70a–4.70c (a¼ 2, b¼ 3, M¼ 7, y0¼ 1).

n 1 2 3 4 5 6 7 8 9

yn 5 6 1 5 6 1 5 6 1

xn 0.7143 0.8571 0.1429 0.7143 0.8571 0.1429 0.7143 0.8571 0.1429

Table 4.2 Sequence by Equations 4.70a, 4.70b, 4.70c (a¼ 3, b¼ 2, M¼ 11, y0¼ 5).

n 1 2 3 4 5 6 7 8 9

yn 6 9 7 1 5 6 9 7 1

xn 0.5455 0.8182 0.6364 0.0909 0.4545 0.5455 0.8182 0.6364 0.0909
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mixed shuffle method have less self-correlation among sequences and better uniformity than

that of sequences generated by a single generator.

4.3.2.2 Joint Sampling Method

In this method we generate random numbers with uniform distribution over [0, 1] using three

linear congruential generators of random numbers. The first generator generates the maximum

effective part of the random numbers, the second generator generates the minimum effective

part of the random numbers, and then the third generator controls the process of the mixed

shuffle process. The pseudo-random number sequence generated by the joint sampling method

not only has much better independence and uniformity than that of the result of a single

generator, but also has nearly infinite period in practice.

4.3.3 Sampling of Random Variables with General Probability Distribution

In principle, sampling of random variables includes the sampling of discrete random variables

and continuous random variables. Because this book merely deals with continuous random

variables, only this situation is discussed herein.

The sampling methods of continuous random variables mainly include two categories: the

inverse transformation method and the acceptance–rejection sample method.

4.3.3.1 Inverse Transform Method

The inverse transform method is also referred to as the direct sampling method. Assume the

CDF of the random variable X to be FX(x); in order to obtain the sample value of the random

variable, it is required first to generate the sample value z of a random variable Z uniformly

distributed over [0, 1], then the sample value of the desired random variable to be given by the

inverse of the CDF; that is:

x ¼ F� 1
X ðzÞ ð4:71Þ

Figure 4.4 The process of the mixed shuffle method (1, 2, 3 denote the order of the mixed shuffle).
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The principle of the inverse transformmethod is shown in Figure 4.5. It is thus clear that the

secret of the inverse transform method is utilizing the fact that the CDF FX(x) is over [0, 1].

Thus, the samples of X can be obtained once the independent random variables of uniform

distribution over [0, 1] are sampled.

4.3.3.2 Acceptance–Rejection Sampling Method

Using the inverse transformation method requires that the CDF can be expressed in an analytic

form and, moreover, that its inverse function can be expressed in an explicit formula.

Obviously, the limitation of this method is a bit strict for practical applications. On the other

hand, the acceptance–rejection sampling method may be applied to the situation for which the

inverse transformation method is not applicable.

Assume that pX(x) is the PDF of random numbers that are going to be generated; the graph of

pX(x) can then be drawn in a two-dimensional coordinate system (Figure 4.6). If a two-

dimensional random point (x, y) can be generated and it is scattered in the region enclosed by

pX(x), then the corresponding x has the desired distribution. In order to do so, a comparative

function f(x)� pX(x) should be introduced (in Figure 4.6 it is denoted by a rectangle

surrounded by the dotted line), the domain of definition of f(x) is the same as that of pX(x),

and the integral of f(x) in the field of definition is a finite value A. Thus, if a uniform random

number r2 (0,A) is taken and there exists

r ¼
ðx
a

f ðxÞ dx ¼ FðxÞ ð4:72Þ

xx

z

o

( )XF x

1

( )XF xz

( )Zp z

1

1

o

z

Figure 4.5 Inverse transformation method.

Figure 4.6 Acceptance–rejection sampling method.
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and

x ¼ F� 1ðrÞ ð4:73Þ
and a uniform random number y2 (0, f(x)) is taken as well, then the point S decided by (x, y)

must rest in the region below the curve f(x). Here, if (x, y) is also below pX(x), then this point is

accepted, otherwise it is rejected. By continuing such a process, the random sample under given

condition pX(x) can be obtained.

Obviously, the basis of the uniformly dropped points is still the pseudo-random numbers

over [0, 1], except for an affine transform.

4.3.4 Random Simulation Method

As described in Section 4.1, the random simulation method in stochastic structural analysis is

very straightforward. It generally follows the steps below:

(a) Establish the dynamical analysis model of the deterministic structural system and choose

the solving algorithms.

(b) Identify the basic random variables and their probability distribution functions and

generate random samples according to the Monte Carlo method.

(c) Generate a random sample structure using the generated random samples and compute the

structural responses by deterministic analysis methods.

(d) Compute the estimation values of the statistical characteristics of the given responses, such

as the mean and the covariance of the structural responses, and so on.

(e) Stop the simulation process according to the prescribed convergence criteria.

For those stochastic structures only involving random parameters, it is enough to use the

algorithm above. However, for those situations where high accuracy is required (for example,

in aerospace engineering) or those problems in which the physical background cannot be

briefly reflected only by using random variables (for example, in geotechnical engineering), a

stochastic structural model based on randomfieldsmight be needed. In this case, it is necessary

to generate the random field sample of the structural material or the geometric characteristic

when the random simulation method is employed.

Random samples of a random field can be generated by a trigonometric series simulation on

the basis of the spectral decomposition concept or given by random variables simulation on the

basis of random field discretization.

4.3.4.1 Trigonometric Series Simulation

Let the correlation function of a homogeneous random field be RB(r), whose Fourier

transformation may be defined as follows:

SBðkÞ ¼ 1

ð2pÞn
ð¥
�¥

RBðrÞe� ik � r dr ð4:74Þ

where k is the wave number vector. The one-dimensional wave number is defined by the

reciprocal of its wave length and k�r denotes the inner product of vectors. We should specially
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note that the integral symbol in Equation 4.74 denotes an n-dimensional integral and n is the

space dimensions of the random field.

In Equation 4.74, SB(k) is called thewave number spectral density function or wave number

spectrum for short. Obviously, the inverse Fourier transform of the wave number spectrum is

the correlation function of the homogeneous random field; that is:

RBðrÞ ¼
ð¥
�¥

SBðkÞeik � r dk ð4:75Þ

Equation 4.74 is commonly called the spectrum decomposition of the random field

correlation function. According to the concept, the following trigonometric series can be

used to simulate the random field samples:

BðuÞ ¼
X
i

AðkiÞcosðki � uþwiÞ ð4:76Þ

where wi is the random phase angle uniformly distributed over [0, 2p] and

A2ðkiÞ ¼ 4SBðkiÞ � jDkj ð4:77Þ

ki ¼ ðk1i1 ; k2i2 ; � � � ; kninÞT ð4:78Þ

kj;ij ¼ kj;L þ ij � 1

2

� �
Dkj ð4:79Þ

Dk ¼ ðDk1;Dk2; � � � ;DknÞT

¼ k1;u � k1;L
N1

;
k2;u � k2;L

N2

; � � � ; kn;u � kn;L
Nn

� �T ð4:80Þ

jDkj ¼
Yn
i¼1

Dki ð4:81Þ

X
i

¼
XN1

i1¼1

XN2

i2¼1

� � �
XNn

in¼1

ð4:82Þ

In the preceding formula,Nj is the sampling number along the jth wave axial; kj,u is the upper
limit of the sampling wave number while kj,L is the lower limit of the sampling wave number.

In order to avoid periodic occurrences in the simulation sample, a small random wave

number may be added to the cosine wave number; that is, Equation 4.76 is modified to

BðuÞ ¼
X
i

AðkiÞcosðk0i � uþwiÞ ð4:83Þ
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where

k0i ¼ ki þ dki ð4:84Þ

dki ¼ ðdk1i1 ; dk2i2 ; � � � ; dkninÞT ð4:85Þ
in which dkjij is uniformly distributed over ð�Dk0j=2; Dk0j=2Þ, and Dk0j � Dkj .

4.3.4.2 Random Variables Simulation Method on the Basis of Random Field

Discretization

A first-order homogeneous random field (that is, its mean is constant) can be conveniently

transformed into a zero-mean random field. In such a case, the discretization of a random field

can be implemented. Using the central point method, the shape function method or the local

average method described in Section 2.3, the correlation coefficient matrix of the discretized

random field can be obtained:

Cj ¼ ½cij � ¼ ½cov½ji; jj�� ð4:86Þ

where ji and jj are the discretized basic random variables.

If the correlation coefficient matrix is symmetric and positive definite, then Cj can be

decomposed into a lower triangular matrix multiplied by an upper triangular matrix using the

Cholesky decomposition; that is:

Cj ¼ LLT ð4:87Þ
where L is a lower triangular decomposition matrix.

Thus, if we let the discretized random vector

V ¼ LZ ð4:88Þ
where Z¼ (Z1, Z2, . . ., Zn)

T is a random variable vector with zero-mean and unit variance

normal distribution Nð0; 1Þ, then we can prove that

E½VVT� ¼ E½LZðLZÞT� ¼ LE½ZZT�LT ¼ Cj ð4:89Þ
Therefore, as long as the random variables with standard normal distribution Nð0; 1Þ are

generated for each element, the random samples of the discretized randomfield can be obtained

using Equation 4.88.

A two-dimensional random field sample generated according to the above method is shown

schematically in Figure 4.7.

4.3.5 Accuracy of Random Simulation Method

The samples selected by the Monte Carlo method essentially belong to random variables with

an independent identical distribution. Therefore, the sample responses evaluated by using a

deterministic mathematical or physical equation are also random variables with the charac-

teristic of an independent identical distribution. According to the central limit theorem in
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probability theory (Lo�eve, 1977), if the mean and variance of the random variables j1, j2, . . .
with independent identical distribution all exist and havem ¼ E½j�,s2 ¼ D½j�, then the random
variable

h ¼ ~m�m

s=
ffiffiffiffi
N

p ð4:90Þ

will asymptotically obey the standard normal distribution; that is:

lim
N!¥

Pr
~m�m

s=
ffiffiffiffi
N

p <x
� �

¼ 1ffiffiffiffiffiffi
2p

p
ðx
�¥

e� x2=2dx ð4:91Þ

In the above equations, ~m ¼ ð1=NÞPN
i¼1 ji is the estimated mean of the samples.

Hence, once given a definite confidence level 1�a, if N is large enough, then the following

approximate equation exists:

Pr j~m�mj < xasffiffiffiffi
N

p
� �

� 2ffiffiffiffiffiffi
2p

p
ðxa
0

e�x2=2 dx ð4:92Þ

where xa is the coordinate value of the censored bounds with the given confidence level 1�a
(Figure 4.8). Several common sets of corresponding values are shown in Table 4.3.

According to Equation 4.92, under a given confidence level, the error between the estimated

mean according to the Monte Carlo method and the real mean can be given by

e ¼ jm� ~mj < xasffiffiffiffi
N

p ð4:93Þ

Sample 1 Sample 2

Figure 4.7 Typical random field samples.

Figure 4.8 Confidence bounds.
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The previous equation is actually the estimation for the accuracy of theMonte Carlomethod.

It is thus clear that:

(a) the accuracy of the results can be estimated using s=
ffiffiffiffi
N

p
in the trial process;

(b) the convergence speed of the Monte Carlo method is proportional to
ffiffiffiffi
N

p
.

This relationship means that, if wewant to increase the accuracy of the results by one digit, the

computational cost of the simulation should be increased by 100 times; therefore, there is a

need for several thousand (or evenmillions of) simulation computations when theMonte Carlo

method is employed to solve a stochastic structural analysis problem.

4.4 Perturbation Approach

4.4.1 Deterministic Perturbation

The perturbation approach for stochastic structural analysis stems from the deterministic

perturbation method of nonlinear analysis. In deterministic perturbation analysis, the govern-

ing equation of a physical problem is generally expressed as an equation involving small

parameters; for instance:

Lðu; x; eÞ ¼ 0 ð4:94Þ
where L is a general operator, u is the solution, x is the argument and e is a small parameter,

which can naturally occur in Equation 4.94 or can be artificially introduced.

The above problem usually cannot be solved precisely. However, according to the char-

acteristics that the solution u is a function of x and e where e is a small parameter, u can be

expanded in an asymptotic series. For example, there exists

uðx; eÞ ¼ u0ðxÞþ eu1ðxÞþ � � � þ enunðxÞþ � � � ð4:95aÞ
where the coefficients ui(x) are irrelevant to e. Simultaneously, the operator L(�) can be

expanded by

L ¼ L0 þ eL1 þ � � � þ enLn þ � � � ð4:95bÞ
Substituting Equations 4.95a and 4.95b in Equation 4.94 and merging coefficients of the

same order, we can obtain

ðL0u0 � hÞþ ðL0u1 þL1u0ÞeþðL0u2 þL1u1 þL2u0Þe2 þ � � � ¼ 0 ð4:96Þ
where L0,L1,L2, . . . are linear operators in the spaceU and h is a real function of x, which can

be determined according to the specific problems.

Table 4.3 The xa versus 1�a relationship under a standard normal distribution.

xa 1 2 3 4

1�a 0.6827 0.9545 0.9973 0.9999
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Because Equation 4.96 should be correct for any arbitrary e and the sequence of e is linearly
independent, the coefficients of each order of e must be zero; that is:

L0u0 ¼ h

L0u1 ¼ �L1u0
L0u2 ¼ �L1u1 �L2u0
� � �

8>><
>>: ð4:97Þ

The above equations form a set of recursive equations of ui(x). The boundary condition and

the initial condition of the problem can be obtained using similar methodology. Hereby, the

above equations can be solved one by one and thus ui(x) can be obtained in sequence.

Substituting the results in Equation 4.95a leads to an approximate result of u(x, e) (Nayfeh,
2000).

The preceding method is generally termed the parametric perturbation method. In this

method, the expanded quantity may be a function of e, say di(e), which is generally called the
expanded asymptotic sequence and satisfies

diðeÞ ¼ o½di� 1ðeÞ� ð4:98Þ

where o(�) denotes the infinitesimal of higher order.

Thismeans that, in an asymptotic sequence, the latter terms of the sequencemust be the high-

order infinitesimal of the former terms. For example, as e ! 0, the functions ei, ei=3, ðlogeÞ� i

and ðsineÞi are all asymptotic sequences.

Using the asymptotic sequence, the unknown function u(x, e) may be expanded as the

following function:

uðx; eÞ ¼
X¥
i¼0

aiðxÞdiðeÞ ðe! 0Þ ð4:99Þ

where ai is a function of x and is irrelevant to e.
For any positive integer N, there exist

uðx; eÞ ¼
XN
i¼0

aiðxÞdiðeÞþRNðx; eÞ ð4:100Þ

where RN(x, e) is the remainder, given as

RNðx; eÞ ¼ O½dNðeÞ� ðe! 0Þ ð4:101Þ
The left-hand side of Equation 4.100 is referred to as the nth-order asymptotic expansion

equation of u(x, e).
Assume the value domain of the solution is W and the boundary is qW. If the asymptotic

expansion Equation 4.100 always holds overW þ qW – that is, the perturbation solutions have

a uniform convergence limit with respect to x in the definition field of x – then the expansion

equation is termed a consistent convergence asymptotic expansion overW þ qW. This kind of
perturbation problem is called a regular perturbation problem. Because di(e) is an asymptotic
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sequence, a regular perturbation means that ai(x)di(e) is a little modification against its former

value whatever x is. However, the consistent convergence condition is not always satisfied for

perturbation problems. The perturbation problem with an inconsistent convergence field is

referred to as a singular perturbation problem. For a deterministic perturbation problem, such

problems may result from secular terms in the infinite field or the existence of singular points,

and so on (Nayfeh, 2000).

4.4.2 Random Perturbation

The random perturbation method can be constructed by extending the above perturbation

technology to the problem involving random parameters (Kleiber and Hien, 1992; Skorokhod

et al., 2002). Herein, the random differential operator of a considered problem is given by

Lðy; x; jÞ ¼ 0 ð4:102Þ
where themeanings ofL and x are similar to those in Equation 4.94, j is a random variablewith

a given probability distribution and y¼ y(x, j) is a random function.

According to Chapter 2, a random variable can be standardized by

j ¼ j0 þsjz ¼ cðzÞ ð4:103Þ
where j0 is the mean of j, sj is the standard deviation of j and z is the standardized random

variable of which the mean is zero and the variance is one.

Substituting Equation 4.103 in Equation 4.102, there is

L½y; x;cðzÞ� ¼ 0 ð4:104Þ
Utilizing the series expansion of the random function given in Equation 2.41, the solution

y¼ y(x, j) can be expanded as the series of z:

yðx; jÞ ¼ y½x;cðzÞ�
¼ y x;cðzÞ½ �jz¼0 þ

dy

dz

����
z¼0

zþ 1

2

d2y

dz2

����
z¼0

z2 þ � � � ð4:105Þ

For simplicity of notation, y(x,c(z)) is written as y(x, z) hereafter without inducing

confusion. Because y is unknown, the coefficients of [dy/dz]
��
z¼0 and so on are all unknown.

However, the equation can be written in the equivalent form

yðx; zÞ ¼ u0ðxÞþ zu1ðxÞþ z2u2ðxÞþ � � � ð4:106Þ

Obviously, the coefficient ui(x) is irrelevant to z and is a deterministic function.

Substituting Equation 4.106 in Equation 4.104 and combining the same-order coefficient of

z after appropriate operation leads to

ðL0u0 � hÞþ ðL0u1 þL1u0ÞzþðL0u2 þL1u1 þL2u0Þz2 þ � � � ¼ 0 ð4:107Þ
where L0,L1,L2, . . . are deterministic operators and h is a real function of x.
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Because z is a random variable that can take any arbitrary value, the sufficient condition

which makes Equation 4.107 hold is that all the coefficient terms must be zero; that is:

L0u0 ¼ h

L0u1 ¼ �L1u0
L0u2 ¼ �L1u1 �L2u0
� � �

8>><
>>: ð4:108Þ

The equations consist of a set of deterministic operator equations. By introducing the

boundary conditions and/or the initial conditions, the solutions of u0, u1, . . . can be obtained

one by one from these equations. Substituting these solutions in Equation 4.106, the mean and

variance solutions of y(x, z) can be given by

E½yðx; zÞ� ¼ u0ðxÞþ u2ðxÞþ � � � ð4:109Þ
and

D½yðx; zÞ� ¼ u21ðxÞþ u22ðxÞE½z4� þ � � � ð4:110Þ
respectively.

Corresponding to the deterministic parameter perturbation, in random perturbation, consis-

tent convergence of the solution in the sense of expectation of order M must be considered.

Suppose SM[yN(x, z)] is the expectation of orderM of theNth solution expandedwith respect to

z, and if there is

SM ½yðx; zÞ� ¼ SM ½yNðx; zÞ� þOMðxÞ ð4:111Þ

then yN(x, z) is called the Nth expansion with accuracy of order N. Here,OMðxÞ indicates that
the remaining terms are infinitesimal of the same order.

4.4.3 Random Matrices

If the randomness involved in the structural parameters in a dynamical system cannot be

ignored, then the corresponding dynamic matrix must be treated as a random matrix. Those

parameters that render a dynamic matrix a random matrix are referred to as basic random

parameters, such as the material mass density, elastic modulus, Poisson�s ratio, geometric size,

the damping coefficient and so on. According to the specific problem background, these

parameters can be either characterized by random variables or modeled by random fields.

Without loss of generality, assume the structural random field is {B(u), u2D}; then, using the

local average method for the random field discretization, it can be partitioned to a random

variables set {ji, i¼ 1, 2, . . ., n}. Here, n is the partition number of the field elements. Themean

and the variance of the random variable ji are given by Equations 2.144 and 2.145 respectively.
Transforming ji to a standardized random variable, there is

ji ¼ ji0 þsji Zi ði ¼ 1; 2; � � � ; nÞ ð4:112Þ

where ji0 is the mean of ji; sji is the standard deviation of ji and Zi is the standardized random
variable of which the mean is zero and the variance is one.
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On the other hand, for each elementwith the randomparameters the propertymatrices can be

expressed in the form of a random matrix according to the finite-element method. That is:

~mi ¼
ð
W
NTrN dW ð4:113Þ

~ci ¼
ð
W
NThN dW ð4:114Þ

~ki ¼
ð
W
BTEB dW ð4:115Þ

where r, h, N and B are consistent with the definition discussed in Section 4.2 and E is the

elastic matrix that is the popularization of the elastic modulus concept in the common finite-

element method. For example, for the plane-stress problem, there exists

E ¼ E

1�m2

1 m 0

m 1 0

0 0
1�m

2

2
64

3
75 ð4:116Þ

where E is the elastic modulus and m is Poisson�s ratio.
The random variable ji can represent any basic variable in the element characteristic matrix,

such as r, h, E,m, Ii, Ai and so on, while jij (j¼ 1, 2, . . .) can also be used to represent the effect
of multiple basic variables.

4.4.4 Linear Expression of Random Matrices

In the case the random variable ji appears in a dynamicmatrix in the form of a linear factor, the

corresponding randommatrix can be expressed as a linear function of the standardized random

variables (Li, 1995c).Without loss of generality, we useS to express a general randomdynamic

matrix; then there exists

~Si ¼ ~Si0 þ ~SisZi ð4:117Þ
where ~Si is the element random matrix, ~Si0 is the mean-parameter element matrix, ~Sis is the

element standard deviation matrix and Zi is a standardized random variable corresponding to

the element i.

In fact, Equation 4.117 can be deduced from the series expansion of the random matrix Si
with respect to the standardized random variable Zi:

~Si ¼ ~Si0 þ d~Si
dZi

����
Zi¼0

Zi þ 1

2

d2~Si
dZ2

i

����
Zi¼0

Z2
i þ � � � ð4:118Þ

Because Zi is a linear factor in Si, the derivatives of higher than second order are all zero.

Then

d~Si
dZi

¼ d~Si
dji

dji
dZi

¼ d~Si
dji

sji ¼ ~Sis ð4:119Þ
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Thus, we reach Equation 4.117.

Basic variables occurring in a dynamic matrix in the form of linear factors include the mass

density r, the damping coefficient h, the elastic modulus E, the inertial moment I and the

sectional area A (see Equations 4.20, 4.51 and 4.53). For example, for the beam elements in a

plane, if the axial deformation is not considered and the mass density r is taken as a random

parameter, then there exist

~mi0 ¼ ri0Al

420

156 22l 54 � 13l

22l 4l2 13l � 3l2

54 13l 12 � 6l

� 13l � 3l2 � 6l 4l2

2
664

3
775 ð4:120Þ

~mis ¼ sriAl

420

156 22l 54 � 13l

22l 4l2 13l � 3l2

54 13l 12 � 6l

� 13l � 3l2 � 6l 4l2

2
664

3
775 ð4:121Þ

Because both the coordinate transformation and the element position transformation

operation are deterministic linear transformations, the element matrix and the global dynamic

matrix in the global coordinate systemmaintain the relationship similar to Equation 4.117; that

is, there are

Si ¼ Si0 þ SisZi ð4:122Þ

S ¼ S0 þ
X
i

�SisZi ð4:123Þ

where

Si0 ¼ TT
a
~Si0Ta ð4:124Þ

Sis ¼ TT
a
~SisTa ð4:125Þ

S0 ¼
X
i

TT
i
~Si0Ti ð4:126Þ

�Sis ¼ TT
i SisTi ð4:127Þ

Here, Ta is the coordinate transformation matrix of the element i (see Equation 4.26) and Ti

is the position transformation matrix of the element i (see Equation 4.39).

Therefore, the global dynamic matrix of the system can be formed by the mean-parameter

matrix S0 and the standard deviationmatrix �Sis according to Equation 4.123. Herein, themean-

parametermatrix can be formed by adopting themean parameter in the direct stiffnessmethod,

while the standard deviation matrix can be obtained through introducing the following virtual

structures (Li, 1996a).
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For a virtual structure, the parameters corresponding to the given basic variables of the

elements take the value

r ¼ ð0; 0; � � � ;sji ; 0; 0; � � � 0ÞT ð4:128Þ

Without loss of generality, suppose the element random variables in the structure can

be partitioned into N subsets and the random variables (supposing the number of the

variables is jm) in each subset possess identical probability distribution, then Equation 4.123

can be expressed as

S ¼ S0 þ
XN
j¼1

SjZj ð4:129Þ

where

Sj ¼
Xjm
i¼1

TT
i SisTi ð4:130Þ

Here, Sj can be formed by the direct stiffness method according to the following virtual

structure:

r ¼ ð0; � � � ;sj‘ ; 0; � � � ;sjm ; 0; � � � ;sjp ; 0; � � � ; 0ÞT ð4:131Þ

The above equation shows that there are a total of three elements in the jth subsets and the

virtual structure is constructed by the corresponding standard deviation of these three elements

and other zero elements.

Introducing the correlation decomposition technology of random vectors, the linear repre-

sentation of dynamic matrices can be further simplified. In fact, according to Equation 2.152,

we can obtain

ji ¼ ji0 þ
Xn
j¼1

fij

ffiffiffiffi
lj

p
zj ð4:132Þ

Comparing Equation 4.112 with Equation 4.132, there exists

Zi ¼ 1

sji

Xn
j¼1

fij

ffiffiffiffi
lj

p
zj ð4:133Þ

Substituting this in Equation 4.123 yields

S ¼ S0 þ
X
i

~Sis
1

sji

Xn
j¼1

fij

ffiffiffiffi
lj

p
zj ð4:134Þ

Because the random variable ji occurs in the dynamic matrix in the form of a linear factor,

the sji in the denominator of the above equation and the sji in
~Sis can be eliminated.
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Simultaneously, the orders of the two sumoperations canbe exchanged and thusEquation4.134

can be rewritten as

S ¼ S0 þ
Xn
j¼1

Sjzj ð4:135Þ

where

Si ¼
X
j

TT
i SijTi ð4:136Þ

Here, Sij is the element dynamicmatrix of the element i in the global coordinate systemwhen

the virtual structure j is formed through regarding fij

ffiffiffiffi
lj

p
as a basic variable.

Because the variances of the independent random variables kj ¼
ffiffiffiffi
lj

p
zj have the character-

istic of an asymptotic sequence, the original random variable set can be replaced by a subset of

q < n; that is, there exists

S ¼ S0 þ
Xq
j¼1

Sjzj ð4:137Þ

The standard deviation matrices Sj can be formed according to q virtual structures and

S0 can be formed by using the mean parameter. Significantly, the forming ways mentioned

above can all be done by the standard finite-element method and, therefore, is a great

convenience.

It is worth pointing out that the normalized random variables set z has become an indepen-

dent random variable set after undergoing correlation decomposition such as Equation 4.132.

This is convenient for stochastic structural analysis. This aspect will be discussed in detail in

the following section.

The random variable jimay appear in dynamicmatrices in the form of nonlinear factors. For

example, when Poisson�s ratio m in Equation 4.116 is a basic variable, such a situation will

be encountered. In these cases, the random dynamic matrix should generally be expressed by

introducing a series expansion like Equation 4.118, which can be rewritten as

~Si ¼ ~Si0 þ ~S1iZi þ ~S2iZ
2
i þ � � � ð4:138Þ

where

~Sji ¼ 1

j!

dðjÞ~Si
dZ

j
i

�����
Zi¼0

ð4:139Þ

Through coordinate transformation and element position transformation operations, the

global dynamic matrix can be given by

S ¼ S0 þ
X
i

�S1iZi þ
X
i

�S2iZ
2
i þ � � � ð4:140Þ
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where

�Sji ¼ TT
i T

T
a
~SjiTaTi ð4:141Þ

However, for the casewith nonlinear variable factors, the idea of virtual structures discussed

above cannot be used.

4.4.5 Dynamic Response Analysis

When one or more dynamic matrices contain random parameters, the equation of motion of a

multi-degree-of-freedom (MDOF) system can be given by (see Equation 4.65)

M€XþC _XþKX ¼ FðtÞ ð4:142Þ
Here, €X, _X and X are respectively the acceleration, the velocity and the displacement vectors.

Note that the capital characters are used here according to the convention because they are all

stochastic processes.

By introducing the series expansion of random matrices, the equation of motion of the

stochastic structure can be approximately written as

M0 þ
Xn
i¼1

�M1izi þ
Xn
i¼1

�M2iz
2
i

 !
€Xþ C0 þ

Xn
i¼1

�C1izi þ
Xn
i¼1

�C2iz
2
i

 !
_X

þ K0 þ
Xn
i¼1

�K1izi þ
Xn
i¼1

�K2iz
2
i

 !
X ¼ FðtÞ

ð4:143Þ

where F(t) is a deterministic time process vector. The matricesM0, �M1i, �M2i,K0, �K1i and �K2i

can be formed by the method described in the preceding sections. According to the Rayleigh

damping assumption, the matrices C0, �C1i and �C2i can be taken as

C0 ¼ aM0 þ bK0 ð4:144Þ

�C1i ¼ a �M1i þ b�K1i ð4:145Þ

�C2i ¼ a �M2i þ b�K2i ð4:146Þ
where a and b are deterministic parameters. In this treatment, we only consider the situation

that the mass and the stiffness have one type of random parameter or that the mass and the

stiffness have the same type of random parameters.

According to the basic idea of random perturbation analysis, the responses of structural

acceleration, velocity and displacement can be expanded as a series of basic random variables

zi (taking second-order truncation)

€X ¼ €X0 þ
Xn
i¼1

€X1izi þ
1

2

Xn
i¼1

Xn
j¼1

€X2ijzizj ð4:147Þ
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_X ¼ _X0 þ
Xn
i¼1

_X1izi þ
1

2

Xn
i¼1

Xn
j¼1

_X2ijzizj ð4:148Þ

X ¼ X0 þ
Xn
i¼1

X1izi þ
1

2

Xn
i¼1

Xn
j¼1

X2ijzizj ð4:149Þ

Substituting them in Equation 4.143, combining the same-order terms and considering the

sufficient condition of the equation obtained yields the following set of recursive equations:

M0
€X0 þC0

_X0 þK0X0 ¼ FðtÞ ð4:150Þ

M0
€X1i þC0

_X1i þK0X1i ¼ �ð �M1i
€X0 þ �C1i

_X0 þ �K1iX0Þ ði ¼ 1; 2; � � � ; nÞ ð4:151Þ

M0
€X2ij þC0

_X2ij þK0X2ij ¼ � 2½ �M1i
€X1j þ �C1i

_X1j þ �K1iX1j þ dijð �M2i
€X0 þ �C2i

_X0 þ �K2iX0Þ�
ði; j ¼ 1; 2; � � � ; nÞ

ð4:152Þ
where dij is the Kronecker delta

dij ¼ 1 for i ¼ j

0 for i 6¼ j

�
ð4:153Þ

It is thus clear thatwe should solve a total of n2 þ n þ 1 equations in order to get the solution

of the second-order perturbation. After introducing correlation structure decomposition

technology, we only need to solve q2 þ q þ 1 equations (see Equation 4.137). Here, q is

the cardinal number of the uncorrelated random variable subset.

In principle, the time-domain analysismethod, the frequency-domain analysismethod or the

modal superpositionmethod can all be applied in solving the perturbation equations. However,

when the degrees of freedom of the structure are relatively large, using themodal superposition

method to solve the problem can greatly reduce computation effort. Noting that the left-hand

side operator forms of Equations 4.150–4.152 are identical, only the following deterministic

eigenvalue problem should be solved:

ðK0 � lM0Þc ¼ 0 ð4:154Þ
which is essentially a deterministic eigenvalue problem and, therefore, common eigenvalue

algorithms can be used to get the eigenvalues lj and the eigenvectors cj (Golub and van Loan,

1996).

After getting the specified number (for example, taking number m) of eigenvalues and

eigenvectors, the responses of Equations 4.150–4.152 can be respectively approximated as

follows:

X0 ¼
Xm
‘¼1

c‘x0;‘ ð4:155Þ
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X1i ¼
Xm
‘¼1

c‘x1i;‘ ð4:156Þ

X2ij ¼
Xm
‘¼1

c‘x2ij;‘ ð4:157Þ

Substituting them in Equations 4.150–4.152 and considering the orthogonal condition of

eigenvectors c‘ with respect toM0 andK0 yields the following decoupled recursive equations:

m�
‘€x0;‘ þ c�‘ _x0;‘ þ k�‘x0;‘ ¼ f �‘ ðtÞ ð‘ ¼ 1; 2; � � � ;mÞ ð4:158Þ

m�
‘€x1i;‘ þ c�‘ _x1i;‘ þ k�‘x1i;‘ ¼ f �1i;‘ ð‘ ¼ 1; 2; � � � ;m; i ¼ 1; 2; � � � ; nÞ ð4:159Þ

m�
‘€x2ij;‘ þ c�‘ _x2ij;‘ þ k�‘x2ij;‘ ¼ f �2ij;‘ ð‘ ¼ 1; 2; � � � ;m; i; j ¼ 1; 2; � � � ; nÞ ð4:160Þ

where

m�
‘ ¼ cT

‘M0c‘ ð4:161Þ

c�‘ ¼ cT
‘C0c‘ ð4:162Þ

k�‘ ¼ cT
‘K0c‘ ð4:163Þ

f �‘ ðtÞ ¼ cT
‘ FðtÞ ð4:164Þ

f �1i;‘ ¼ �cT
‘ ð �M1i

€X0 þ �C1i
_X0 þ �M1iX0Þ ð4:165Þ

f �2ij;‘ ¼ � 2cT
‘ ½ �M1i

€X1i þ �C1i
_X1j þ �K1iX1j þ dijð �M2i

€X0 þ �C2i
_X0 þ �K2iX0Þ� ð4:166Þ

After obtaining all the zeroth-, first- and second-order solutions of the above perturbation

equations, it is easy to compute the mean and covariance of the displacement responses.

According to Equation 4.149, the mean of the displacement responses is given by

E X½ � ¼ X0 þ 1

2

Xn
i¼1

Xn
j¼1

X2ijE zizj

 � ð4:167Þ

and the covariance matrix of the displacement responses is

cov X;X½ � ¼
Xn
i¼1

Xn
j¼1

X1iX
T
1jE zizj

 �þ 1

2

Xn
i¼1

Xn
j¼1

Xn
k¼1

½X1iX
T
2jk þX2ijX

T
1k�E zizjzk


 �

þ 1

4

Xn
i¼1

Xn
j¼1

Xn
k¼1

Xn
‘¼1

X2ijX
T
2k‘fE ziz‘zjzk


 ��E zizj

 �E zkz‘½ �

ð4:168Þ
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in which the component cov[Xs,Xr] denotes the covariance between the displacements of the

sth and the rth degrees of freedom.

By introducing the correlation decomposition technique, the above numerical eigenvalues

will be further significantly simplified. In this case, Equation 4.149 can be transformed to

X ¼ X0 þ
Xq
i¼1

X1izi þ
1

2

Xq
i¼1

Xq
j¼1

X2ijzizj þ � � � ð4:169Þ

Because of the uncorrelation between the variables zi and zj and noting that E½zi2� ¼ 1, there

exist

E½zizj� ¼ 1 for i ¼ j

0 for i 6¼ j

�
ð4:170Þ

E
Yn
s¼1

zs

 !
¼
Yn
s¼1

E½zs� ð4:171Þ

Hence, the mean vector and the covariance matrix of the displacement vector considering

second-order truncation are respectively given as

E X½ � ¼ X0 þ 1

2

Xq
i¼1

X2ii ð4:172Þ

cov½X;X� ¼
Xq
i¼1

XiX
T
i ð4:173Þ

Likewise, the numerical characteristic process of other responses, such as the velocity and

the acceleration and so on, can also be obtained.

In some cases, wemay have interest in the correlation behavior between the responses at any

two time instants of the time history. This characteristic can be depicted with the following

correlation function matrix:

R ¼
cov½Xt1 ;Xt1 � cov½Xt1 ;Xt2 � � � � cov½Xt1 ;XtN �
cov½Xt2 ;Xt1 � cov½Xt2 ;Xt2 � � � � cov½Xt2 ;XtN �
� � � � � � � � � � � �
cov½XtN ;Xt1 � cov½XtN ;Xt2 � � � � cov½XtN ;XtN �

2
664

3
775 ð4:174Þ

whereXti ¼ XðtiÞ, the subscripts ti denote the time instants andN is the number of time instants

considered. The components in the above correlation matrix can be evaluated similar to

Equation 4.168.

4.4.6 Secular Terms Problem

It is noted that the operators on the left-hand side of the dynamic perturbation equations are in the

same form. This provides convenience for solving the dynamic perturbation equation, but

meanwhile brings about the essential weakness for this kind of method. During computational
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practice, it was found that the mean and variance given by the perturbation method were only

applicable in a short period from the beginning time instant compared with the Monte Carlo

simulated results. With increasing time, the accuracy of the results will deteriorate rapidly

(Liu et al., 1988b). Figure 4.9 shows some results of a stochastic single-degree-of-freedom

(SDOF) system. It is seen that the results of the second-order perturbation are even worse than

that of thefirst-order perturbation. This phenomenon is the so-called secular termproblem.After

careful analysis, we may find that the essential reason leading to the above phenomenon lies in

introducing spurious resonant inputs, which do not exist during a practical vibration process.

In fact, the system transfer functions1 of Equations 4.158–4.160 are all

H‘ðvÞ ¼ 1

v2
0‘ �v2 þ 2ij‘v0‘v

ð‘ ¼ 1; 2; . . . ;mÞ ð4:175Þ

where i is the imaginary number unit and

v2
0‘ ¼ k�‘ =m

�
‘ ð4:176Þ

j‘ ¼ c�‘ =2m
�
‘v0‘ ð4:177Þ

The amplitude of the transfer function is shown schematically in Figure 4.10.

Performing a Fourier transform for Equations 4.158–4.160 with respect to t, there exist

x0;‘ðvÞ ¼ H‘ðvÞf‘ðvÞ ð‘ ¼ 1; 2; � � � ;mÞ ð4:178Þ

x1i;‘ðvÞ ¼ H‘ðvÞf �1i;‘ðvÞ ð‘ ¼ 1; 2; � � � ;m; i ¼ 1; 2; � � � ; nÞ ð4:179Þ

x2ij;‘ðvÞ ¼ H‘ðvÞf �2ij;‘ðvÞ ð‘ ¼ 1; 2; � � � ;m; i; j ¼ 1; 2; � � � ; nÞ ð4:180Þ
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Figure 4.9 The standard deviation of a stochastic response process.

1 The system transfer function is also referred to as the frequency response function, which bridges the relationship

between the Fourier spectrum of the inputs (excitations) and that of the outputs (responses). For details, refer to say

Clough and Penzien (1993). It will also be elaborated in Section 5.3.
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From Figure 4.10, it is easy to find that, when the damping is small, the input components

near the system frequency v0‘ will be amplified and those components which are distant from

v0‘ will be suppressed. This amplifying effect is an essential reason of occurrence of secular

terms.

On the basis of this analysis, some researchers suggested using a filter to restrict the influence

of the secular terms (Liu et al., 1988b). The key point of this modifying proposal is to transform

the zeroth perturbation solutionX0(t) into the frequency domain after it has been obtained; that

is:

X0ðvÞ ¼
ð¥
�¥

X0ðtÞe� ivt dt ð4:181Þ

A retarded band function is then used to filter out each resonant components ofX0(v): that is,
take

X̂0ðvÞ ¼
Xm
‘¼1

w‘ðvÞX0ðvÞ ð4:182Þ

where the window function w‘ðvÞ can take any kind of the following types:

(a) triangle window

w‘ðvÞ ¼ jv0‘ �vj
Dv

ð4:183Þ

(b) cosine window

w‘ðvÞ ¼ 1� cos
pðv0‘ �vÞ

2Dv
ð4:184Þ

where Dv is the bandwidth of the retarded band.

Taking the inverse Fourier transformation of X̂0ðvÞ gives

X̂0ðtÞ ¼ 1

2p

ð¥
�¥

X̂0ðvÞeivt dv ð4:185Þ

2
( )H ω

2 4
0

1

4ξ ω

4
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ω
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Figure 4.10 Schematic curve of |H(v)|2.
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On the basis of X̂0ðtÞ, f �1i;‘ can be calculated and then the first-order perturbation solution can
be obtained. After getting the first-order perturbation, X1(t) should be filtered in a similar way

and then the second-order perturbation can be solved.

In the preceding modified proposal there still exist some weaknesses as follows:

(a) There is no objective criterion for choosing the bandwidth of the retarded band and the

selection of window function. In fact, different bandwidths of retarded bands might lead to

completely different results.

(b) Because of filtering, the real information of the input is artificially eliminated. Thus, this

will lead to perturbation input distortion for the MDOF systems, particularly for the

frequency spectrum concentrated system.

Hence, as a universal method, the modifying proposal is untenable. It is this difficulty that

impels investigators to find a new method for stochastic structural dynamic analysis. The

orthogonal expansion approach that will be discussed in the next section is just such an

achievement of these endeavors.

4.5 Orthogonal Expansion Theory

4.5.1 Orthogonal Decomposition and Sequential Orthogonal Decomposition

It is pointed out in Chapter 2 that, if there is a family of standard orthogonal functions in the

stochastic function space, an arbitrary function in this space can be expanded as a set of

generalized Fourier series in terms of this family. Generally, assume the probability measure of

a stochastic function space H is

Prfu 2 Wug ¼
ð
Wu

pzðuÞ du ð4:186Þ

in which pz(u) is the PDF of z,Wu is a given set of real variable u corresponding to z. Here, we
use u to denote a sample value of z.

Suppose {Hi(z), i¼ 0, 1, 2, . . .} are standard orthogonal functions in the space H in which

any arbitrary two functions satisfyð
W
pzðuÞHmðuÞHnðuÞ du ¼ dmn ð4:187Þ

where dmn is the Kronecker delta and W is the definition field of the real variable u.

If the inner product of two arbitrary stochastic functions in the space H is defined as (see

Equation 2.183)

hf ; gi ¼
ð
W
pzðuÞf ðuÞgðuÞ du ð4:188Þ

then, according to this inner product, the norm and the distance of the spaceH can be given by

jjf ðuÞjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
W
pzðuÞf 2ðuÞ dx

s
ð4:189Þ
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dðf ; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
W
pzðuÞ½f ðuÞ� gðuÞ�2 du

s
ð4:190Þ

With the above definitions, if every Cauchy point sequence in the space H converges

(this means that the stochastic functions in the space H satisfy the condition of mean-square

convergence), then an arbitrary function in this space H can be expanded in terms of Hi(z);
that is:

f ðzÞ ¼
X¥
i¼0

aiHiðzÞ ð4:191Þ

in which

ai ¼ hf ;Hii ¼
ð
W
pzðuÞf ðuÞHiðuÞ dx ð4:192Þ

The expression of Equation 4.191 is called the orthogonal expansion of a function of a single

random variable.

The orthogonal expansion can be extended to the cases of independent random variable sets.

In this context, there exist two different approaches where the orthogonal polynomials as base

functions are generated in different ways. The first approach employs polynomial chaos as the

base functions, which has been well elaborated in the monograph by Ghanem and Spanos

(1991a) and, thus, will not be detailed hereafter. The second approach is the following

sequential orthogonal decomposition.

Consider a random vector

z ¼ ðz1; z2; � � � ; znÞ ð4:193Þ
Noting the decomposition principle of random vectors as discussed in Chapter 2, it is

reasonable to assume the random variables zi and zj are mutually independent. Then, the

probability measure of the stochastic function space can be defined by

Prfu 2 Wug ¼
ð
Wu

pzðuÞ du ð4:194Þ

where Wu is the given set with respect to u. In addition:

pzðuÞ ¼
Yn
i¼1

pziðuiÞ ð4:195Þ

u ¼ ðu1; u2; � � � ; unÞ ð4:196Þ
in which pziðuiÞ denotes the PDFs of zi.

If there is a set of functions fH‘ðzÞ; ‘ ¼ 0; 1; 2; � � �g which satisfies the relationshipð
Wu

pzðuÞH‘ðuÞHkðuÞdu ¼ d‘k ð4:197Þ
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inwhichWu is the definition field ofu, then it is possible to regard the spaceH as aHilbert space

by introducing the inner product definition similar to Equation 4.188. An arbitrary function in

this space can thus be expanded in the form of

YðzÞ ¼
X¥
‘¼0

x‘H‘ðzÞ ð4:198Þ

where

x‘ ¼
ð
Wu

pzðuÞYðuÞH‘ðuÞ du ð4:199Þ

This equation is called the orthogonal expansion with respect to the independent random

variable function set.

There are many ways to select the functions H‘ðzÞ in Equation 4.198. For instance, the

eigenvectors resulting from the correlation decomposition of the stochastic function Y(z) can
usually be used as a set of basic functions if Y(z) is known. However, it is apparent that

correlation decomposition cannot be implemented if this stochastic function is unknown.

Nevertheless, there is a possibility of using the independence of random variables in the set of z
to construct the stochastic functions H‘ðzÞ if we only need the decomposition expression with

undetermined coefficients. For this purpose, decompositionwith respect to the randomvariable

z1 is first considered:

YðzÞ ¼
X¥
‘1¼0

X‘1ðz2; z3; . . . ; znÞH‘1ðz1Þ ð4:200Þ

where

X‘1ðz2; z3; . . . ; znÞ ¼ hY ;H‘1i ¼
ð
Wu1

pz1ðu1ÞYðu1; z2; z3; . . . ; znÞH‘1ðu1Þ du1 ð4:201Þ

is a stochastic function which is lower than Y(z) by one dimension, fH‘1ðz1Þ; ‘1 ¼ 0; 1; 2; � � �g
represents the orthogonal functions with respect to the random variable z1 andWu1 denotes the

definition field of the real variable u1.

Second, the decomposition of X‘1ðz2; z3; � � � ; znÞ over random variable z2 is considered:

X‘1ðz2; z3; . . . ; znÞ ¼
X¥
‘2¼0

X‘1‘2ðz3; z4; . . . ; znÞH‘2ðz2Þ ð4:202Þ

where

X‘1‘2ðz3; z4; � � � ; znÞ ¼ hX‘1 ;H‘2i ¼
ð
Wu2

pz2ðu2ÞX‘1ðu2; z3; � � � ; znÞH‘2ðu2Þ du2 ð4:203Þ

is a stochastic function which is lower by two dimensions than Y(z), fH‘2ðz2Þ; ‘2 ¼ 0; 1; 2; � � �g
are the orthogonal functions with respect to the random variable z2 and, similarly, Wu2 is the

definition field of the real variable u2.
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Obviously, the decomposition can be carried out in a similarway until it comes to zn, then the
back substitution of the items leads to

YðzÞ ¼
X¥
‘1¼0

X¥
‘2¼0

� � �
X¥
ln¼0

x‘1‘2���‘nH‘1ðz1ÞH‘2ðz2Þ � � �H‘nðznÞ ð4:204Þ

in which x‘1‘2���‘n are a set of deterministic unknown coefficients; ‘1‘2 � � � ‘n denotes the

subscript vector.

Equation 4.204 can be approximated by a finite series as

YðzÞ ¼
XN1

‘1¼0

XN2

‘2¼0

� � �
XNn

‘n¼0

x‘1‘2���‘nH‘1ðz1ÞH‘2ðz2Þ � � �H‘nðznÞ

¼
X

0	‘s	Ns

1	s	n

x‘1‘2���‘n
Yn
s¼1

H‘sðzsÞ
ð4:205Þ

The above decomposition process is called the sequential orthogonal decomposition of the

stochastic function Y(z) (Li, 1995a, 1996a). Obviously, the essence of sequential orthogonal
decomposition is the series of orthogonal decomposition in corresponding subspaces of the

stochastic function space.

4.5.2 Order-Expanded System Method

The sequential orthogonal decomposition idea provides the possibility of establishing an order-

expanded system method (OEM) for stochastic dynamical analysis. In order to give a clear

description of the theory, this section first discusses the problem in the frame of the static

analysis of stochastic structures.

As shown in Section 4.4, the mechanical property matrices of stochastic structures can be

represented in a linear form or in the form of truncated series. When only one sort of

stochastic factor is considered, the structural stiffness matrix in static analysis can be

expressed as (see Equation 4.117)

K ¼ K0 þ
Xn
i¼1

KiZi ð4:206Þ

in whichKi depends on the characteristic of the stochastic factors; that is, when the stochastic

factor is in a linear form,Ki is the corresponding standard derivation coefficient matrix, while

Ki is the first-order derivative matrix of K with respect to the stochastic factors when the

factors are involved in a nonlinear form.

By introducing the correlation decomposition techniques, Equation 4.206 can be converted

into (see Equation 4.137)

K ¼ K0 þ
XNk

j¼1

Kjzj ð4:207Þ
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The corresponding governing equation of static analysis is (see Equation 4.48)

K0 þ
XNk

j¼1

Kjzj

 !
Y ¼ F ð4:208Þ

The basic idea of sequential orthogonal decomposition is to expand sequentially the system

response in an abstract space as a series of orthogonal functions by utilizing the independence

of random variables zi. That is, the response can be expressed as

YðzÞ ¼
X

0	‘j	Nj

1	j	Nk

x‘1‘2���‘Nk
YNk

j¼1

H‘j ðzjÞ ð4:209Þ

in whichNj represents the number of basic functions with respect to the random variable zj and
H‘j ðzjÞ are the basic functions with respect to random variable zj and can be selected as

orthogonal polynomials in accordancewith the probability distribution of the random variable.

For example, weightedHermite orthogonal polynomials are selected for randomvariableswith

a normal distribution, while Legendre polynomials are selected for random variables with a

uniform distribution, and so on (see Appendix B).

Substituting Equation 4.209 in Equation 4.208 and performing a series of derivations will

lead to the following equation (see the next section):

XM
p¼1

ðakÞ‘pxp ¼ f‘ ð‘ ¼ 1; 2; . . . ;MÞ ð4:210Þ

where

ðakÞ‘p ¼ K0d‘;p þ
XNk

j¼1

Kjðgkj � 1d‘�mj ;p þbkj
d‘;p þakj þ 1d‘þmj ;pÞ ð0 	 kj 	 NjÞ

ð4:211Þ

mj ¼
1 for j ¼ NkYNk � j

i¼1

ðNNk � i þ 1Þ for j <Nk

8><
>: ð4:212Þ

‘ ¼ 1þ
XNk

j¼1

kj
YNk

i¼jþ 1

ðNi þ 1Þ ð4:213Þ

in which a, b and g denote the recurrence coefficients of the orthogonal polynomials that are

discussed in Appendix B, and

M ¼
YNk

i¼1

ðNi þ 1Þ ð4:214Þ

f ¼ fk1k2���kNk ¼ F
YNk

i¼1

d0ki ð4:215Þ
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Equation 4.210 can be rewritten in the following concise form:

AKX ¼ P ð4:216Þ
where

AK ¼
aK;11 aK;12 � � � aK;1M
aK;21 aK;22 � � � aK;2M
� � � � � � � � � � � �
aK;M1 aK;M2 � � � aK;MM

2
664

3
775 ð4:217Þ

XT ¼ ðxT1 ; xT2 ; � � � ; xTMÞ ð4:218Þ

PT ¼ ðfT1 ; fT2 ; � � � ; fTMÞ ð4:219Þ
It is noted that Equation 4.216 has been converted into a deterministic equation and can be

solved with the method for ordinary algebra equations. The degree of freedom of the original

system is nd, while that of the unknownvariables in Equation 4.216 is enlarged to nd
M. This is

the reason why Equation 4.216 is referred to as the order-expanded equation of original system.

Note that

xp ¼ x‘1‘2���‘Nk ð4:220Þ

Then, onceX is obtained from Equation 4.216, it can be substituted back in Equation 4.209.

The mean and covariance of the stochastic system responses can thus be obtained easily

according to the characteristic of orthogonal polynomials. For instance, themean of the system

response can be computed by introducing
QNk

j¼1 H0ðzjÞ and noticing the following character-

istics:

H0ðzjÞ � 1 ðj ¼ 1; 2; . . . ;NkÞ ð4:221Þ

Therefore, multiplying both sides of Equation 4.209 by
QNk

j¼1 H0ðzjÞ yields

YðzÞ ¼
X

0	‘j	Nj

1	j	Nk

x‘1‘2���‘Nk
YNk

j¼1

H0ðzjÞ
YNk

j¼1

H‘j ðzjÞ ð4:222Þ

By taking the expectation operation on both sides of the above equation and considering the

relationship

E½H0ðzjÞH‘j ðzjÞ� ¼
0 for ‘j 6¼ 0

1 for ‘j ¼ 0

�
ð4:223Þ

it then follows that

E½YðzÞ� ¼ x00���0 ð4:224Þ
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Meanwhile, the covariance matrix of the stochastic response is given by

cov½Y;Y� ¼ E½YYT� � E½Y� � E½YT� ð4:225Þ
where

E½YYT� ¼ E
X

0	‘j	Nj

1	j	Nk

x‘1‘2���‘Nk
YNk

j¼1

H‘j ðzjÞ
X

0	kj	Nj

1	j	Nk

xTk1k2���kNk

YNk

j¼1

Hkj ðzjÞ

2
664

3
775 ð4:226Þ

Since there exists

E
YNk

j¼1

H‘j ðzjÞ
YNk

j¼1

Hkj ðzjÞ
" #

¼ 1 for ‘j � kj
0 for ‘j 6¼ kj

�
ð4:227Þ

Equation 4.226 becomes

E½YYT� ¼
X

0	‘j	Nj

1	j	Nk

x‘1‘2���‘Nk x
T
‘1‘2���‘Nk ð4:228Þ

Considering Equation 4.224, substituting Equation 4.228 in Equation 4.225 yields

cov½Y;Y� ¼
X

0	‘j	Nj

1	j	Nk

x‘1‘2���‘Nk x
T
‘1‘2���‘Nk � x00���0xT00���0 ð4:229Þ

It is noted that the above equation is a matrix equation in essence. The diagonal elements of

the matrix can give the response variance

Var½Yi� ¼
X

0	‘j	Nj

1	j	Nk

x2‘1‘2���‘Nk ;i � x200���0;i i ¼ 1; 2; � � � ; nd ð4:230Þ

where x‘1‘2���‘Nk ; i (i¼ 1, 2, . . ., nd) is the ith component of x‘1‘2���‘Nk .
It is shown from the preceding derivation that the numerical characteristics of the stochastic

structural response can be obtained by implementing the characteristics of the orthogonal

functions once the orthogonal decomposition undetermined coefficients are obtained from the

deterministic order-expanded algebraic equation. The method is referred to as the OEM for

stochastic structural analysis in this book.

Some careful readers may have already found that the expression in Equation 4.213 is

relevant to the arrangement manner of the subscript vector elements. In fact, the expression is

based on the rule of ‘running over in an inverted order’ to arrange the subscript vector. That

means, if considering the arrangement order as the following matrix:

‘1 ‘2 � � � ‘Nk

0 0 � � � 0

1 1 � � � 1

2 2 � � � 2

..

. ..
. ..

. ..
.

N1 N2 � � � Nk

2
66664

3
77775
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then the order number of the corresponding subscripts can be determined in the following

way: ‘Nk
increases progressively while the other variables are assigned to be zero; after it is

run over ‘Nk
, with ‘Nk � 1 ¼ 1, it is again run progressively over ‘Nk

. When running over ‘Nk � 1

is finished, the number 1 is assigned to ‘Nk � 2. The operation is continued in this progressive

way and an arrangement sequence of the x‘ and f‘ in the order-expanded system in

Equation 4.210 can be obtained. It should be particularly noted that x‘ and f‘ herein are

vectors with nd elements, which is the degree of freedom of the original system, and aK is

similarly an nd
 nd matrix.

4.5.3 Proof of the Order-Expanded System Method

This section gives the proof of the order-expanded Equation 4.210 by implementing the

mathematical induction method.

First, the caseNk¼ 1 is considered; that is, there is only one random variable involved in the

stochastic structure. Having applied the orthogonal decomposition over z1 to Y, we have

Y ¼
XN1

‘1¼0

x‘1H‘1ðz1Þ ð4:231Þ

in which N1 is the expansion order over the random variable z1.
Substituting the equation in Equation 4.208 with Nk¼ 1 yields

F ¼ ðK0 þK1z1Þ
XN1

‘1¼0

x‘1H‘1ðz1Þ
" #

¼
XN1

‘1¼0

ðK0 þK1z1Þx‘1H‘1ðz1Þ ð4:232Þ

Multiplying the terms on both sides of the equation with Hk1ðz1Þ and implementing the

recurrence relationship for z1H‘1ðz1Þ (see Equation B.15 in Appendix B) will yield

FHk1ðz1Þ ¼
XNk

‘1¼0

K0x‘1Hk1ðz1ÞH‘1ðz1Þ

þ
XNk

‘1¼0

K1x‘1Hk1ðz1Þ½a‘1H‘1 � 1ðz1Þþb‘1H‘1ðz1Þþ g‘1H‘1 þ 1ðz1Þ�
ð4:233Þ

Taking the expectation operation with respect to z1 on both sides of the above equation (that
is, equivalent to the inner product of Equation 4.188), utilizing Equation 4.221 and the

following relationship

E½Hk1H‘1 � 1� ¼ 1 for ‘1 � 1 ¼ k1
0 otherwise

�
ð4:234Þ

E½Hk1H‘1 � ¼ 1 for ‘1 ¼ k1
0 otherwise

�
ð4:235Þ

E½Hk1H‘1 þ 1� ¼ 1 for ‘1 þ 1 ¼ k1
0 otherwise

�
ð4:236Þ
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we are then led to

Fd0k1 ¼ K0xk1 þK1ðak1 þ 1xk1 þ 1 þbk1
xk1 þ gk1 � 1xk1 � 1Þ

¼ ak1 þ 1K1xk1 þ 1 þðK0 þbk1
K1Þxk1 þ gk1 � 1K1xk1 � 1 ðk1 ¼ 0; 1; 2; � � � ;N1Þ

ð4:237Þ
The equation can be expressed in a matrix form

XN1 þ 1

p¼0

ak1pxp ¼ fk1 ð4:238Þ

where

ak1p ¼ K0dk1p þK1ðgk1 � 1dk1 � 1;p þbk1
dk1;p þak1 þ 1dk1 þ 1;pÞ ð4:239Þ

Note that the coefficient matrices of Equation 4.238 are tri-diagonal ones.

It is apparent that Equation 4.211 is equivalent to Equation 4.239 and the left-hand side of

Equation 4.237 is the same as Equation 4.215 when Nk¼ 1. Therefore, the order-expanded

system equation is proved to be correct when only one single random variable is involved.

Now assume that the order-expanded system equation is correct when n� 1 independent

random variables are involved (n� 1 <Nk); that is, there exists the following order-expanded

equation:

XMn� 1

s¼1

arsxs ¼ fk1k2���kn� 1
ð4:240Þ

in which

Mn� 1 ¼
Yn� 1

i¼1

ðNi þ 1Þ ð4:241Þ

ars ¼ K0drs þ
Xn� 1

j¼1

Kjðgkj � 1dr� lj ;s þbkj
drs þakj þ 1drþ lj ;sÞ ð4:242Þ

lj ¼
1 for j ¼ n� 1Yn� j� 1

i¼1

ðNn� i� 1 þ 1Þ for j < n� 1

8><
>: ð4:243Þ

r ¼ 1þ
Xn� 1

j¼1

kj
Yn� 1

i¼jþ 1

ðNj þ 1Þ ð4:244Þ

xs ¼ X‘1‘2���‘n� 1
ð4:245Þ

fk1k2���kn� 1
¼ F

Yn� 1

j¼1

d0kj ð4:246Þ
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Then consider the case of the order-expanded system with n independent random variables,

in which the orthogonal decomposition of Y over the previous n� 1 random variables can be

expressed as

YðzÞ ¼
X

0	‘j	Nj

1	j	n� 1

X‘1‘2���‘n� 1
ðznÞ

Yn� 1

j¼1

H‘j ðzjÞ ð4:247Þ

In accordance with Equations 4.240–4.246, the expansion yields the following order-

expanded equation

XMn� 1

s¼1

~arsxsðznÞ ¼ fk1k2���kn� 1
ð4:248Þ

in which

~ars ¼ ars þKnðznÞdrs ð4:249Þ
xsðznÞ ¼ X‘1‘2���‘n� 1

ðznÞ ð4:250Þ

The xs(zn) in Equation 4.250 can be further decomposed with respect to the nth random

variable by applying the idea of sequential orthogonal decomposition in the aforementioned

stochastic function space; that is:

xsðznÞ ¼
XNn

‘n¼0

x‘1‘2���‘n� 1‘nH‘nðznÞ ð4:251Þ

By substituting it in Equation 4.248 and multiplying both sides by HknðznÞ, and implement-

ing the recursive relationship of znHknðznÞ and the characteristics of the orthogonal basis

functions, the inner product operation similar to Equation 4.188 on both sides with respect to zn
will give

fk1k2���kn� 1
d0kn ¼

XMn� 1

s¼1

½~arsx‘1‘2���‘n þKnðakn þ 1x‘1‘2���‘n� 1kn þ 1

þbkn
x‘1‘2���‘n� 1kn þ gkn � 1x‘1‘2���‘n� 1kn � 1Þdrs�

ð4:252Þ

Noting that kn runs from 0 to Nn in the above equation, if the following notation is used

x‘1‘2���‘n� 1kn ¼ zm

and introducing

fk1k2���kn� 1
d0kn ¼ fk1k2���kn ð4:253Þ

then Equation 4.252 can be expressed in the form of matrices:

XNn þ 1

m¼1

ðaimÞrszm ¼ fk1k2���kn ð4:254Þ
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in which

ðaimÞrs ¼
XMn� 1

s¼1

½K0drsdim þKnðgkn � 1di� 1;m þbkn
dim þakn þ 1diþ 1;mÞdrs

þ
Xn� 1

j¼1

Kjðgkj � 1dr� lj ;s þbkj
drs þakj þ 1drþ lj ;sÞdim�

ð4:255Þ

Let

a‘p ¼ ðaimÞrs ð4:256Þ

Then according to the arrangement pattern of matrices, the following relationships exist:

‘ ¼ ðr� 1ÞðNn þ 1Þþ i ð4:257Þ

p ¼ ðs� 1ÞðNn þ 1Þþm ð4:258Þ
It can be proved that

drsdim ¼ d‘p ð4:259Þ

In a similar way, let

di� 1;mdrs ¼ d‘�mn;p ð4:260Þ

diþ 1;mdrs ¼ d‘þmn;p ð4:261Þ

dimdr� lj ;s ¼ d‘�mj ;p ð4:262Þ

dimdrþ lj ;s ¼ d‘þmj ;p ð4:263Þ

Then, from the above equalities and Equations 4.257 and 4.258, there are

mn ¼ 1 ð4:264Þ
mj ¼ ljðNn þ 1Þ ð4:265Þ

Thus, Equation 4.254 can be rearranged as

XMn

‘¼1

a‘pxp ¼ f‘ ð4:266Þ

where

a‘p ¼ K0d‘p þ
Xn
j¼1

Kjðgkj � 1d‘�mj ;p þbkj
d‘p þakj þ 1d‘þmj ;pÞ ð4:267Þ
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in which

mj ¼
1 for j ¼ nYn� j

i¼1

ðNn� i þ 1Þ for j < n

8><
>: ð4:268Þ

Mn ¼
Yn
i¼1

ðNi þ 1Þ ð4:269Þ

‘ ¼ 1þ
Xn
j¼1

kj
Yn

i¼jþ 1

ðNi þ 1Þ ð4:270Þ

When Nk¼ n, Equation 4.267 is equivalent to Equation 4.211 and Equation 4.253 is

equivalent to Equation 4.215. Therefore, it is demonstrated that the expressions of the

order-expanded matrices and the loading vector are also correct when n random variables

are considered.

In view of the preceding process, not only the conclusion of the order-expanded system is

correct when Nk¼ 1, but also the conclusion is proved to be correct when Nk¼ n if we assume

the correctness of the order-expanded system when Nk¼ n� 1. In accordance with the

principle of mathematical induction theory, the order-expanded system given in the last

section is correct.

4.5.4 Dynamic Analysis

When stochastic dynamic matrices are expressed in linear forms with respect to the basic

random variables and these kinds of expression are simplified by applying the correlation

decomposition technique, Equation 4.65 can be written as

M0 þ
XNM

j¼1

Mjzj

 !
€Yþ C0 þ

XNC

j¼1

Cjzj

 !
_Yþ K0 þ

XNK

j¼1

Kjzj

 !
Y ¼ FðtÞ ð4:271Þ

in which NM, NC and NK stand for the number of the independent random variables in the

stochasticmass, damping and stiffnessmatrices respectively. According to the relevant content

in this chapter, the other symbols in the above equation are not hard to understand.

For notational convenience, we introduce the following symbols

Ams ¼ Mj for s 	 NM

0 for s >NM

�
j ¼ s ð4:272Þ

Acs ¼
0 for s 	 NM

Cj for NM < s 	 NM þNC j ¼ s�NM

0 for s >NM þNC

8<
: ð4:273Þ

Aks ¼ 0 for s 	 NM þNC

Kj for s >NM þNC

�
j ¼ s�ðNM þNCÞ ð4:274Þ
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and

AM0
¼ M0 AC0

¼ C0 AK0
¼ K0 ð4:275Þ

Then Equation 4.271 can be further written as

AM0
þ
XR
s¼1

AMszs

 !
€Yþ AC0

þ
XR
s¼1

ACszs

 !
_Yþ AK0

þ
XR
s¼1

AKszs

 !
Y ¼ FðtÞ ð4:276Þ

in which R¼NM þ NC þ NK.

According to the idea of orthogonal decomposition, if the structural response Y is

sequentially expanded as a set of series of orthogonal basis functions in a stochastic function

space, namely

YðzÞ ¼
X

0	‘s	Ns;1	s	R

x‘1‘2...‘RðtÞ
YR
j¼1

H‘j ðzjÞ ð4:277Þ

then obviously the velocity and acceleration response can be depicted as

_YðzÞ ¼
X

0	‘s	Ns;1	s	R

_x‘1‘2...‘RðtÞ
YR
j¼1

H‘j ðzjÞ ð4:278Þ

€YðzÞ ¼
X

0	‘s	Ns;1	s	R

€x‘1‘2...‘RðtÞ
YR
j¼1

H‘j ðzjÞ ð4:279Þ

Note that x‘1‘2...‘RðtÞ, _x‘1‘2...‘RðtÞ and €x‘1‘2...‘RðtÞ are all deterministic undetermined functions

of time.

According to the proof for the order-expanded systemof static analysis, it can be testified that

through sequential orthogonal decomposition the following order-expanded system equation

can be derived from Equation 4.276 (Li, 1995b):

AM
€XþAC

_XþAKX ¼ PðtÞ ð4:280Þ

of which the component form is

XMR

p¼1

½ðaMÞ‘p€xpðtÞþ ðaCÞ‘p _xpðtÞþ ðaKÞ‘pxpðtÞ� ¼ f‘ðtÞ ð4:281Þ

If the subscriptsM,C andK are skipped in the above equation, then the general expression of

the partitioned matrix will be

a‘p ¼ A0d‘p þ
XR
s¼1

Asðgks � 1d‘�ms;p þbks
d‘p þaks þ 1d‘þms;pÞ ð0 	 ks 	 NsÞ ð4:282Þ
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where

ms ¼
1 for s ¼ RYR� s

j¼1

ðNR� j þ 1Þ for s <R

8<
: ð4:283Þ

and

MR ¼
YR
s¼1

ðNs þ 1Þ ð4:284Þ

‘ ¼ 1þ
XR
s¼1

ks
YR

j¼sþ 1

ðNj þ 1Þ ð4:285Þ

f‘ðtÞ ¼ fk1k2...kRðtÞ ¼ FðtÞ
YR
s¼1

d0ks ð4:286Þ

xpðtÞ ¼ x‘1‘2...‘RðtÞ ð4:287Þ

The coefficientsa,b and g in Equation 4.282 are from the following recursive relationship of

orthogonal polynomials:

zsH‘sðzsÞ ¼ a‘sH‘s � 1ðzsÞþb‘sH‘sðzsÞþ g‘sH‘s þ 1ðzsÞ ð4:288Þ

The relationship between the matrices in both the order-expanded system Equation 4.280

and the component expression Equation 4.281 can bewritten as (the subscripts of the items are

skipped)

A ¼ ½a‘p�‘¼1--MR;p¼1--MR
ð4:289Þ

X ¼ ðxpÞTp¼1--MR
ð4:290Þ

P ¼ ðf‘ÞT‘¼1--MR
ð4:291Þ

The order-expanded system equation derived from the sequential orthogonal decomposition

is a dynamic equation with deterministic parameters. Using this equation, the problem of the

original stochastic structural analysis is converted into a deterministic system analysis, which

can be solved by any kind of algorithm for a deterministic dynamic equation. For instance, by

utilizing the linear acceleration algorithm, the displacement response X can be expanded with

respect to the time instants tj:

Xðtj þ tÞ ¼ XðtjÞþ _XðtjÞtþ
€XðtjÞ
2!

t2 þ
...
XðtjÞ
3!

t3 þ � � � ð4:292Þ

Differentiation of this expression with respect to t yields

_Xðtj þ tÞ ¼ _XðtjÞþ €XðtjÞtþ 1

2

...
XðtjÞt2 þ � � � ð4:293Þ
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According to the linear acceleration method (Clough and Penzien, 1993), the acceleration

response over the time intervalDt¼ tjþ 1� tj is assumed to be a linear function with respect to

time t; that is:

...
XðtjÞ ¼

€Xðtjþ 1Þ� €XðtjÞ
Dt

¼ constant ð4:294Þ

Denote

Xðtjþ 1Þ ¼ Xjþ 1 ð4:295Þ

XðtjÞ ¼ Xj ð4:296Þ
Substituting t¼Dt and Equation 4.294 in Equations 4.292 and 4.293 with a third-order

truncation of displacement response yields

Xjþ 1 ¼ Xj þ _XjDtþ 1

3
€XjðDtÞ2 þ 1

6
€Xjþ 1ðDtÞ2 ð4:297Þ

_Xjþ 1 ¼ _Xj þ 1

2
€XjDtþ 1

2
€Xjþ 1Dt ð4:298Þ

Substituting the above two equations in Equation 4.280 leads to

~A€Xjþ 1 ¼ ~Pjþ 1 ð4:299Þ
in which

~A ¼ AM þ Dt
2
AC þ ðDtÞ2

6
AK ð4:300Þ

~Pjþ 1 ¼ Pjþ 1 �C Xj þ Dt
2

€Xj

� �
þK Xj þDt _Xj þ ðDtÞ2

3
€Xj

 !
ð4:301Þ

Therefore, the original dynamic equation is converted into an algebraic equation at discrete

time instants. Combined with the initial conditions of the problem of concern, the acceleration

response can be obtained by applying the solution procedure of algebraic equations step by

step. Then the displacement and velocity responses can be further obtained by implementing

Equations 4.297 and 4.298.

If the initial conditions of the original stochastic system in Equation 4.271 are given by

Yð0Þ ¼ Y0; _Yð0Þ ¼ _Y0 ð4:302Þ
where Y0 and _Y0 are deterministic vectors, then the initial conditions of the order-expanded

system in Equation 4.281 can be written as

xpð0Þ ¼ x‘1‘2���‘Rð0Þ ¼ Y0

YR
s¼1

d0ks ð4:303Þ
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_xpð0Þ ¼ _x‘1‘2���‘Rð0Þ ¼ _Y0

YR
s¼1

d0ks ð4:304Þ

Once the responses of the order-expanded system are obtained, the numerical characteristics

of the original structural responses can be given in a way similar to the static analysis. For

example, the mean of displacement response is given as

E½YðtÞ� ¼ x00���0ðtÞ ð4:305Þ
and the correlation functionmatrix of the displacement responses at two arbitrary time instants

can be obtained by

RYðt1; t2Þ ¼
X

0	‘s	Ns

1	s	R

x‘1‘2���‘Rðt1ÞxT‘1‘2���‘Rðt2Þ ð4:306Þ

The covariance matrix of the displacement responses at two arbitrary time instants can be

evaluated further through

CYðt1; t2Þ ¼
X

0	‘s	Ns

1	s	R

x‘1‘2���‘Rðt1ÞxT‘1‘2���‘Rðt2Þ� x00���0ðt1ÞxT00���0ðt2Þ ð4:307Þ

As t1¼ t2¼ t, the covariance matrix is reduced to the variance matrix. In addition:

CYðtÞ ¼
X

0	‘s	Ns

1	s	R

x‘1‘2���‘RðtÞxT‘1‘2���‘RðtÞ� x00���0ðtÞxT00���0ðtÞ ð4:308Þ

The equation is essentially an expression in a matrix form, where the diagonal elements give

the variance vector of the displacement responses for different degrees of freedom of the

original systems:

Var½Yj � ¼
X

0	‘s	Ns

1	s	R

x2‘1‘2���‘R;jðtÞ� x200���0;jðtÞ j ¼ 1; 2; . . . ; nd ð4:309Þ

where x‘1‘2���‘R;j is the jth component of x‘1‘2���‘RðtÞ.
Similar to Equations 4.305–4.309, the numerical characteristics of the velocity and accelera-

tion responses of the stochastic structures subjected to deterministic excitation can also be

obtained.

Example 4.2. Stochastic Response of a Two-DOF System Consider a two DOF system

subjected to deterministic excitations. Themass and stiffness are regarded as random variables

with meansm10¼m20¼ 1 and k10¼ k20¼ 39.48 and the coefficients of variation respectively

dm1
¼ dm2

¼ 0:1 and dk1 ¼ dk2 ¼ 0:2. The damping ratio takes a deterministic value of 0.05.

Two types of excitation are considered. In the first case (Case 1), two sinusoid loads are applied

on the lumped masses; that is, f1(t)¼ f2(t)¼ sin(vst),vs¼ 3.1416. In the second case (Case 2),

the El Centrol accelerogram (N–S component) is applied.
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Stochastic response analysis of the system is performed by the OEM. Figures 4.11 and 4.12

illustrate the comparison between themeans and variances of the responses by theOEMand the

MCS. It is seen that the mean response can be approached by the first-order OEM, whereas the

fourth order OEM is needed to approach the variance response.

Figure 4.13 shows that the mean response of the stochastic structure is different from the

response of the system with mean parameters. The difference is enlarged with increasing

coefficient of variation of the basic random parameters. &

4.5.5 Recursive Condensation Algorithm

The recursive condensation algorithm drives the dynamic order-expanded equations by

utilizing the approximate relationship among the displacement, velocity and the acceleration.

For this purpose, Equation 4.280 can be rewritten as

muu muq

mqu mqq

� �
€xu
€xq

� �
þ cuu cuq

cqu cqq

� �
_xu
_xq

� �
þ kuu kuq

kqu kqq

� �
xu
xq

� �
¼ Pu

Pq

� �
ð4:310Þ

in which

Pu ¼ f00���0ðtÞ ð4:311Þ
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Figure 4.11 Comparison between OEM and MCS (Case 1). (Points: 5000 MCSs; solid line: fourth

OEM; dotted line: first OEM).
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Figure 4.12 Comparison between OEM and MCS (Case 2; annotations identical to Figure 4.11).
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xu ¼ x00���0ðtÞ ð4:312Þ
are the noncondensed loading vector and displacement vector. Pq and xq are the condensed

loading vector and displacement vector. The coefficient matrices are sub-matrices of the order-

expanded dynamic matrices and related to the above sub-matrices of the loading vector.

Considering Pq¼ 0, the second row of Equation 4.310 is given as

mqu€xu þmqq€xq þ cqu _xu þ cqq _xq þ kquxu þ kqqxq ¼ 0 ð4:313Þ
The equation is obviously valid for each time instant. Therefore, utilizing Equations 4.292

and 4.293 and introducing the assumption of linear acceleration will give

ð _xuÞjþ 1 ¼ 3

Dt
ðxuÞjþ 1 �

3

Dt
ðxuÞj þ 2ð _xuÞj þ

Dt
2
ð€xuÞj

� �

¼ 3

Dt
ðxuÞjþ 1 �Buj

ð4:314Þ

ð€xuÞjþ 1 ¼ 6

Dt2
ðxuÞjþ 1 �

6

Dt2
ðxuÞj þ

6

Dt
ð _xuÞj þ 2ð€xuÞj

� �

¼ 6

Dt2
ðxuÞjþ 1 �Auj

ð4:315Þ

ð _xqÞjþ 1 ¼ 3

Dt
ðxqÞjþ 1 �

3

Dt
ðxqÞj þ 2ð _xqÞj þ

Dt
2
ð€xuÞj

� �

¼ 3

Dt
ðxqÞjþ 1 �Bqj

ð4:316Þ

ð€xqÞjþ 1 ¼ 6

Dt2
ðxqÞjþ 1 �

6

Dt2
ðxqÞj þ

6

Dt
ð _xqÞj þ 2ð€xqÞj

� �

¼ 6

Dt2
ðxqÞjþ 1 �Aqj

ð4:317Þ

where Dt¼ tjþ 1� tj is the given time step.
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Figure 4.13 (a) Difference between the mean response and the response of the mean-parameter system (Case 1;

solid line: mean response of the stochastic structure; dotted line: response of the mean-parameter system). (b) The

difference when the coefficients of variation are different (solid line: COV¼ 0.1; dotted line: COV¼ 0.2).
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After substituting these equations in Equation 4.313 at time tjþ 1, the following relationship

can be obtained:

k�quxujþ 1
þ k�qqxqjþ 1

�Ej ¼ 0 ð4:318Þ

in which

k�qu ¼
6

Dt2
mqu þ 3

Dt
cqu þ kqu ð4:319Þ

k�qq ¼ 6

Dt2
mqq þ 3

Dt
cqq þ kqq ð4:320Þ

Ej ¼ mquAuj þmqqAqj þ cquBuj þ cqqBqj ð4:321Þ

From Equation 4.318 it follows that

xqjþ 1
¼ k�� 1

qq ðEj � k�quxujþ 1
Þ ð4:322Þ

On the other hand, the discretized equation of the first row of Equation 4.310 can be written

as

k�uuxujþ 1
þ k�uqxqjþ 1

¼ pujþ 1
þFj ð4:323Þ

where

k�uu ¼
6

Dt2
muu þ 3

Dt
cuu þ kuu ð4:324Þ

k�uq ¼ 6

Dt2
muq þ 3

Dt
cuq þ kuq ð4:325Þ

Fj ¼ muuAuj þmuqAqj þ cuuBuj þ cuqBqj ð4:326Þ

Substituting Equation 4.322 in Equation 4.323 will lead to a condensation equation with

respect to xujþ 1
:

~kuxujþ 1
¼ ~Pjþ 1 ð4:327Þ

in which

~ku ¼ k�uu � k�uqk
�� 1
qq k�qu ð4:328Þ

~Pjþ 1 ¼ Pujþ 1
þFj � k�uqk

�� 1
qq Ej ð4:329Þ

Obviously, the number of equations in Equation 4.327 is equal to the degrees of freedom of

the original system. Substituting the solution of Equation 4.327 in Equation 4.322 step by step,

the solution of the dynamic order-expanded system for thewhole time history will be obtained.

It is noted that, for linear structures, ~ku and k�uqk
�� 1
qq are constants for different time instants,
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and Fj and Ej depend on the previous structural responses. Therefore, the condensed loading

term Pujþ 1
should bemodified in every step according to the results of the former step. Because

the condensation equations are formed with the structural response of the former time instant,

this method is called the recursive condensation algorithm (Li andWei, 1996). Some practical

calculation experiences indicate that this kind of algorithm can reduce the computational cost

of the dynamic order-expanded system to that of the corresponding deterministic system. An

example is shown in Figure 4.14. It can be observed that the computational cost will increase

exponentially with the increment of the expansion order when the order-expanded system

equation is solved directly, while the computational cost varies almost linearly with the

expansion order when the recursive condensation algorithm is applied.
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Figure 4.14 Computational efforts against the number of the expanded order.
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5

Random Vibration Analysis

5.1 Introduction

Classical random vibration theory, where the randomness involved in the excitations is taken

into account but the system parameters are assumed to be exactly known and regarded as

deterministic values, has experienced tens of years’ development since the 1950s (Crandall,

1958). Over the last half century, a variety of approaches have been proposed and investigated

extensively. These approaches can basically be classified into two categories, namely the

numerical-characteristics-oriented approaches and the PDF-oriented approaches, which are

logically in accordance with the two historical clues clarified in Chapter 1. The former family

of approaches tries to obtain the numerical characteristics of the stochastic responses by

establishing the transfer relationship from the numerical characteristics (such as the moments

or the PSD functions) of the inputs to those of the responses. Here, the concept of stochastic

differential equations and stochastic calculus should be introduced. For instance, the mean-

square calculus is used most often. A formal solution of the stochastic differential equation or

directly the stochastic differential equation is used to derive the transfer relationship or the

governing differential equations in terms of the moments. In contrast, the latter family of

approaches deals with the problem by transforming the random system equation to a

probability density evolution equation, which is usually a deterministic multidimensional

partial differential equation; for example, the Liouville equation or the FPK equation. This

chapter deals with the widely used approaches among the aforementioned two families. The

physical sense embedded in the approaches is particularly emphasized.

5.2 Moment Functions of the Responses

A linear transfer relationship from the moments of the inputs to those of the responses can be

established for the linear structural system. Through this family of relationships, the numerical

characteristics of the responses can be evaluated once the numerical characteristics, such as the

mean and the convariance functions of the inputs, are known. The physical essence of this

family of linear transfer relationships lies in the physical linear relationship between the

excitations and the responses, which holds for any sample.
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5.2.1 Response of a Single-Degree-of-Freedom System
in the Time Domain

5.2.1.1 Impulse Response Function and Duhamel’s Integral

Consider the deterministic SDOF system shown in Figure 5.1 with mass m, damping c and

stiffness k. If it is subjected to an excitation f(t), now regarded as deterministic, then the

equation of motion is

m€xþ c _xþ kx ¼ f ðtÞ ð5:1Þ
where x is the displacement response; the overdots denote the derivativewith respect to time t.

Let the initial condition be xðt0Þ ¼ x0; _xðt0Þ ¼ _x0.

The properties of a linear dynamical system are embedded in the response of the system to

some types of special excitation, although the actual excitations are usually arbitrary and

irregular. One of the special excitations is the unit impulse d(t), which is a Dirac delta function;
another type of special excitation is the unit harmonic excitation, which can be expressed in a

complex function as eivt, where i ¼ ffiffiffiffiffiffiffiffi� 1
p

is the unit of the imaginary number. The advantage

of using these special excitations as testing excitations is that any arbitrary excitation can be

regarded as the linear superposition of a set of impulse functions. In fact, there is

f ðtÞ ¼
ð¥
�¥

f ðtÞdðt� tÞ dt ð5:2Þ

In addition, the process f(t) can also be regarded as the linear superposition of a set of unit

harmonic excitations when employing

f ðtÞ ¼ 1

2p

ð¥
�¥

FðvÞeivt dv ð5:3aÞ

which is nothing but the Fourier transform, where F(v) is the Fourier spectrum of f(t).

Therefore, although the unit impulse excitation and the unit harmonic excitation are both

special types of excitation, they are also the basis units of any arbitrary excitations (Figure 5.2;

see Appendix A). Hence, the response properties of the system to the excitations contain

adequate information for gaining insight into the problem and simultaneously for practical

computations of the response of the system to any arbitrary excitations. The impulse response

will be discussed in this present section and the response to the unit harmonic excitation will be

dealt with later.

Figure 5.1 An SDOF system.
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Let the response of the SDOF system initially at rest to the unit impulse d(t) be h(t); namely:

m€hþ c _hþ kh ¼ dðtÞ h0 ¼ 0; _h0 ¼ 0 ð5:4Þ
Dividing by m on both sides, Equation 5.4 becomes

€hþ 2zv _hþv2h ¼ 1

m
dðtÞ hð0Þ ¼ 0; _hð0Þ ¼ 0 ð5:5Þ

where v ¼ ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural circular frequency and z ¼ c=2mv is the damping ratio.

Performing integration over a small time interval [0, t] on both sides of Equation 5.5, and

noting that ðt
0

hðtÞ dt ¼ t
2
hð0Þþ hðtÞ½ � þ oðtÞ and

ðt
0

1

m
dðtÞ dt ¼ 1

m
ð5:6Þ

we have

_hðtÞ� _hð0Þ þ 2zv hðtÞ� hð0Þ½ � þ 1

2
v2t hðtÞ þ hð0Þ½ � þ oðtÞ ¼ 1

m
ð5:7Þ

Letting t ! 0 and considering the initial conditions in Equation 5.5 together with (by the

mean value theorem in calculus)

lim
t! 0

hðtÞ ¼ lim
t! 0

ðt
0

_hðtÞ dt ¼ lim
t! 0

½ _hð~tÞt� ¼ 0 ð5:8Þ

where ~t is some proper intermediate value over the interval [0, t], it follows that

lim
t! 0

_hðtÞ ¼ 1

m
ð5:9Þ

This is essentially an initial condition for the velocity, which means that the effect of the

impulse is tomake a sudden finite increment of the velocity. Therefore, the response of a system

initially at rest to an impulse is equivalent to the free-vibration response of the system subjected

to a nonzero initial velocity from the origin. Mathematically, the solution of Equation 5.5 is

equivalent to the solution of

€hþ 2zv _hþv2h ¼ 0 hð0Þ ¼ 0; _hð0Þ ¼ 1

m
ð5:10Þ

t

f (t )

τo

0,    otherwise
δ (t −τ) =

δ (t −τ)dt = 1
∞

−∞

∞,  for t = τ 

∫

f (t ) = δ (t−τ)

t

f(t)

o

f (t) = Re[e iω t ]

1

2π ω

(b) Unit harmonic function (a) Unit impulse function  

Figure 5.2 Two typical basis units.
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which is known as the impulse response function (Clough and Penzien, 1993)

hðtÞ ¼ 1

mvd

e� zvtsinðvdtÞ t � 0 ð5:11Þ

and h(t)¼ 0 for t < 0, where vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
v.

The principle of superposition holds in linear systems. For the system in Equation 5.1, if the

response of the system to the excitation f1(t) is x1(t) and the response of the system to the

excitation f2(t) is x2(t), then the response of the system to the linear combination c1f1(t) þ
c2f2(t) is c1x1(t) þ c2x2(t). This is also true for anynumber of excitations. Further, if the system

is subjected to the excitation

f ðtÞ ¼ lim
maxðDtjÞ! 0

XNðt;DtÞ
j¼0

f1ðtjÞf ðt; tjÞDtj ¼
ðt
0

f1ðtÞgðt; tÞdt ð5:12aÞ

where g(t,t) can be regarded as some type of modulation function, N(t,Dt) is the number

of partitioned intervals such that ½0; t� ¼ [N
j¼0 Dtj , Dtj \ Dtk ¼ f, 8j„k, then the response of

the system is

xðtÞ ¼ lim
maxðDtjÞ! 0

XNðt;DtÞ
j¼1

x1ðtjÞgðt; tjÞDtj ¼
ðt
0

x1ðtÞgðt; tÞdt ð5:12bÞ

Introducing Equation 5.2 into Equation 5.1, the equation of motion of the system initially at

rest is

m€xþ c _xþ kx ¼
ð¥
�¥

dðt� tÞf ðtÞ dt x0 ¼ 0; _x0 ¼ 0 ð5:13Þ

Note that the response of the system initially at rest to the impulse d(t� t) is h(t� t), which
is given by Equation 5.11. Then, according to the principle of superposition shown in

Equations 5.12a and 5.12b, the response of the system initially at rest to f(t) reads

xðtÞ ¼
ðt
0

hðt� tÞf ðtÞ dt ¼
ð¥
�¥

hðt� tÞf ðtÞ dt ¼
ðt
0

hðtÞf ðt� tÞ dt ð5:14Þ

This convolution is the well-known Duhamel integral.1

To include the effects of a nonresting initial condition, the free vibration of the system

m€xþ c _xþ kx ¼ 0 xð0Þ ¼ x0; _xð0Þ ¼ _x0 ð5:15Þ

should be considered. Again, using the principle of superposition, we know that the free

vibration response of the system in Equation 5.15 is equivalent to combination of the free

1Because of causality – that is, h(t)¼ 0 for t< 0 – the lower integral limit in Equation can be 0 or�¥while the upper

integral limit can be t or ¥; the results are equivalent.
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vibration of the system with the initial conditions xð0Þ ¼ x0, _xð0Þ ¼ 0 and that of the system

with the initial conditions xð0Þ ¼ 0, _xð0Þ ¼ _x0; therefore, the free vibration response of the

system in Equation 5.15 is given by

xðtÞ ¼ x0e
� zvtcosðvdtÞþ _x0

vd

e� zvtsinðvdtÞ ¼ A0e
� zvtsinðvdtþw0Þ ð5:16Þ

where A0 ¼ ½x20 þð _x0=vdÞ2�1=2 is the initial amplitude and w0 ¼ tan� 1½x0=ð _x0=vdÞ� is the

initial phase angle.

Obviously, it follows that the response x(t) decays at an exponential rate and x(t) ! 0 as

t ! ¥. This indicates that the effect of the initial condition can be ignored when the time

duration is long enough.2

Again, using the principle of superposition, the total response in Equation 5.1 is the

summation of the response of the corresponding system initially at rest to the excitation

(given by Equation 5.14) and the free-vibration response of the system with non-resting initial

conditions (given by Equation 5.16), namely

xðtÞ ¼ A0e
� zvtsinðvdtþw0Þþ

Ð t
0
hðt� tÞf ðtÞ dt

¼ A0e
� zvtsinðvdtþw0Þþ

1

mvd

ðt
0

e� zvðt� tÞsin½vdðt� tÞ� f ðtÞ dt
ð5:17Þ

This formula establishes the linear relationship between the deterministic excitation f(t) and

the deterministic response x(t), which is illustrated in a block diagram in Figure 5.3a and

expressed by the linear operator

xðtÞ ¼ l½ f ðtÞ� ð5:18aÞ
Nowwe consider the case that the input is a stochastic process j(t). In this case, the response

is undoubtedly also a stochastic processX(t). However, from the point of view of the sample, or

in other words from the physical point of view, the relationship in Equation 5.18a still holds, as

illustrated in the upper part of Figure 5.3b, where the variablev is embedded, representing the

randomness involved. It is well established that a stochastic process could be probabilistically

described by probabilistic information, say, a finite-dimensional PDF or moments of different

orders in the time domain. Therefore, the operator in the sense of the sample in Equation 5.18a

will definitelymean that a linear relationship exists between the probabilistic information of the

excitation, denoted bypjðtÞ, and the probabilistic information of the response, denoted bypXðtÞ
(see the lower part of Figure 5.3b). Mathematically, this means that there must be some type of

deterministic operator lpð � Þ such that

pXðtÞ ¼ lpðpjðtÞÞ ð5:18bÞ
One of the most important tasks in stochastic mechanics is to find the operator lpð � Þ and

make it feasible for analytical or numerical implementation for certain metrics of probabilistic

information.

2Actually this is a general feature of many dynamical/iterative systems if the systems are stable. For instance, we can

find the analogous feature in the iteration or evolution process of a Markov process (Lin, 1967; Gardiner, 1983), the

iteration process of the Bayesian estimate (Ang and Tang, 1984), the process of iteration of a matrix (Golub and von

Loan, 1996), and the Kalman filter (Stengel, 1994), and so on.
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5.2.1.2 Moment Functions of the Stochastic Response of SDOF Systems

in the Time Domain

Although it is more understandable to tackle the problem in a physical or sample sense as

discussed above, themathematicalmanipulations for a stochastic system in the sense of sample

are not easy. On the other hand, to deal with the problem in the mean-square sense is more

convenient, particularly because the operations of the calculus that are well established in the

deterministic cases could be used directly in the mean-square sense without special revisions

(Lin, 1967; A
�
str€om, 1970; Gardiner, 1983).

Denote the mean of the stochastic process j(t) by mj(t) and the autocorrelation function by

Rj(t1,t2) (see Equations 2.63 and 2.64):

mjðtÞ ¼ E½jðv; tÞ� ¼
ð
W
jðv; tÞPðdvÞ ¼

ð
Wx

xpjðx; tÞ dx ð5:19Þ

Rjðt1; t2Þ ¼ E½jðv; t1Þjðv; t2Þ� ¼
Ð
Wjðv; t1Þjðv; t2ÞPðdvÞ

¼ Ð
Wx
x1x2pjðx1; t1; x2; t2Þ dx1 dx2

ð5:20Þ

where P(dv)¼ Pr{dv} is the probability measure, pj(x,t) and pj(x1, t1; x2, t2) are respectively

the one- and two-dimensional PDFs of the stochastic process j(t) and E½ � � stands for the

ensemble average.

The response of the SDOF system to the excitation j(t), according to Equation 5.17when the
effect of the initial condition is ignored because of the rapid attenuation, is3

XðtÞ ¼
ðt
0

hðt� tÞjðtÞ dt ð5:21Þ

Taking the mathematical expectation on both sides and noting that the expectation and the

integral operators are commutable in the mean-square sense will yield the mean of X(t):

mXðtÞ ¼ E½XðtÞ� ¼ E Ð t
0
hðt� tÞjðtÞ dt� � ¼ Ð t

0
hðt� tÞE½jðtÞ� dt

¼ Ð t
0
hðt� tÞmjðtÞ dt

ð5:22Þ

Figure 5.3 The block diagram of linear systems.

3 This integral can either be understood as a sample integral or as a mean-square integral. The physical sense of the

former ismore direct, but themathematicalmanipulation of the latter ismore convenient. Fortunately, for the stochastic

processes encountered most they are consistent.
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Likewise, the autocorrelation function of the stochastic response X(t) can be computed by

RXðt1; t2Þ ¼ E½Xðt1ÞXðt2Þ� ¼ E Ð t1
0
hðt1 � tÞjðtÞdt � Ð t2

0
hðt2 � tÞjðtÞ dt� �

¼ Ð t1
0

Ð t2
0
hðt1 � t1Þhðt2 � t2ÞE½jðt1Þjðt2Þ� dt1 dt2

¼ Ð t1
0

Ð t2
0
hðt1 � t1Þhðt2 � t2ÞRjðt1; t2Þ dt1 dt2

ð5:23Þ

The variance of the response is then given by letting t1¼ t2¼ t:

Var½XðtÞ� ¼ E½X2ðtÞ� ¼ RXðt; tÞ ¼
ðt
0

ðt
0

hðt� t1Þhðt� t2ÞRjðt1; t2Þ dt1 dt2 ð5:24Þ

In the case where the excitation is a stationary process, the steady-state response is also a

stationary process. The autocorrelation function of this steady-state response is given by

Equation 5.23 through letting t1 ! ¥ and t2 ! ¥ and noting that Rj(t1, t2) is replaced by

Rj(t1� t2). After the change of integral variables, we have

RXðtÞ ¼
ð¥
�¥

ð¥
�¥

hðu1Þhðu2ÞRjðtþ u1 � u2Þ du1 du2 ð5:25Þ

Equations 5.22–5.25 establish the relationship between the mean and the correlation

functions of the excitation and the response. We can see easily that the moments of the

response are linear functionals of the corresponding moments of the excitation. In other

words, the operatorslpð � Þ in Equation 5.18b and Figure 5.3b are linear; these are the expected
results as the mathematical reflection of the linear physical relationship shown in the system in

Equation 5.1.

Example 5.1. Response of an SDOF System toWhite Noise Excitation If the excitation

is a white noise with mj(t)¼ 0, Rjðt1; t2Þ ¼ Rj0dðt2 � t1Þ, then from Equation 5.22 it is known

that themean of the responsemX(t) is zero, and fromEquation 5.23 the correlation function can

be evaluated by

RXðt1; t2Þ ¼ Ð t1
0

Ð t2
0
hðt1 � t1Þhðt2 � t2ÞRj0dðt2 � t1Þ dt1 dt2

¼ Rj0

Ð t1
0
hðt1 � t1Þhðt2 � t1Þ dt1

¼ Rj0

ðmvdÞ2
ðt1
0

e� zvðt1 þ t2 � 2t1Þsinvdðt1 � t1Þsinvdðt2 � t1Þ dt1

¼ Rj0cosvdðt2 � t1Þ
4zvðmvdÞ2

e� zvðt2 � t1Þ � e� zvðt1 þ t2Þ
h i

� Rj0

4v2ðmvdÞ2
½ezvt1ðvdsinvdt1 þ zvcosvdt1Þ�t1¼�ðt2 � t1Þ

t1¼�ðt1 þ t2Þ ð5:26Þ

Letting t¼ t2� t1 and t¼ t1, we then have

RXðt; tþ tÞ ¼ Rj0cosvdt

4zvðmvdÞ2
e� zvt � e� zvðtþ 2tÞ
h i

� Rj0

4v2ðmvdÞ2
½ezvt1ðvdsinvdt1 þ zvcosvdt1Þ�t1¼� t

t1¼�ðtþ 2tÞ ð5:27aÞ
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Further, as t ! ¥, the correlation function of the steady-state stationary process is given by

RXðtÞ ¼ lim
t!¥

RXðt; tþ tÞ ¼ Rj0

4m2v2
dv

e� zvt cosvdt� zvsinðvdtÞ½ � ð5:27bÞ

From Equation 5.26 we can get the variance of the response Var[X(t)]¼RX(t,t), namely

Var XðtÞ½ � ¼ Rj0

4zvðmvdÞ2
ð1� e� 2zvtÞ

� Rj0

4v2ðmvdÞ2
zv� e� 2zvt zvcosð2vdtÞ�vdsinð2vdtÞ½ �� � ð5:28aÞ

In addition, letting t ! ¥ yields the variance of the steady-state stationary response:

lim
t!¥

Var XðtÞ½ � ¼ RXð0Þ ¼ Rj0

4zv3m2
ð5:28bÞ

The dimensionless variance of the response with different damping ratios is shown in

Figure 5.4. It is seen that the larger the damping ratio, the faster the variance approaches the

steady-state variance. On the other hand, if z¼ 0, then the system will be unstable because the

input energy cannot be dissipated by the system. In addition, fromEquations 5.27a and 5.27b it

is seen that the response X(t) is no longer a white noise. It is a filtered noise and often called a

colored noise, which will be discussed again later. &

5.2.2 Response of MDOF Systems in the Time Domain

An SDOF system not only can provide insights into the problem because of its simplicity and

relatively easy mathematical manipulation, but is also applicable to a large number of

engineering practical cases as a reasonable approximation, especially in the preliminary stage

of analysis and design. However, most practical systems, in a more accurate sense, should be

Figure 5.4 Variance function of the response to white noise (v¼ 0.2p).
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considered with infinite degrees of freedom, or at least multiple degrees of freedom. In general,

with the concept of discretization, engineering structures can usually be discretized or

approximated by an MDOF system, of which the equation of motion in matrix form (see

Section 4.2) is

M€XþC _XþKX ¼ BjðtÞ ð5:29Þ
where X ¼ ðX1;X2; . . . ;XnÞT is the displacement of order n, M¼ [Mij]n�n, C¼ [Cij]n�n and

K¼ [Kij]n�n are the mass, the damping and the stiffness matrices respectively, B¼ [Bij]n�r is

the input force influencematrix and jðtÞ ¼ ðj1ðtÞ; j2ðtÞ; . . . ; jrðtÞÞT is the stochastic excitation
vector of order r.

5.2.2.1 Direct Matrix Expressions

Denote themeanvector and the correlation functionmatrix of the stochastic process vector j(t)
respectively by

mjðtÞ ¼ E½jðtÞ� and Rjðt1; t2Þ ¼ E½jðt1ÞjTðt2Þ� ð5:30Þ
To obtain themoment functions of the responseX(t) to the excitation j(t), the idea used in the

SDOF system can be applied here directly, except for changing the scalar functions to the

corresponding vector and matrix functions.

Denote the unit impulse response functionmatrix by h(t)¼ [hij(t)]n�n, where the component

hij(t) of h(t) is the impulse response at the ith degree of freedom to the excitation acting on the

jth degree of freedom. Thus, if we let hj be the jth columnvector of the impulse responsematrix

h(t), then the column vectors hj satisfy

M€hj þC _hj þKhj ¼ IjdðtÞ _hjð0Þ ¼ 0; hjð0Þ ¼ 0 ð5:31Þ
for j ¼ 1; 2; . . . ; n. Here, Ij ¼ ð0; 0; . . . ; 0; 1; 0; . . . ; 0ÞT is the column vector with the compo-

nents being zero except for the jth component being 1.

According to the Duhamel integral (see Equation 5.14), ignoring the effect of the initial

condition of the system, we get the response of the system in Equation 5.29:

XðtÞ ¼
ðt
0

hðt� tÞBjðtÞ dt ð5:32Þ

Therefore, the mean of the response is given by

mXðtÞ ¼ E½XðtÞ� ¼
ðt
0

hðt� tÞBE½jðtÞ� dt ¼
ðt
0

hðt� tÞBmjðtÞ dt ð5:33Þ

Simultaneously, the correlation function matrix can be evaluated through

RXðt1; t2Þ ¼ E½Xðt1ÞXTðt2Þ� ¼ E Ð t1
0
hðt1 � tÞBjðtÞ dt � Ð t2

0
fhðt2 � tÞBjðtÞgT dt

h i
¼ E Ð t1

0

Ð t2
0
hðt1 � t1ÞBjðt1ÞjTðt2ÞBThTðt2 � t2Þ dt1 dt2

� �
¼ Ð t1

0

Ð t2
0
hðt1 � t1ÞBE½jðt1ÞjTðt2Þ�BThTðt2 � t2Þ dt1 dt2

¼ Ð t1
0

Ð t2
0
hðt1 � t1ÞBRjðt1; t2ÞBThTðt2 � t2Þ dt1 dt2

ð5:34Þ
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In the case that the excitations are stationary stochastic processes, the steady-state responses

are also stationary processes. The autocorrelation function matrix of the responses can now be

obtained through letting t1 ! ¥, t2 ! ¥ and noting that Rj(t1,t2) is reduced to Rj(t1� t2).
Therefore, similar to Equation 5.25, we have

RXðtÞ ¼
ð¥
�¥

ð¥
�¥

hðu1ÞBRjðt� u1 � u2ÞBThTðu2Þ du1 du2 ð5:35Þ

Equations 5.33–5.35 establish the relationship between the moment functions of the

responses, mX(t) and RX(t1, t2), and those of the excitations, mj(t) and Rj(t1,t2). They are

just the matrix-form counterparts of the relationships in the case of SDOF systems in

Equations 5.22–5.25. The underlying physical sense is clear that, as shown in Figure 5.3b,

the operatorlpð � Þ in this case is still linear because of the embedded linearity in terms of the

inputs and the outputs in the physical system 5.29.

Practical applications of Equations 5.33 and 5.34, however, are not convenient because (a)

the closed-form solution of the impulse response matrix h(t) is much more difficult to reach

than is that of the SDOF counterparts and (b) the computational effort involved in the

implementation of Equation 5.34 is prohibitively large for the structural systems of practical

interest, where the degrees of freedommight be so large that the computations involved in these

equations are beyond present available computational facilities.

5.2.2.2 Modal Superposition Method

For linear systems, the modal superpositionmethod could uncouple the original system to a set

of SDOF systems and then greatly reduce the computational effort. If the damping involved is

proportional damping, then the equation of motion as a second-order ordinary differential

equation could be uncoupled directly through a variable separation method which employs the

eigenvectors, referred to as modes, as the basis vectors (Clough and Penzien, 1993).

Consider the corresponding undamped free vibration of the system in Equation 5.29:

M€XþKX ¼ 0 ð5:36Þ
Assume the free vibration is harmonic; that is, X(t)¼c eivt. Substituting this in Equa-

tion 5.36 yields

½K�v2M�ceivt ¼ 0 ð5:37Þ

Because eivt is not always zero, this requires

½K�v2M�c ¼ 0 ð5:38aÞ
which is referred to as the characteristic equation. The condition ensuring a nontrivial nonzero

solution is

detðK�v2MÞ ¼ 0 ð5:38bÞ
where det(�) is the determinant of the bracketed matrix. For general structural systems,

especially finite-element systems, since the stiffnessK and mass matrixM are both symmetric

and positive-definite, it has been proved that there exist n solutions vj , j ¼ 1; 2; . . . ; n, to
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Equation 5.38b; in turn, according to Equation 5.38a, each one possesses a corresponding

vector cj, j ¼ 1; 2; . . . ; n (Golub and van Loan, 1996). In other words, there exist n character-
istic pairs ðvj;cjÞ, j ¼ 1; 2; . . . ; n, of which v2

j is the eigenvalue and cj is the corresponding

eigenvector, usually referred to as the mode of the structure.

The modes are weighted orthogonal with respect to the stiffness matrix K and the mass

matrix M. In fact, replacing c in Equation 5.38a by cj and pre-multiplying it by cT
k and then

replacing c in Equation 5.38a by ck and pre-multiplying it by cT
j , we can get

cT
k ½K�v2

j M�cj ¼ 0 ð5:39aÞ

and

cT
j ½K�v2

kM�ck ¼ 0 ð5:39bÞ

respectively. Noting that K¼KT andM¼MT, taking the transpose of the latter equation and

then subtracting it from the former, considering that vk „vj for k „ j, we have

cT
kMcj ¼ mkdkj ð5:40Þ

where mk ¼ cT
kMck is the kth modal mass and dkj is the Kronecker delta. Introducing

Equation 5.40 into Equations 5.39a and 5.39b yields

cT
kKcj ¼ v2

j c
T
kMcj ¼ v2

j mjdkj ¼ kjdkj ð5:41Þ

Equations 5.40 and 5.41 show that the modes areweighted orthogonal. Therefore, themodal

vectors cj , j ¼ 1; 2; . . . ; n, comprise a complete orthogonal basis in the n-dimensional Hilbert

space; then, the response X(t) can be decomposed by

XðtÞ ¼
Xn
j¼1

cjujðtÞ ¼ fuðtÞ ð5:42Þ

where f ¼ ðc1;c2; . . . ;cnÞ is the modal matrix and u ¼ ðu1; u2; . . . ; unÞT is the modal

displacement vector.

Substituting Equation 5.42 in Equation 5.29 and pre-multiplying it by cT
j on both sides

yields

cT
j ½Mf€uðtÞþCf _uðtÞþKfuðtÞ� ¼ cT

j BjðtÞ j ¼ 1; 2; . . . ; n ð5:43Þ

Using the proportional damping, namely

fTCf ¼ diag½c1; c2; . . . ; cn� ¼ diag½2z1v1m1; 2z2v2m2; . . . ; 2znvnmn� ð5:44Þ
where diag[�] denotes a diagonal matrix, and noting Equations 5.40 and 5.41, we have

mj€uj þ cj _uj þ kjuj ¼ cT
j BjðtÞ ¼

Xn
k¼1

Xr
‘¼1

fjkBk‘j‘ðtÞ j ¼ 1; 2; . . . ; n ð5:45Þ

where fjk is the kth component of cj and Bk‘ is the k � ‘-th component of B. Equation 5.45

contains n uncoupled SDOF systems.
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According to the elaboration in Section 5.2.1.1, the impulse response function of the system

in Equation 5.45 hj(t) is given by Equation 5.11, wherem, z and v are replaced bymj, zj and vj

respectively. Thus, it follows that (see Equation 5.14)

uj ¼
ðt
0

hjðt� tÞcT
j BjðtÞ dt ð5:46Þ

where the effect of the initial condition is ignored. Substituting this equation in Equation 5.42

then yields the response of the system in Equation 5.29, namely:

XðtÞ ¼
Xn
j¼1

ðt
0

hjðt� tÞcjc
T
j BjðtÞ dt ð5:47Þ

Again, this equation could be regarded as the linear operator lð � Þ which governs the

responses of the system to the excitations, as shown in Figure 5.3a or the upper part of

Figure 5.3b.

Themean of the responses can be given by taking themathematical expectation on both sides

of Equation 5.47:

mXðtÞ ¼ E½XðtÞ� ¼
Xn
j¼1

ðt
0

hjðt� tÞcjc
T
j BmjðtÞ dt ð5:48Þ

Likewise, the correlation function matrix can be evaluated through

RXðt1; t2Þ ¼ E½Xðt1ÞXTðt2Þ�

¼ E
Xn
j¼1

ðt1
0

hjðt1 � t1Þcjc
T
j Bjðt1Þ dt1 �

Xn
k¼1

ðt2
0

hkðt2 � t2ÞjTðt2ÞBTckc
T
k dt2

" #

¼
Xn
k¼1

Xn
j¼1

ðt1
0

ðt2
0

hjðt1 � t1Þhkðt2 � t2Þcjc
T
j BE½jðt1ÞjTðt2Þ�BTckc

T
k dt1 dt2

¼
Xn
k¼1

Xn
j¼1

ðt1
0

ðt2
0

hjðt1 � t1Þhkðt2 � t2Þcjc
T
j BRjðt1; t2ÞBTckc

T
k dt1 dt2

ð5:49Þ
If the excitations are stationary processes, then the steady-state response processes will also

be stationary processes. In this case, Equation 5.49 reduces to

RXðtÞ ¼
Xn
j¼1

Xn
k¼1

ð¥
�¥

ð¥
�¥

hkðt1Þhjðt2Þckc
T
kBRjðtþ t2 � t1ÞBTcjc

T
j dt1 dt2

¼ Ð¥
�¥
Ð¥
�¥

Xn
k¼1

hkðt1Þckc
T
k

 !
BRjðtþ t2 � t1ÞBT

Xn
j¼1

hjðt2Þcjc
T
j

 !
dt1 dt2

ð5:50Þ
Again, we reach a linear relationship between the moment functions of the responses of the

system and that of the excitations in Equations 5.48–5.50. However, in comparison with

Equations 5.33–5.35, this set of equations is more computationally convenient because the
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closed form of hj(t) is known, whereas Equations 5.33–5.35 are more conceptually direct as

counterparts of the SDOF systems.

Actually, these two sets of equations are mathematically equivalent. This is clear if we apply

the modal superposition method to Equation 5.31 and then get

hðtÞ ¼
Xn
j¼1

hjðtÞcjc
T
j ð5:51Þ

Introducing Equation 5.51 into Equations 5.33 and 5.35 will immediately yield Equa-

tions 5.48 and 5.50.

When nonproportional damping is involved, the equation ofmotion can be changed to a state

equation and again the eigenvectors could be chosen as the basis vectors in a state space; but, in

this case, the eigenvalues and eigenvectors are now usually complex numbers and, therefore,

this is referred to as complex modal analysis. Such an analysis for random vibrations can be

found in Fang and Wang (1986) and Fang et al. (1991).

5.2.2.3 Notes on Computational Efforts

Equation 5.49 is the so-called complete quadratic combination (CQC) scheme because there

are n2 terms in total being summed. In practice, the number of participant modes q is usually

chosen such that q� n for large structural systems and, therefore, the computational efforts can

be greatly reduced. However, for practical engineering systems, this is usually still too time

consuming. As an approximation, the cross-terms in the summation of Equation 5.49 are

sometimes ignored; therefore:

RXðt1; t2Þ 	
Xq
k¼1

ðt1
0

ðt2
0

hkðt1 � t1Þhkðt2 � t2Þckc
T
kBRjðt1; t2ÞBTckc

T
k dt1 dt2 ð5:52Þ

This scheme is referred to as the square root of the summation of the square (SRSS). Usually,

it is believed that this approximation is acceptable when the frequencies are not densely

scattered. However, it cannot be guaranteed and actually it is not the case for many large

complex structural systems (Der Kiureghian, 1980).

The prohibitive computational effort of Equation 5.49 is essentially one of the greatest

hinderances to the application of classical random vibration theory to problems of practical

interest, since the basic theory was developed about four decades ago. Interestingly, a simple

further step, although always ignored, can greatly reduce the computational effort when we

rearrange Equation 5.49 by

RXðt1; t2Þ ¼
Xn
k¼1

Xn
j¼1

ðt1
0

ðt2
0

hjðt1 � t1Þhkðt2 � t2Þcjc
T
j BRjðt1; t2ÞBTckc

T
k dt1 dt2

¼ Ð t1
0

Ð t2
0

Xn
j¼1

½hjðt1 � t1Þcjc
T
j �

( )
BRjðt1; t2ÞBT

Xn
k¼1

½hkðt2 � t2Þckc
T
k �

( )
dt1 dt2

ð5:53Þ

We find that Equation 5.53 is in a form identical to the equation resulting from introducing

Equation 5.51 into Equation 5.34. However, from the point of view of computation, the double
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summation in Equation 5.49 (i.e. the CQC) has been changed to two single summations; that is,

the multiplication of two summations. We can view the effect of the change by examining a

simple example:

s ¼
Xq
i¼1

Xq
j¼1

aibj ¼
Xq
i¼1

ai

 ! Xq
j¼1

bj

 !
ð5:54Þ

Mathematically, the two equalities are equivalent. However, in the computation of the first

entity
Pq

i¼1

Pq
j¼1 aibj, q

2 multiplication operations and q2 summation operations need to be

performed, whereas only one multiplication operation and 2q summation operations are

needed in the computation of the second entity ðPq
i¼1 aiÞð

Pq
j¼1 bjÞ. Note that the multiplica-

tion operation is much more time consuming than the summation operation is. Compared with

the first entity, the computational efforts in the second entity is reduced from q2wm þ q2ws to

wm þ 2qws, wherewm andws are respectively theworkload of onemultiplication operation and

one summation operation. If q is in the order of 102, then thismightmake the computationmore

efficient by times in the order of 108–104. The difference between the computational efforts of

the first and second equalities inEquation 5.53 is just analogous to the situation inEquation 5.54

as discussed above. This is also true for the computation of Equation 5.50.

We will come back to this issue when the pseudo-excitation method is elaborated later.

5.3 Power Spectral Density Analysis

5.3.1 Frequency Response Function and Power Spectral Density

5.3.1.1 Response of SDOF Systems in Frequency Domain

Frequency Response Function of SDOF Systems
As discussed in Section 5.2.1.1, apart from the unit impulse, the other widely used testing

excitation is the unit harmonic excitation. In this case, the response of an SDOF system,

denoted by ~hðtÞ, satisfies
m
€~hþ c

_~hþ k~h ¼ eivt x0 ¼ 0; _x0 ¼ 0 ð5:55Þ
Using Equation 5.14, replacing f(t) by the harmonic excitation eivt, we have

~hðtÞ ¼
ð¥
�¥

hðt; tÞeivðt� tÞ dt ¼ eivt
ð¥
�¥

hðt; tÞe� ivt dt ¼ ~Hðv; tÞeivt ð5:56Þ

where

~Hðv; tÞ ¼
ð¥
�¥

hðt; tÞe� ivt dt ð5:57aÞ

and h(t,t) is the impulse response function of a time-variant linear system. If the system is time

invariant, then h(t, t) is the function given by Equation 5.11. In this case, ~Hðv; tÞ reduces to

HðvÞ ¼
ð¥
�¥

hðtÞe� ivt dt ð5:57bÞ

The function H(v) is referred to as the frequency response function. Evidently,

Equation 5.57b shows that the frequency response function is the Fourier transform of the
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impulse response function. In turn, this indicates that the impulse response function h(t) must

be the inverse Fourier transform of the frequency response function:

hðtÞ ¼ 1

2p

ð¥
�¥

HðvÞeivt dv ð5:58Þ

If we introduce Equation 5.56, in which ~Hðv; tÞ is replaced by H(v), into Equation 5.55, it
follows that

HðvÞ ¼ 1

k�mv2 þ icv
¼ 1

mðv2
0 �v2 þ i2zv0vÞ ¼

1

mv2
0½1�ðv=v0Þ2 þ i2zv=v0�

ð5:59Þ

where z and v0 are the damping ratio and the circular frequency of the SDOF system

respectively.

Furthermore, according to the principle of superposition, multiplying both sides of the

equation of motion of the SDOF system subject to an arbitrary excitation f(t) by e� ivt

m€xþ c _xþ kx ¼ f ðtÞ ð5:60Þ
and integrating with regard to t yields

m

ð¥
�¥

€xðtÞe� ivt dtþ c

ð¥
�¥

_xðtÞe� ivt dtþ k

ð¥
�¥

xðtÞe� ivt dt ¼
ð¥
�¥

f ðtÞe� ivt dt ð5:61aÞ

Denoting the Fourier transforms of €xðtÞ, _xðtÞ, xðtÞ and f(t) by €xðvÞ, _xðvÞ, xðvÞ and F(v)
respectively, Equation 5.61a is rewritten as

m€xðvÞþ c _xðvÞþ kxðvÞ ¼ FðvÞ ð5:61bÞ

Note that €xðvÞ ¼ iv _xðvÞ ¼ �v2xðvÞ. It follows that

xðvÞ ¼ 1

k�mv2 þ icv
FðvÞ ¼ HðvÞFðvÞ ð5:62Þ

This equation establishes the linear relationship between the input and the output in the

frequency domain. We can see that all the properties of the SDOF system are contained in the

frequency response function H(v), which is irrelevant to the excitation and completely

characterizes the system properties. This is one of the reasons why the unit harmonic excitation

is chosen as the testing excitation. From Equation 5.62, we have the impression that the

linearity embedded in the system is reflected more clearly in the frequency domain than in the

time domain.

Power Spectral Density of Response of an SDOF System to Stochastic Excitation
If the excitation is a stochastic process j(t), then the responseX(t) is also a stochastic process. In
this case, Equation 5.62 could be interpreted in a sample sense which conforms to the physical

sense; namely:

Xðv;vÞ ¼ HðvÞjðv;vÞ ð5:63aÞ
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where v is the variable characterizing the embedded randomness and X(v, v) and j(v, v)
should be understood as the Fourier spectrum of the stochastic processes X(v, t) and j(v, t),

respectively.

Taking the complex conjugate of Equation 5.63a:

X
ðv;vÞ ¼ H
ðvÞ � j
ðv;vÞ ð5:63bÞ
Hereafter, the asterisk superscripts denote the complex conjugate.

Multiplying the left-hand side of Equation 5.63a with the left-hand side of Equation 5.63b

and doing the same thing for the right-hand sides of Equations 5.63a and 5.63b, taking

mathematical expectations and dividing by the duration T as T ! ¥, we have

lim
T !¥

1

2T
E Xðv;vÞX
ðv;vÞ½ � ¼ lim

T!¥

1

2T
jHðvÞj2E jðv;vÞj
ðv;vÞ½ � ð5:64Þ

In fact, the left-hand side of Equation 5.64 is nothing but the PSD of X(t), provided it is a

stationary stochastic process (see Equation 2.89a and Appendix C); namely:

SXðvÞ ¼ lim
T !¥

1

2T
E Xðv;vÞX
ðv;vÞ½ � ð5:65aÞ

Likewise, the terms contained on the right-hand side of Equation 5.64 involve the PSD of

j(t), provided it is a stationary stochastic process:

SjðvÞ ¼ lim
T!¥

1

2T
E jðv;vÞj
ðv;vÞ½ � ð5:65bÞ

Then, from Equation 5.64, it follows that

SXðvÞ ¼ HðvÞj2SjðvÞ
�� ð5:66Þ

where |H(v)|2 is given from Equation 5.59 by

jHðvÞj2 ¼ 1

ðmv2
0Þ2

1

½1�ðv=v0Þ2�2 þ 4z2ðv=v0Þ2
ð5:67Þ

which is illustrated in Figure 5.5.

Some characteristics of |H(v)|2 are:

(a) jHðvÞj2 ¼ 1=ðmv2
0Þ2, or jHðvÞj2ðmv2

0Þ2 ¼ 1, for v/v0¼ 0;

(b) jHðvÞj2 ¼ ½1=ðmv2
0Þ2�½1=ð4z2Þ�, or jHðvÞj2ðmv2

0Þ2 ¼ 1=ð4z2Þ, for v/v0¼ 1;

(c) jH(v)j2 ! 0, as v/v0 ! ¥;
(d) jH(v)j2 reaches its maximum asv=v0 ¼ ð1þ z4Þ1=2 � z2. It is seen thatv/v0 maximizing

jH(v)j2 varies from 1 to
ffiffiffi
2

p � 1 monotonically as z varis from 0 to 1.

(e) Half-power bandwidth: for light damping, the maximum value of |H(v)|2 occurs approxi-
mately at v/v0¼ 1 as shown in (d). In this case, jHðv0Þj2ðmv2

0Þ2 ¼ 1=ð4z2Þ. Consider the
point v1 where

jHðv1Þj2 ¼ 1

2
jHðv0Þj2 ð5:68aÞ
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That is, the PSD atv1 is half of themaximal PSDwhen the excitation is awhite noise; therefore,

v1 is referred to as the half-power point. Note from Figure 5.5 that there are two half-power

pointsv1 andv2 scattered over two sides ofv0,v1 <v0 <v2, and the differences between them

are small when z is small; that is, Dv¼v2�v1�v0. Through some manipulations we have

z 	 Dv
2v0

ð5:68bÞ

where Dv is referred to as the half-power bandwidth.

Equation 5.68b indicates that the damping ratio can be obtained easily if the bandwidth and

natural frequency can be measured through vibration testing techniques. This is the so-called

half-power method for identification of damping (Clough and Penzien, 1993).

Equation 5.66 establishes a linear relationship between the PSD of the response and that

of the excitation. Again, this can viewed as the linear operator lpð � Þ in the lower part of

Figure 5.3b.Obviously, the linearity exhibited here ismore direct than that exhibited in the time

domain, as discussed in Section 5.2.2.

Further, it is easy to get the correlation function from Equation 5.66 by theWiener–Khintch-

ine theorem:

RXðtÞ ¼ 1

2p

ð¥
�¥

SXðvÞeivt dv ¼ 1

2p

ð¥
�¥

jHðvÞj2SjðvÞeivt dv ð5:69aÞ

While the variance of the response can be given by

Var XðtÞ½ � ¼ RXð0Þ ¼ 1

2p

ð¥
�¥

SXðvÞ dv ¼ 1

2p

ð¥
�¥

jHðvÞj2SjðvÞ dv ð5:69bÞ

The derivation in Equations 5.63a–5.66 looks more intuitive than rigorous, because the

Fourier transform of a stationary stochastic process does not exist when the stochastic process

does not tend to zero as |t| ! ¥. However, this problem can be overcome by defining a Fourier

Figure 5.5 Frequency transfer function.
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transform over a finite time interval; that is (see Appendix C):

X�Tðv;vÞ ¼
ðT
�T

Xðv; tÞe� ivt dt ð5:70aÞ

Then the Fourier transform of the derived process over the time interval reads

_X�Tðv;vÞ ¼ Ð T
�T

_Xðv; tÞe� ivt dt¼ Xðv;TÞe� ivt�Xðv;�TÞeivtþðivÞ Ð T�T
Xðv; tÞe� ivt dt

¼ Xðv;TÞe� ivt�Xðv;�TÞeivtþðivÞX�Tðv;vÞ
ð5:70bÞ

Replacing Equation 5.63a by

X�Tðv;vÞ ¼ HðvÞj�Tðv;vÞþHðvÞCðv; TÞ ð5:70cÞ
where

CðTÞ ¼ � c½Xðv; TÞe� ivT �Xðv; � TÞeivT �
¼ �mf _Xðv; TÞe� ivT � _Xðv; � TÞeivT þ iv½Xðv; TÞe� ivT �Xðv; � TÞeivT �g

Multiplying Equation 5.70c on both sides by its complex conjugate, dividing it by T and

letting T ! ¥, we find the effect of C(v,T) vanishes because the mean and the variance of

X(v,T) are finite; thus we get Equation 5.64. Therefore, the above derivations will lead to no

problems, butwill provide amuch simpler and intuitive perspective. For this reason,wewill use

the technique extensively in the following sections.

Power Spectral Density of Derived Stochastic Processes
Sometimes we may be interested in the PSD of its derived processes, say X(k)(t)¼ dkX(t)/dtk.

Wehavegiven some commonly used formulaewhich can be proved startingwith the definitions

in Section 2.2.4. However, we can achieve them in a more straightforward way as shown in the

preceding subsection.

Let us consider the nth derived process of X(t), denoted by X(n)(t). Its Fourier spectrum is

given by

XðnÞðvÞ ¼ ðivÞnXðvÞ ð5:71aÞ
of which the complex conjugate is

½XðnÞðvÞ�
 ¼ ½ðivÞn�
 �X
ðvÞ ð5:71bÞ
Aswith Equations 5.63a and 5.63b resulting in Equation 5.64, multiplying the left-hand side

of Equation 5.71a with the left-hand side of Equation 5.71b and doing the same thing for the

right-hand sides of Equations 5.71a and 5.71b, dividing by T and letting T ! ¥, we get

SXðnÞ ðvÞ ¼ v2nSXðvÞ ð5:71cÞ
which is nothing but Equation 2.104.

The same idea can be applied to Equation 2.105 and is left to the reader.
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Cross-Power Spectral Density Function
Sometimes we want to get the cross-PSD, say of the response and its derived process or of the

response and the excitation. Direct employment of the basic idea in the preceding section will

make it quite straightforward.

First we take SX _XðvÞ as an example. In this case we replace Equation 5.63b by

_X

ðv;vÞ ¼ ð� ivÞH
ðvÞ � j
ðv;vÞ ð5:72aÞ

where _Xðv;vÞ is the Fourier transform of the derived process _Xðv; tÞ. Noting that (see

Equation 2.89b and Appendix C)

SX _XðvÞ ¼ lim
T !¥

1

2T
E Xðv;vÞ _X
ðv;vÞ� � ð5:72bÞ

then correspondingly, Equation 5.66 becomes

SX _XðvÞ ¼ ð� ivÞjHðvÞj2SjðvÞ ð5:72cÞ
If we compare this formula with Equation 5.66, then we have

SX _XðvÞ ¼ ð� ivÞSXðvÞ ð5:72dÞ
Recalling that in harmonic motion the phase angle of the displacement is p/2 lag behind that

of the velocity, the physical meaning of this relationship is quite clear.

Likewise, let us consider SXj(v). In this case, replacing Equation 5.63b by an equality

j


(v, v)¼ j



(v, v), and noting that (see Equation 2.89b)

SXjðvÞ ¼ lim
T!¥

1

2T
E Xðv;vÞj
ðv;vÞ½ � ð5:73aÞ

we immediately obtain

SXjðvÞ ¼ HðvÞSjðvÞ ð5:73bÞ

Actually, in general, ifX(t) andY(t) are two stationary stochastic process determined through

linear transfer operators from the input j(t); for example:

XðtÞ ¼ L1½jðtÞ� ð5:74aÞ

YðtÞ ¼ L2½jðtÞ� ð5:74bÞ
then their Fourier transform gives

XðvÞ ¼ L1ðvÞjðvÞ ð5:75aÞ

YðvÞ ¼ L2ðvÞjðvÞ ð5:75bÞ
Thus, it follows that

lim
T !¥

1

2T
E XðvÞY
ðvÞ½ � ¼ L1ðvÞL2
ðvÞ lim

T!¥

1

2T
E jðvÞj
ðvÞ½ � ð5:76aÞ
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That is:

SXYðvÞ ¼ L1ðvÞL2
ðvÞSjðvÞ ð5:76bÞ

5.3.1.2 Response of MDOF Systems in the Frequency Domain

Direct Matrix Expression
If jðtÞ ¼ ½j1ðtÞ; j2ðtÞ; . . . ; jrðtÞ�T is a zero-mean weakly stationary stochastic process vector,

of which the PSD matrix is SjðvÞ ¼ ½Sjijj ðvÞ�r�r, then the correlation function matrix

RjðtÞ ¼ ½Rjijj ðtÞ�r�r is determined by the Wiener–Khintchine formula:

SjðvÞ ¼
ð¥
�¥

RjðtÞe� ivt dt RjðtÞ ¼ 1

2p

ð¥
�¥

SjðvÞeivt dv ð5:77Þ

In addition, according to Equation 5.65b, we have

SjðvÞ ¼ lim
T !¥

1

2T
E jðv;vÞj
ðv;vÞ½ � ð5:78Þ

Here, the asterisk denotes the transpose of the complex conjugate.

Extending the cases of the SDOF system in Section 5.3.1.1 to the MDOF system

(Equation 5.29)

M€XþC _XþKX ¼ Bjðv; tÞ ð5:79Þ
we can get the frequency-response function matrix

HðvÞ ¼ ðK�v2Mþ ivCÞ� 1 ð5:80Þ
such that the Fourier transform of the responses, X(v, v), is determined by

Xðv;vÞ ¼ HðvÞBjðv;vÞ ð5:81aÞ
where j(v, v) is the Fourier transform of the excitation j(v, t).

Taking the complex conjugate of both sides of Equation 5.81a yields

X
ðv;vÞ ¼ j
ðv;vÞBTH
ðvÞ ð5:81bÞ
Post-multiplying both sides of Equation 5.81a by the corresponding sides of Equation 5.81b,

taking the mathematical expectation, then dividing by the duration 2T and letting T ! ¥, it
follows that

lim
T !¥

1

2T
E XðvÞX
ðvÞ½ � ¼ lim

T !¥

1

2T
E HðvÞBjðv;vÞj
ðv;vÞBTH
ðvÞ� � ð5:82Þ

Noting Equation 5.78 and that the PSD function matrix of X(t):

SXðvÞ ¼ lim
T !¥

1

2T
E Xðv;vÞX
ðv;vÞ½ � ð5:83Þ

we reach

SXðvÞ ¼ HðvÞBSjðvÞBTH
ðvÞ ð5:84Þ
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Equation 5.84 is the counterpart of Equation 5.66 in the case of MDOF systems. This shows

that the PSD matrix of the responses is a linear transform of the PSD matrix of the excitations.

The linearity embedded here is, again, reflection of the physical linearity of the MDOF system

(Equation 5.79).

The relationships in Equations 5.66 and 5.84 are algebraic, while the transfer relationships

from the moments of excitations to those of the responses are integrals (see Equations 5.25

and 5.35 in the time domain); therefore, the transfer relationships in the frequency domain are

more straightforward, compact and simple.

However, direct implementation of Equation 5.84 is not so easy because the computation of

H(v) by Equation 5.80 might be very time consuming. This can be relieved by employing the

modal superposition method.

Modal Superposition Method
According to Section 5.2.2, when employing the modal decomposition technique, an MDOF

system can be uncoupled to a set of SDOF systems (see Equation 5.45):

mj€uj þ cj _uj þ kjuj ¼ cT
j BjðtÞ j ¼ 1; 2; . . . ; n ð5:85Þ

of which the frequency response functions are given by (see Equation 5.59)

HjðvÞ ¼ 1

mjv
2
0j ½1�ðv=v0jÞ2 þ i2zjv=v0j�

j ¼ 1; 2; . . . ; n ð5:86Þ

where mj, zj and v0j are the jth modal mass, the modal damping ratio and the modal circular

frequency respectively.

Using modal decomposition, Equation 5.42, the Fourier transform is

Xðv;vÞ ¼
Xn
j¼1

cjujðv;vÞ ð5:87aÞ

in which uj (v, v) is the Fourier transform of the modal displacement uj (v, t) and given by

ujðv;vÞ ¼ HjðvÞcT
j BjðvÞ ð5:87bÞ

Employing Equation 5.83 and substituting Equation 5.87a in it, we have

SXðvÞ ¼ lim
T!¥

1

2T
E

Xn
j¼1

cjujðv;vÞ
" # Xn

j¼1

uj

ðv;vÞcT

j

" #( )

¼ lim
T!¥

1

2T
E

Xn
j¼1

cjHjðvÞcT
j BjðvÞ

" # Xn
j¼1

j
ðvÞBTcjHj

ðvÞcT

j

" #( )

¼
Xn
j¼1

Xn
k¼1

ckc
T
kHkðvÞB lim

T !¥

1

2T
E jðvÞj*ðvÞ� �� 	

BTHj

ðvÞcjc

T
j

¼
Xn
j¼1

Xn
k¼1

HkðvÞHj

ðvÞckc

T
kBSjðvÞBTcjc

T
j

ð5:88Þ
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Compared with Equation 5.84, the implementation of Equation 5.88 is more convenient

because here the closed form of Hj(v) is known as Equation 5.86.

On the other hand,mathematically, Equation 5.88 is equivalent toEquation 5.84.Actually, as

an extension of Equation 5.62 to thematrix form, the frequency-response functionmatrixH(v)
is the Fourier transform of the impulse-response function matrix h(t) (see Equation 5.31):

HðvÞ ¼
ð¥
�¥

hðtÞe� ivt dt ð5:89Þ

Introducing Equation 5.51 into this and noting Hj (v) is the Fourier transform of hj(t)

yields

HðvÞ ¼
ð¥
�¥

hðtÞe� ivt dt ¼
ð¥
�¥

Xn
j¼1

hjðtÞcjc
T
j e

� ivt dt ¼
Xn
j¼1

HjðvÞcjc
T
j ð5:90Þ

Replacing H(v) in Equation 5.84 by the expression in Equation 5.90 immediately leads to

Equation 5.88.

Notes on Computational Effort
It is seen that Equation 5.88 is a CQC scheme. Its computational workload is in the order of

n2 (or in the order of q2 when q modes are chosen). The computational effort for a general

large structural system is still prohibitive. An alternative scheme is to compute Equation 5.88

by

SXðvÞ ¼
Xn
j¼1

Xn
k¼1

HkðvÞH

j ðvÞckc

T
kBSjðvÞBTcjc

T
j

¼
Xn
k¼1

HkðvÞckc
T
k

" #
BSjðvÞBT

Xn
j¼1

H

j ðvÞcjc

T
j

" # ð5:91Þ

Although the two equalities in Equation 5.91 are mathematically equivalent, the computa-

tional effort of the second entity ismuch less than that of the first entity. The reason is analogous

to the discussion in Section 5.2.2.3.

Example 5.2. Response of an MDOF System to White Noise Excitation Consider an

MDOF structural system subjected to earthquake ground motion modeled by a white-noise

process with the PSD function Sj(v)¼ S0. Here, B¼�M{1}, whereM is the mass matrix and

{1} is a column vector with all components 1. According to Equation 5.91:

SXðvÞ ¼ S0
Xn
k¼1

HkðvÞckc
T
k

" #
MBf1gf1gTMT

Xn
j¼1

Hj

ðvÞcjc

T
j

" #
ð5:92Þ

For simplicity,we assume a diagonalmassmatrixM¼ diag(Mj), then the component formof

Equation 5.92 reads
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SXrXs
ðvÞ ¼ S0

Xn
k¼1

Xn
j¼1

fkrfkjMjHkðvÞ
 ! Xn

k¼1

Xn
j¼1

fksfkjMjHk

ðvÞ

 !

¼ S0
Xn
q¼1

Xn
p¼1

Xn
k¼1

Xn
j¼1

fkrfpsfkjfpqMjMqHkðvÞHp

ðvÞ

ð5:93Þ

where fkj is the jth component of the mode shape vector ck, ck ¼ ðfk1; fk2; . . . ; fknÞT.
In the case r¼ s, we have

SXr
ðvÞ ¼ S0

Xn
k¼1

HkðvÞ
Xn
j¼1

fkrfkjMj

" #( ) Xn
k¼1

Hk

ðvÞ

Xn
j¼1

fkrfkjMj

" #( )

¼ S0
Xn
k¼1

bk;rHkðvÞ
" # Xn

k¼1

bk;rHk

ðvÞ

" # ð5:94Þ

where bk;r ¼
Pn

j¼1 fkrfkjMj .

Equation 5.94 can also be expanded by

SXr
ðvÞ ¼ S0

Xn
k¼1

b2
k;rjHkðvÞj2 þ

Xn
k¼1;k„j

Xn
j¼1

bk;rbj;rRe½HkðvÞHj

ðvÞ�

( )
ð5:95Þ

Here, Re[�] represents the real part of the bracketed complex number.

To give a more illustrative recognition, we examine a two-DOF system with the mass, the

damping and the stiffness matrices given respectively by

M¼ 100 0

0 100


 �
kg C¼ 5:758 4:081

4:081 9:839


 �
N � s=m and K¼ 200 �100

�100 100


 �
N=m

ð5:96Þ
The modal matrix and the modal mass matrix are respectively

f ¼ 1 1

1:618 � 0:618


 �
and �M ¼ 361:8 0

0 138:2


 �
kg ð5:97Þ

The modal damping ratios are z1¼ 0.10 and z2¼ 0.01; the frequencies are v1¼ 0.618 and

v2¼ 1.618. Therefore:

H1ðvÞ ¼ 1

m1v
2
1

1

½1�ðv=v1Þ2� þ 2iz1ðv=v1Þ
¼ 1

138:2

1

ð1�v2=0:382Þþ 0:324iv
ð5:98Þ

H2ðvÞ ¼ 1

m2v
2
2

1

½1�ðv=v2Þ2� þ 2iz2ðv=v2Þ
¼ 1

361:8

1

ð1�v2=2:618Þþ 0:0124iv
ð5:99Þ

b1;1 ¼
X2
j¼1

f11f1jMj ¼ 200 b2;1 ¼
X2
j¼1

f21f2jMj ¼ 161:8 ð5:100Þ
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Introducing these quantities into Equation 5.95 we have

SX1
ðvÞ ¼ S0f40 000jH1ðvÞj2 þ 26 179:2jH2ðvÞj2 þ 64 720 Re½H1ðvÞH


2ðvÞ�g ð5:101Þ
The three terms in the above equation represent the effect of the first mode, the effect of the

second mode and the cross effect respectively.

The half part of SXr
ðvÞ as v� 0 is plotted in Figure 5.6.

From Figure 5.6 we see that, in the vicinity of the natural frequencies, the effect of the

correspondingmode dominates the PSD of the response.While the cross effect is much smaller

than the effect of the modes itself, there are points near the natural frequencies at which the

cross effect is zero; the sign of the cross effect changes regularly in different intervals cut by

these zero-cross-effect frequencies. Therefore, if a structure is subjected to awhite noise on the

base, then the natural frequencies can be easily identified and the corresponding damping ratio

can also be identifiedby the half-powermethod. This iswhy in the shaking table tests the case of

base white-noise scanning should be tested. &

5.3.2 Evolutionary Spectral Analysis

5.3.2.1 Evolutionary Stochastic Process

The correlation function and the PSD function of a weakly stationary stochastic process are

Fourier transform pairs known as the Wiener–Khintchine formulae. However, for a nonsta-

tionary stochastic process, the traditional PSD does not exist. As mentioned in Section 2.2.3, a

double-frequency PSD function and a pair of extended Wiener–Khintchine formulae exist for

some kinds of nonstationary processes (see Equation 2.90). But this does not hold for all

stochastic processes. In particular, it does not exist for stationary processes. In addition, the

physical sense of such formulae is not as clear as the traditional PSD function.
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Figure 5.6 The PSD of the response of a two-DOF system.
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Apossible approach tomodeling a nonstationary stochastic process is to regard it as a filtered

stochastic process. This concept was first proposed by Priestley (1965, 1967) and then studied

by a number of investigators (Liu, 1970; Fan and Ahmadi, 1990; Lin and Cai, 1995; Fang and

Sun, 1997; Fang et al., 2002). Let �jðtÞ be a stationary stochastic process with correlation

function

R�jðt1; t2Þ ¼ E �jðt1Þ�jðt2Þ
� � ¼ 1

2p

ð¥
�¥

S�jðvÞeivðt2 � t1Þ dv ð5:102Þ

Consider a linear time-dependent filter A with �jðtÞ as an input. The output of the filter, j(t),
will be a nonstationary stochastic process and can be obtained by

jðv; tÞ ¼
ð¥
�¥

aðt; tÞ�jðv; t� tÞ dt ð5:103Þ

where a(t, t) represents the impulse response function of the filter, namely the output of the

filter A at the time instant t due to a unit impulse input at the time instant t� t. For a time-

invariant system, this is h(t� t) as given in Equation 5.11. Obviously, Equation 5.103 is an

extension of the Duhamel integral in Equation 5.14.

Analogous to the treatment in Section 5.2.1.2, the correlation function of j(t) is then

Rjðt1; t2Þ ¼ E½jðt1Þjðt2Þ�
¼ Ð¥

�¥
Ð¥
�¥ aðt1; t1Þaðt2; t2ÞE½�jðv; t1 � t1Þ�jðv; t2 � t2Þ� dt1 dt2

¼ 1

2p

ð¥
�¥

ð¥
�¥

ð¥
�¥

aðt1; t1Þaðt2; t2ÞS�jðvÞeivðt2 � t2 � t1 þ t1Þ dt1 dt2 dv

¼ 1

2p

ð¥
�¥

ð¥
�¥

aðt1;t1Þeivt1 dt1

 � ð¥

�¥
aðt2;t2Þe� ivt2 dt2


 �
S�jðvÞeivðt2� t1Þ dv

¼ 1

2p

ð¥
�¥

Aðv; t1ÞA
ðv; t2ÞS�jðvÞeivðt2� t1Þ dv ð5:104Þ

in which

Aðv; tÞ ¼
ð¥
�¥

aðt;tÞeivt dt ð5:105Þ

We can then get the variance of the response:

E j2ðtÞ� � ¼ 1

2p

ð¥
�¥

jAðv; tÞj2S�jðvÞ dv ð5:106Þ

Certainly, Equation 5.105 is an alternative form of Equation 5.57a when h(t, t) and ~Hðv; tÞ
are replaced by a(t, t) and A
(v, t) respectively. If the filter A is time invariant, then

Equation 5.105 reduces to Equation 5.57b, with A
(v, t) being essentially the frequency-

response function H(v). In this case, Equation 5.106 in turn reduces to Equation 5.69b.

Considering this analogy, we define the evolutionary PSD by

Sjðv; tÞ ¼ jAðv; tÞj2S�jðvÞ ð5:107Þ
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Therefore:

E j2ðtÞ� � ¼ 1

2p

ð¥
�¥

Sjðv; tÞ dv ð5:108Þ

This is an extension of Equation 5.69b when the process is an evolutionary stochastic

process. We can see that, if A(v, t)¼ 1, the stochastic process is not modulated and, therefore,

j(t) is just the stationary stochastic process �jðtÞ. Besides the conceptual simplicity, in an

evolutionary stochastic process, A(v, t) modulates the intensity and frequency content

simultaneously, which is phenomenologically the case of many stochastic processes of

engineering interest, such as the ground motion of an earthquake (Liu, 1970; Fan and Ahmadi,

1990).

5.3.2.2 Evolutionary Spectral Analysis of SDOF Systems

Consider an SDOF system, when the excitation j(t) is an evolutionary stochastic process with
the evolutionary PSD in Equation 5.107:

m€X þ c _Xþ kX ¼ jðtÞ ð5:109Þ
According to Equation 5.14 we have the response

Xðv; tÞ ¼
ð¥
�¥

hðt� tÞjðv; tÞ dt ð5:110Þ

The correlation function, therefore, is given by

RXðt1; t2Þ ¼ E½Xðt1ÞXðt2Þ�

¼ Ð¥
�¥
Ð¥
�¥ hðt1 � t1Þhðt2 � t2ÞE½jðv; t1Þjðv; t2Þ� dt1 dt2

ð5:111aÞ

Substituting Equation 5.104 in this yields

RXðt1;t2Þ ¼
Ð¥
�¥
Ð¥
�¥hðt1�t1Þhðt2�t2Þ 1

2p

ð¥
�¥

Aðv;t1ÞA
ðv;t2ÞS�jðvÞeivðt2�t1Þdv
� 


dt1dt2

¼ 1

2p

ð¥
�¥

ð¥
�¥

Aðv;t1Þhðt1�t1Þe�ivt1dt1


 � ð¥
�¥

A
ðv;t2Þhðt2�t2Þeivt2 dt2

 �

S�jðvÞdv

¼ 1

2p

ð¥
�¥

Hðv;t1ÞH
ðv;t2ÞS�jðvÞdv ð5:111bÞ

where we define

Hðv;tÞ¼
ð¥
�¥

Aðv;tÞhðt�tÞe�ivtdt ð5:112Þ

which is referred to as the evolutionary frequency-response function. Then we can get the

variance of the response:
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E X2ðtÞ� �¼ 1

2p

ð¥
�¥

jHðv;tÞj2S�jðvÞdv ð5:113Þ

Therefore, the evolutionary PSD of the response is given by

SXðv; tÞ ¼ jHðv; tÞj2S�jðvÞ ð5:114Þ

This is obviously the extension of Equation 5.66. Clearly, if the excitation itself is a

stationary process – that is, A(v, t)¼ 1 – then Equation 5.114 reduces to Equation 5.66, since

Equation 5.112 reduces to Equation 5.57b.

Equation 5.114 shows that, when subjected to an evolutionary stochastic excitation, the

response of the system is also an evolutionary stochastic processwith time-variant intensity and

simultaneously time-variant frequency content.

5.3.2.3 Evolutionary Spectral Analysis of MDOF Systems

The above principle can be extended to the case of the MDOF system:

M€XþC _XþKX ¼ Bjðv; tÞ ð5:115Þ
where j(v, t) is an evolutionary stochastic process vector with the evolutionary PSD matrix

Sjðv; tÞ ¼ Aðv; tÞS�jðvÞA
ðv; tÞ ð5:116Þ

which is the matrix counterpart of Equation 5.107. Here, A is the modulating matrix and A


is

the transpose of the complex conjugate of A.

Using Equation 5.32a we get

XðtÞ ¼
ðt
0

hðt� tÞBjðtÞ dt ¼
ð¥
�¥

hðt� tÞBjðtÞ dt

and the similar idea in Equations 5.111a and 5.111b, the covariance function matrix is

given by

RXðt1; t2Þ ¼ E½Xðt1ÞXTðt2Þ�

¼
ð¥
�¥

ð¥
�¥

hðt1�t1ÞBe½jðv;t1Þj
ðv;t2Þ�BThTðt2�t2Þdt1 dt2

¼
ð¥
�¥

ð¥
�¥

hðt1�t1ÞB 1

2p

ð¥
�¥

Aðv;t1ÞS�jðvÞeivðt2�t1ÞA
ðv;t2Þdv

 �

BThTðt2�t2Þdt1 dt2

¼ 1

2p

ð¥
�¥

ð¥
�¥

hðt1�t1ÞBAðv;t1Þe�ivt1 dt1


 �
S�jðvÞ

ð¥
�¥

A
ðv;t2ÞBThTðt2�t2Þeivt2 dt2

 �

dv

1

2p

ð¥
�¥

Hðv;t1ÞS�jðvÞH
ðv;t2Þdv ð5:117Þ¼
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where

Hðv;tÞ¼
ð¥
�¥

hðt�tÞBAðv;tÞe�ivtdt ð5:118Þ

Therefore, we can get the covariance function matrix by

E XðtÞXTðtÞ� � ¼ 1

2p

ð¥
�¥

Hðv; tÞS�jðvÞH*ðv; tÞ dv ð5:119Þ

and the evolutionary PSD matrix by

SXðv; tÞ ¼ Hðv; tÞS�jðvÞH
ðv; tÞ ð5:120Þ

such that

E XðtÞXTðtÞ� � ¼ 1

2p

ð¥
�¥

SXðv; tÞ dv ð5:121Þ

When A(v, t) is a unit matrix of appropriate order, Equation 5.120 will coincide with

Equation 5.84.

5.3.2.4 Physical Interpretation of Evolutionary Spectral Analysis

As discussed in Section 5.3.1.2, we know that, physically, the frequency-response function

H(v) reflects the embedded properties of the structural system itself. However, the evolutionary

frequency-response function H(v, t) as defined in Equation 5.112 (or in matrix form in

Equation 5.118) does not characterize the properties of the structure itself. In fact, it also

includes the properties of the evolutionary stochastic excitation, since the modulation function

A(v, t) is involved.
Viewing Equation 5.112, we find that the evolutionary frequency-response functionH(v, t)

is a deterministic response if the excitation in the system in Equation 5.109 is replaced by the

deterministic process Aðv; tÞe� ivt. From this point of view, the physical meaning of the

modulation function A(v, t) is clearer: it is just a filter of excitation. In other words, A(v, t)
modulates the intensity (amplitude) because A(v, t) is time variant; simultaneously, it also

modulates the frequency content because A(v, t) is variant in terms of v. In fact, with this

understanding inmind we can develop a set of deterministic algorithms for the PSD analysis of

random vibration (Fang and Sun, 1997). This is just what the pseudo-excitation method does,

and will be elaborated in the following sections.

5.4 Pseudo-Excitation Method

According to the physical interpretation in Section 5.3.2.4, we have approached the position

that a set of possible algorithms may be feasible for the PSD analysis of random vibration. The

thoughts, referred to as the pseudo-excitation method, were first proposed by Lin in 1985, and

since then themethod has been systematically developed by him and his co-workers (Lin et al.,

1994a, 1994b, 1997; Zhong, 2004).

160 Stochastic Dynamics of Structures



5.4.1 Pseudo-Excitation Method for Stationary Stochastic
Response Analysis

Let us revisit the derivation in Section 5.3.1. If an SDOF system is excited by a deterministic

unit harmonic excitation eivt, then the deterministic steady-state response reads

xðv; tÞ ¼ HðvÞeivt ð5:122Þ
Here, we explicitly write the arguments v, t in x(�) to show the dependency of the response on

the frequency of the excitation and the time.

A general deterministic, absolute integrable time history can be expressed by the superposi-

tion of harmonic components, as shown in Equation 5.3b by the inverse Fourier transform

jðtÞ ¼ 1

2p

ð¥
�¥

jðvÞeivt dv ð5:3bÞ

where j(v) dv/(2p) is the amplitude of the harmonic component of frequencyv.When j(t) is a
stationary stochastic process, however, the inverse Fourier transform in Equation 5.3 does not

exist. Nonetheless, the following relationship does hold (see Equation 2.89a):

SjðvÞ ¼ lim
T !¥

1

2T
E jðv;vÞj
ðv;vÞ½ � ð5:65bÞ

which shows that the PSD, which reflects the frequency contents of the stationary stochastic

process, is in the dimension of the square of the amplitude spectrum of the sample (divided by

time). Thus, it is reasonable to consider a harmonic excitation with an amplitude of

ĵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
SjðvÞ

p
, namely ĵeivt ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

SjðvÞ
p

eivt. If we use this excitation, then the steady-state

response of the system will be

xðv; tÞ ¼ HðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
SjðvÞ

q
eivt ð5:123Þ

Because the excitation contains a relationship in terms of the frequency contents of the

excitation – that is, the excitation
ffiffiffiffiffiffiffiffiffiffiffiffi
SjðvÞ

p
eivt is related to the square root of the PSD, and the

excitation multiplied by its complex conjugate
ffiffiffiffiffiffiffiffiffiffiffiffi
SjðvÞ

p
e� ivt will yield exactly the PSD of the

excitation – we expect that the response, Equation 5.123, may be intimately related to the

frequency contents of the response. This is actually the case, since when we multiply on both

sides of Equation 5.123 by its complex conjugate

x
ðv; tÞ ¼ H
ðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
SjðvÞ

q
e� ivt ð5:124Þ

we immediately have

xðv; tÞx
ðv; tÞ ¼ jHðvÞj2SjðvÞ ð5:125Þ
Comparing with Equation 5.66, we find that

SXðvÞ ¼ xðv; tÞx
ðv; tÞ ð5:126Þ
This is an elegant formula, showing that the PSD of the response can be obtained by

multiplying the deterministic response of the system to a harmonic excitation by its complex
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conjugate, while the excitation has an amplitudewhich is identical to the square root of the PSD

of the stochastic excitations. Noting that the deterministic excitation used here is, in a sense, a

pseudo-excitation rather than an actual excitation, the above approach is called the pseudo-

excitation method (Lin, 1985).

The physical meaning of the pseudo-excitation is embedded in the fact that a relationship

exists in the frequency contents of the sample and the ensemble properties, namely the PSD

function, as shown in Equation 5.65b. Therefore, the pseudo-excitation method is essentially

the embedment of the relationship between the sample and the ensemble properties.

The great advantage of the pseudo-excitation method is exhibited in random vibration

analysis ofMDOF systems. Actually, the preceding discussions can be extended to their matrix

counterpart when an MDOF system is considered.

The PSD matrix of the stationary stochastic excitation has a relationship with the sample

Fourier spectrum:

SjðvÞ ¼ lim
T !¥

1

2T
E jðv;vÞj
ðv;vÞ½ � ð5:127Þ

Therefore, we can expect the frequency contents of the excitation can be characterized by a

set of excitation ĵðvÞeivt of which the r� r amplitude matrix ĵðvÞ satisfies

ĵðvÞĵ
ðvÞ ¼ SjðvÞ ð5:128Þ

Replacing the excitation in Equation 5.79 by ĵðvÞeivt yields

M€xþC _xþKx ¼ BĵðvÞeivt ð5:129Þ
Clealy, the n� r steady-state response matrix is given by (see Equation 5.81a)

xðv; tÞ ¼ HðvÞBĵðvÞeivt ð5:130Þ
Post-multiplying it by its complex conjugate yields

xðv; tÞx
ðv; tÞ ¼ ½HðvÞBĵðvÞeivt�½HðvÞBĵðvÞeivt�


¼ HðvÞB ĵðvÞĵ
ðvÞ
h i

BTH
ðvÞ

¼ HðvÞBSjðvÞBTH
ðvÞ

ð5:131Þ

Here, use has been made of Equation 5.128.

Comparing with Equation 5.84, we immediately find that

SXðvÞ ¼ xðv; tÞx
ðv; tÞ ð5:132Þ
Again, we see that the PSDmatrix of the response of an MDOF system can be obtained by a

set of deterministic dynamical response analyses.

If the modal superposition method is used, noting Equation 5.90 and assuming qmodes are

employed, then Equation 5.131 becomes

SXðvÞ ¼ xðv; tÞ � x
ðv; tÞ
¼

Xq
j¼1

HjðvÞcjc
T
j BĵðvÞeivt

" # Xq
j¼1

HjðvÞcjc
T
j BĵðvÞeivt

" #

ð5:133Þ
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As is known, the PSDmatrix is usually evaluated by employing Equation 5.91 (for example,

see Lutes and Sarkani (2004)). It is seen that Equation 5.133 is essentially a CQC scheme, but,

according to the discussion in Section 5.2.2.3, the computational effort in Equation 5.132 is

greatly reduced in comparison with Equation 5.91. Hence, the pseudo-excitation method can

greatly improve the efficiency of PSD analysis and makes possible the random vibration

analysis of large, complex structural systems.

In addition,modal superposition is not essential in the deterministic analysis of the system in

Equation 5.129. General time integration methods can also be applied. Thus, the proportional

damping matrix, which is necessary for the real-mode method, is not necessary in the time

integration method.

5.4.2 Pseudo-Excitation Method for Evolutionary Stochastic
Response Analysis

In the case that the excitations j(t) are an evolutionary stochastic process vector with the

modulation function matrix A(v, t) and the original stationary stochastic process �jðtÞ whose
PSDmatrix is S�jðvÞ, the pseudo-excitation corresponding to�jðtÞ is similarly chosen according

to the principle discussed in the preceding section as ĵðvÞeivt of which the r� r amplitude

matrix satisfies

ĵðvÞĵ*ðvÞ ¼ S�jðvÞ ð5:134Þ
Then it is modulated by A(v, t) such that the pseudo-excitation could be given by

Aðv; tÞĵeivt. The response of the system

M€xþC _xþKx ¼ BAðv; tÞĵðvÞeivt ð5:135Þ
is thus

xðv; tÞ ¼
ð¥
�¥

hðt� tÞBAðv; tÞĵðvÞeivt dt ¼ Hðv; tÞĵðvÞ ð5:136Þ

Multiplying by its complex conjugate on both sides and noting Equation 5.134 yields

xðv; tÞx
ðv; tÞ ¼ Hðv; tÞĵðvÞĵ
ðvÞH
ðv; tÞ ¼ Hðv; tÞS�jðvÞH
ðv; tÞ ð5:137Þ

Comparing this with Equation 5.120 immediately yields

SXðv; tÞ ¼ xðv; tÞx
ðv; tÞ ð5:138Þ
In Equations 5.136 and 5.137, use has been made of Equations 5.118 and 5.128 respectively.

We can see here that the evolutionary PSD matrix can also be obtained by a set of

deterministic analyses with the deterministic excitation related to the evolutionary PSDmatrix

of the excitations. Recalling the discussion in Section 5.3.2.4, we can further understand how

the modulation function modulates the intensity and the frequency contents of the excitations

simultaneously. In the pseudo-excitation method, this modulation is embedded in modulating

the deterministic harmonic excitations.
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5.4.3 Notes on Sections 5.2–5.4

We note that the main results in Sections 5.2–5.4 are derived starting with a formal solution

expression of the response to the excitation. In other words, we start with the linear operator

bridging the functional of the excitation as a time history or Fourier spectrum and the functional

of the response as a time history or Fourier spectrum, to establish the linear operator bridging

the functional of probabilistic characteristics of the excitations and the functional of probabi-

listic characteristics of the responses. In the derivations, the physical solution is used

considering the system behaviors. However, the description of the stochastic processes is

phenomenological.

By the way, all previous treatments are based on describing the physical relationship by

second-order differential equations. An alternative family of corresponding results can also be

derived by transferring the second-order differential equations to the corresponding state

equations (e.g. in A
�
str€om (1970)). Actually, in the latter description, there are some special

advantages. However, this will not be elaborated in the present section, considering the aim of

the book.

Besides the approaches starting with the formal solutions as elaborated in the preceding

sections, we can also commence by directly tackling the random differential equations with a

stochastic nonhomogeneous input to obtain the deterministic differential equations establish-

ing the relationship between the moments of the responses and the moments of the excitations

(e.g. refer to Lutes and Sarkani (2004)).

5.5 Statistical Linearization

As discussed earlier, in the analysis of linear systems, the physical solution can be obtained

and used as a basis to track the propagation of the moment characteristics from the source of

the randomness to the response. This, however, does not work for most nonlinear systems

because the formal solutions to nonlinear systems are unavailable except some special

simple cases (Nayfeh and Mook, 1995). In the analysis of deterministic nonlinear systems,

one of the effective methods, mainly suitable for lightly nonlinear systems, is the

perturbation method, which is first proposed by Poincare and has been extensively studied

(Nayfeh, 2000). The counterpart in random analysis of nonlinear systems has also been

studied by investigators (Lin, 1967; Skorokhod et al., 2002) and some basic ideas have been

treated in Chapter 4. On the other hand, an alternative approach is the statistical lineariza-

tion method, also referred to as stochastic linearization or equivalent linearization in some

of the literature (Lin, 1967; Roberts and Spanos, 1993; Crandall, 2006). This technique was

first proposed independently almost simultaneously by Booton (1954), Kazakov (1954) and

Caughey (1963).

5.5.1 Statistical Linearization Approximation

5.5.1.1 Nonlinear SDOF Systems

Consider the nonlinear SDOF system

m€X þ gðX; _XÞ ¼ jðtÞ ð5:139Þ
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wherem is themass, gðX; _XÞ includes the nonlinear damping and restoring forces and j(t) is the
stochastic excitation. The basic thought behind a statistical linearization approximation is to

replace Equation 5.139 by an equivalent linear system:

m€Y þ ceq _Y þ keqY ¼ jðtÞ ð5:140Þ
where ceq and keq are the equivalent damping and stiffness respectively, such that the error

between the solutions of the two systems is minimized, say in the sense of the mean-square.

Comparing Equations 5.139 and 5.140, the difference is

�e ¼ m€X þ gðX; _XÞ� ðm€Y þ ceq _Y þ keqYÞ ð5:141Þ
Strictly speaking, ifwe approximate the solution toEquation 5.139by that ofEquation5.140,

then the error should be defined by Equation 5.141 when Y is replaced by X. However, the

response X of the nonlinear system is unknown; therefore, the error so defined will be

intractable. In contrast, to obtain the equivalent response Y in Equation 5.140 is much easier.

Therefore, Equation 5.140 is solved instead of Equation 5.139. The error can then be defined by

Equation 5.141 when X is replaced by Y; namely:

e ¼ gðY; _YÞ� ceq _Y � keqY ð5:142Þ
To choose the equivalent damping ceq and the equivalent stiffness keq optimally, we should

minimize the error in a statistical sense. Actually, the error defined in Equation 5.142 is a

stochastic process, we naturally expect that E½e� ¼ 0, and the second-order moment, namely

the mean-square error

E½e2� ¼ Ef½gðY ; _YÞ� ceq _Y � keqY �2g ð5:143Þ
is minimized. This requires

@E½e2�
@ceq

¼ 0 ð5:144aÞ

and

@E½e2�
@keq

¼ 0 ð5:144bÞ

Equations (5.144a) and (5.144b) yield two linear equations and, therefore, give the optimal

values of ceq and keq by the solution:

ceq ¼ E½gðY ; _YÞ _Y �E½Y2� � E½gðY ; _YÞY �E½Y _Y�
E½ _Y2�E½Y2� � E2½Y _Y �

ð5:145aÞ

keq ¼ E½gðY; _YÞY�E½ _Y2� � E½gðY; _YÞ _Y�E½Y _Y �
E½ _Y2�E½Y2� � E2½Y _Y�

ð5:145bÞ

Interestingly, if ceq is replaced by keq, and simultaneously _Y is replaced by Y and in turn Y is

replaced by _Y, then Equation 5.145a becomes Equation 5.145b, and vice versa. The
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symmetry exhibited here lies in the fact that the terms ceq _Y and keqY are commutable in

Equation 5.143.

We see in Equations 5.145a and 5.145b that, to obtain the optimal values of ceq and keq, the

joint PDF of Y and _Y is needed; in turn, to solve the linear random vibration system in

Equation 5.140, the values of ceq and keq are needed. A circular interdependency is then formed

here; therefore, an iterative algorithm is needed to break the loop. Generally, the solving flow

starts with the estimated initial values of ceq and keq. A cycle is illustrated in Figure 5.7, where

the superscripts represent the steps of iteration and pðYðjÞ; _Y
ðjÞÞ represents the probabilistic

information (e.g. the joint statistics or PDF of Y and _Y at step j). The iteration could come to an

end if the error is limited within the tolerance, say by the error of ceq and keq:

jjcðjÞeq � cðj� 1Þ
eq jj � e1 jjkðjÞeq � kðj� 1Þ

eq jj � e2 ð5:146aÞ

or by the error of the probabilistic characteristics of Y and _Y :

jjðE½Y2�ÞðjÞ � ðE½Y2�Þðj� 1Þjj � e1 jjðE½ _Y2�ÞðjÞ � ðE½ _Y2�Þðj� 1Þjj � e2 ð5:146bÞ
where e1 and e2 are the corresponding error tolerances.

We should note that such determined optimal values of ceq and keq are time variant if the

response is a nonstationary process; therefore, the equivalent system in Equation 5.140 is a

time-variant linear system. In the case of the steady-state, stationary stochastic response,

considering that E½Y _Y� ¼ 0, Equations 5.145a and 5.145b can be simplified to

ceq ¼ E½gðY ; _YÞ _Y �E½Y2�
E½ _Y2�E½Y2�

and keq ¼ E½gðY; _YÞY�E½ _Y2�
E½ _Y2�E½Y2�

ð5:147Þ

Figure 5.7 Solving flow.
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More specifically, if the damping term is linear and the nonlinearity only occurs in the

restoring force – that is, gðX; _XÞ ¼ c _Xþ g1ðXÞ – then following Equation 5.147 we have

ceq¼ c.

5.5.1.2 Statistical Linearization Method for MDOF Systems

The same concept can be applied toMDOFnonlinear systems. Consider anMDOF systemwith

the equation of motion

M€XþGðX; _XÞ ¼ LjðtÞ ð5:148Þ
where M is the n� n mass matrix, Gð � Þ ¼ ðG1;G2; . . . ;GnÞT includes the damping and

restoring forces, L¼ [Lij]m�r is the n� r input force influence matrix and

jðtÞ ¼ ðj1ðtÞ; j2ðtÞ; . . . ; jrðtÞÞT is an r-dimensional stochastic process vector.

Assume the system in Equation 5.148 can be replaced by the linear MDOF system

M€YþCeq
_YþKeqY ¼ LjðtÞ ð5:149Þ

where Ceq and Keq are the n� n damping and stiffness matrixes respectively. Analogous to

Equation 5.142, the error vector can be defined by

e ¼ GðY; _YÞ�Ceq
_Y�KeqY ð5:150Þ

The optimal values of Ceq and Keq should minimize the covariance matrix of the error;

therefore:

@E½eeT�
@Ceq

¼ 0 and
@E½eeT�
@Keq

¼ 0 ð5:151Þ

This gives the equations

CeqE½ _Y _Y
T� þKeqE½Y _Y

T� ¼ E½GðY; _YÞ _YT� ð5:152aÞ

CeqE½ _YYT� þKeqE½YYT� ¼ E½GðY; _YÞYT� ð5:152bÞ
These equations can be solved to giveCeq andKeq as long as the joint PDFs of the responses

are known. Likewise, a loop is formed here. Hence, an iterative algorithm should be used to

solve the problem. The procedure analogous to that shown in Figure 5.7 can be used as well.

5.5.2 Random Vibrations of Hysteretic Structures

The restoring forces of structures in practical engineering are usually quite complex.

Experimental studies showed that the restoring-force curves may exhibit hysteresis, degrada-

tion of strength and stiffness, and pinching and so on. The differential equation model first

proposed by Bouc (1967) and Wen (1976), and then extended by other investigators

(Baber and Wen, 1981; Baber and Noori, 1985, 1986), can describe the above features

phenomenologically.
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Consider the nonlinear SDOF system in Equation 5.139, where the damping is linear and the

nonlinear restoring force is partitioned to the linear part and the hysteretic part; namely:

gðX; _XÞ ¼ c _XþaKXþð1�aÞKZ ð5:153Þ
where a is the ratio of the post-yield stiffness to the pre-yield stiffness (Figure 5.8).

When no effects of degradation and pinching are considered, the hysteretic component Z(t)

is governed by the differential equation

_Z ¼ A _X�bj _XjjZjn� 1
Z� g _XjZjn ð5:154Þ

Without loss of generality, we can set A¼ 1.

If the degradation of strength and stiffness is taken into account (Figure 5.9), then this model

can be extended to

_Z ¼ A _X� nðbj _XjjZjn� 1
Z þ g _XjZjnÞ

h
ð5:155Þ

in which n and h are the factors characterizing the degradations of strength and stiffness

respectively. It is seen that if n¼ 1 andh¼ 1, thenEquation 5.155 reduces to Equation 5.154. In

contrast, if n > 1, then the peak of Z(t) will decrease and this exhibits the degradation of

strength. Likewise, if h > 1, then the ratio of Z to X will decrease and this exhibits the

degradation of stiffness. According to the preceding analysis, considering that the degradations

of strength and stiffness will increase monotonically against increasing degree of nonlinearity,

K
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Figure 5.8 Partition of hysteretic restoring forces.
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Figure 5.9 Degradation of hysteresis.
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it is reasonable to assume that degradations of the strength and the stiffness are proportional to

the dissipated energy; namely:

n ¼ 1þ dne and h ¼ 1þ dhe ð5:156Þ
where dn and dh are parameters and e is the dissipated energy index:

eðtÞ ¼
ðt
0

Z _X dt ð5:157Þ

Evidently, the hysteretic dissipated energy in an element reads

EðtÞ ¼ ð1�aÞKeðtÞ ð5:158Þ

Letting dZ=dX ¼ 0, from Equation 5.155 we can get the ultimate hysteretic component

Zu ¼ A

nðbþ gÞ

 �1=n

ð5:159Þ

Therefore, the ultimate restoring force is

Ru ¼ aKXþ ð1�aÞKZu ð5:160Þ
To take into account the effect of pinching further, Equation 5.155 can be modified by

something like modulation to

_Z ¼ hðZÞA
_X� nðbj _XjjZjn� 1

Zþ g _XjZjnÞ
h

ð5:161Þ

If the appropriate shape is taken for h(Z), then the effect of pinching will occur. For instance,

we can use

hðZÞ ¼ 1:0� z1exp � Z sgnð _XÞ� qZu

z22


 �
ð5:162Þ

where

z1ðeÞ ¼ zsð1� e� peÞ and z2ðeÞ ¼ ðcþ dceÞðlþ z1ðeÞÞ ð5:163Þ
in which zs, p, q, c, dc and l are parameters.

In total there are 13 parameters involved. Actually, further investigation demonstrates that

only 12 of the 13 parameters are independent (Ma et al., 2004). If the parameters take

appropriate values, then the model can phenomenologically characterize the effect of

hysteresis, the degradations of stiffness and strength and the pinching. Typical hysteretic

curves are shown in Figure 5.10.

Substituting Equation 5.153 in Equation 5.139 yields

m€X þ c _XþaKXþð1�aÞKZ ¼ jðtÞ ð5:164Þ
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Introducing an augmented state vector ð _X;X; ZÞT, we can change the equation set Equa-

tions 5.164 and 5.161 into a multidimensional state equation:

d

dt

_X
X

Z

8<
:

9=
; ¼

� c

m
_X�a

K

m
X�ð1�aÞK

m
Z

_X

hðZÞA
_X� nðbj _XjjZjn� 1

Z þ g _XjZjnÞ
h

8>>><
>>>:

9>>>=
>>>;

þ
1

m
0

0

8><
>:

9>=
>;jðtÞ ð5:165Þ

Thus, by letting X ¼ ð _X;X; ZÞT and L ¼ ð1=m; 0; 0ÞT, we have

_X ¼ GðXÞþLjðtÞ ð5:166Þ
The statistical linearization technique can then be applied (Schenk and Schu€eller, 2005).

Actually, this nonlinear equation can be linearized through letting M¼ 0 in Equation 5.148.

Alternatively, it can also be approximated by the linear equation

_Y ¼ AeqYþLjðtÞ ð5:167Þ
Thus, the error is given by

�e ¼ GðXÞ�AeqY ð5:168Þ
When X is approximated by Y, Equation 5.168 can be replaced by

e ¼ GðYÞ�AeqY ð5:169Þ

Consequently, the optimal value of the coefficient matrix Aeq can be determined by letting

@E½eeT�
@Aeq

¼ @Ef½AeqX�GðXÞ�½AeqX�GðXÞ�Tg
@Aeq

¼ 0 ð5:170Þ

Again, this problem can be solved by an iterationmethod. For nonlinearMDOF systems, the

same idea can be used.

Figure 5.10 Typical hysteretic curves of the Bouc–Wen model.
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5.5.3 Notes on Arguments and Some Special Issues

5.5.3.1 Probability Density Function of the Response of Statistical

Linearized Systems

For simplicity, consider the steady-state, stationary stochastic response where the equivalent

linearized damping and stiffness are given by Equation 5.147.

In general, when the excitation is Gaussian, the response of the linear system in Equa-

tion 5.140 is also Gaussian; namely, Y(t) is Gaussian and can be characterized by the mean

mY and the standard deviation sY. Let us introduce a stationary process Z(t) and its derivative

process _ZðtÞ as subsidiary processes. If they are both Gaussian and the respective means and

standard deviations are mZ, sZ and m _Z ; s _Z , then the PDFs are

pZðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
sZ

e�ðz�mZ Þ=2s2
Z ð5:171aÞ

and

p _Zð _zÞ ¼
1ffiffiffiffiffiffi
2p

p
s _Z

e�ð _z�m _Z Þ=2s _Z
2 ð5:171bÞ

respectively. Replacing Y and _Y by Z and _Z respectively and introducing the PDF

(Equation 5.171a and 5.171b into Equation 5.147, we get the expressions of ceq and keq in

terms of mZ , sZ and m _Z , s _Z , denoted by ceqðmZ ;sZ ;m _Z ;s _ZÞ and keqðmZ ;sZ ;m _Z ;s _ZÞ respec-
tively for clarity. In sequence, substituting them in Equation 5.140will then getmY; sY ;m _Y and

s _Y , which are functions of ceqðmZ ;sZ ;m _Z ;s _ZÞ and keqðmZ ;sZ ;m _Z ;s _ZÞ; namely, they are also

functions ofmZ ,sZ ,m _Z ands _Z . Because Y and
_Y are replaced by Z and _Z respectively, certainly

we require

mYðmZ ;sZ ;m _Z ;s _ZÞ ¼ mZ

sYðmZ ;sZ ;m _Z ;s _ZÞ ¼ sZ

m _YðmZ ;sZ ;m _Z ;s _ZÞ ¼ m _Z

s _YðmZ ;sZ ;m _Z ;s _ZÞ ¼ s _Z

8>><
>>: ð5:172Þ

Solving these equations we will get mZ , sZ , m _Z and s _Z , and simultaneously mY, sY , m _Y

and s _Y .

The steady-state, stationary response of the nonlinear system in Equation 5.139 to the

Gaussian excitation, however, is usually non-Gaussian; therefore, employing the normal

distribution (Equations 5.171a and 5.171b) will undoubtedly induce errors. Actually, this is

one of the major sources of error in the statistical linearization method (Crandall, 2006).

According to Caughey’s theorem, which was stated in Caughey (1960) and proved in Crandall

(2006), if the true distribution shape of the response is employed instead of Equations 5.171a

and 5.171b, then solvingEquation 5.172will give accuratevalues ofmZ ,sZ ,m _Z ands _Z . For this

purpose, possible shapes of PDF are suggested; for example:

pZðzÞ ¼ exp½ � ðjzj=aÞm�Ð¥
�¥ exp½ � ðjzj=aÞm� dz ð5:173aÞ
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pZðzÞ ¼ exp½ � bðz2=a2Þ� ðz4=a4Þ�Ð¥
�¥ exp½ � bðz2=a2Þ� ðz4=a4Þ� dz ð5:173bÞ

the shapes of which are shown in Figure 5.11. For the Duffing oscillator, using the shape in

Equation 5.173b will yield accurate results.

5.5.3.2 On Error-Free Linearization and Different Criteria

After the standard statistical linearization techniques as discussed in the preceding sections has

been developed for nearly 40 years, Elishakoff and Colajanni (1997) thought that there were

something wrong.

The problem, as pointed out, essentially lies in the deduction from Equations 5.144a–

5.145b, where it was thought that the responses Y and _Y are independent of ceq and keq. The

‘error-free’ linearization, therefore, should consider Equations 5.144a and 5.144b more

carefully. Because Y and _Y , and therefore the PDF of Y and _Y , are functions of ceq and keq,

Equation 5.143 should be first computed to give the expressions of E½e2� in terms of ceq and keq,

then the partial derivatives in Equations 5.144a and 5.144b can be computed to yield a

nonlinear equation set with ceq and keq being the unknowns. Solving this equation set will give

the values of ceq and keq and then the statistics of Y and _Y can be obtained from the equivalent

linear system in Equation 5.140.

Although the above analysis is reasonable, the effect is not as good as expected. First, the

deduction is much more difficult and might be impossible for complex or multidimensional

problems. Second, even for simple problems, it was shown that the accuracy of the ‘error-free’

linearization is sometimes lower than that of standard linearization (Elishakoff and Colajanni,

1997).

The reason lies, perhaps, in the fact that in standard linearization techniques some types of

iteration algorithm are used, whereas no iteration is needed in ‘error-free’ linearization.

Actually, the iteration algorithm is one of the most effective approaches to make the loops

uncoupled.

Another important issue is the criterion used in the equivalent linearization. The above

criterionwas usually referred to as theKazakov II criterion (Kazakov, 1954). Themajor criteria

include Kazakov I, Kazakov II and the energy criterion (Crandall, 2006). Research examples

Figure 5.11 Different shapes of the PDFs.
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show that when Kazakov II is employed, Caughey’s theorem described above holds, while the

accuracy of the energy criterion is usually lower than that of the Kazakov II criterion.

5.5.3.3 Equivalent Stochastic Damping and Stiffness

In the statistical linearization method, the most reasonable start point might be to consider the

equivalent stiffness and damping as random variables; that is, usingmCeq
, sCeq

,mKeq
and sKeq

as

the unknowns. Actually, for a nonlinear system, the stiffness is varying against the stochastic

responses and, therefore, is essentially a stochastic process.

Set the equivalent linearized system of Equation 5.139 as

m€Y þCeq
_Y þKeqY ¼ jðtÞ ð5:174Þ

whereCeq andKeq are randomvariableswithmeans and standard deviationsmCeq
,sCeq

andmKeq
,

sKeq
respectively. The error (Equation 5.142) is now changed to

e ¼ gðY; _YÞ�Ceq
_Y �KeqY ð5:175Þ

Then the variance of the error is given as

E½e2� ¼ E½gðY; _YÞ�Ceq
_Y �KeqY �2g

¼ Efg2ðY ; _YÞþC2
eq
_Y
2 þK2

eqY
2 � 2CeqgðY ; _YÞ _Y � 2KeqgðY ; _YÞY þ 2CeqKeq

_YYg
ð5:176Þ

Of course, this is a function ofmCeq
,sCeq

,mKeq
andsKeq

. Thus, the optimal values ofmCeq
,sCeq

,

mKeq
and sKeq

should minimize E½e2�; that is:
@E½e2�
@mCeq

¼ 0
@E½e2�
@sCeq

¼ 0
@E½e2�
@mKeq

¼ 0
@E½e2�
@sKeq

¼ 0 ð5:177Þ

To achieve the expression of E½e2� with regard to mCeq
, sCeq

, mKeq
and sKeq

, the stochastic

structural system (Equation 5.174) should be solved by, for example, the approaches elaborated

in Chapter 4.

5.5.3.4 On Applicability

With regard to applications of the statistical linearization method to problems of practical

interest, we should note that:

(a) The equivalence between the original system and the linearized equivalent system is in the

sense of variances; therefore, the errors in the correlation function and the PDF may be

much larger. For instance, the PDFofY in Equation 5.140 isGaussianwhen the excitation is

Gaussian; however, the PDF of X in Equation 5.139 might be far from Gaussian, as shown

in Figure 5.11 for example.

(b) Because of the preceding reason, the statistical linearization method is usually not suitable

for reliability assessment.

(c) The statistical linearization method does not work in the case where essential nonlinearity

occurs, as in bifurcation, jump and limit circles for example.
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5.6 Fokker–Planck–Kolmogorov Equation

The moment-characteristics-oriented approaches capture part of the probabilistic information

of stochastic systems. However, this is not enough, particularly for nonlinear systems, where

the probability distribution of the responses might deviate far from the normal distribution. As

discussed in Chapter 1, to capture the evolution of probability densities is a dream of

investigators which can be dated back to Einstein. Through the studies of Fokker and Planck

andmathematicallymanipulated byKolmogorov, the FPKequation governing the evolution of

the joint densities of system states was established. Then the relationship between the

stochastic differential equation and the FPK equation was clarified when the Itô and the

Stratonovich stochastic calculus was established. These form the second thought stream in

stochastic system analysis: the family of PDF-oriented approaches.

5.6.1 Stochastic Differential Equation

5.6.1.1 Itô Integral and Itô Stochastic Differential Equation

The MDOF nonlinear system in Equation 5.148 can be written alternatively in the form of

the state equation

_Y ¼ AðY; tÞþBðY; tÞjðtÞ ð5:178Þ
where

Y¼ðY1;Y2;...;YmÞT¼
_X
X

� 	
A¼ðA1;A2;...;AmÞT¼ �M�1G

_X

� 	
B¼½Bij �m�r¼ M�1L

0


 �

To consider more general situations, we regard Bij’s as functions of Y and t.

jðtÞ ¼ ðj1ðtÞ; j2ðtÞ; . . . ; jrðtÞÞT is an r-dimensional stochastic process vector.

We now consider the case that j(t) is a Gaussian white-noise vector such that

E½jðtÞ� ¼ 0 E½jðt1ÞjTðt2Þ� ¼ Ddðt1 � t2Þ ð5:179Þ

where D¼ [Dij]r�r is an r� r positive definite matrix.

The solution to Equation 5.178 is given by the integral

YðtÞ ¼ Yðt0Þþ
ðt
t0

AðY; tÞ dtþ
ðt
t0

BðY; tÞjðtÞ dt ð5:180Þ

or in a differential form

dYðtÞ ¼ AðY; tÞ dtþBðY; tÞjðtÞ dt ð5:181Þ
Clearly, the mean can be obtained by

E½dYðtÞ� ¼ E½AðY; tÞ� dtþE½BðY; tÞjðtÞ� dt ¼ E½AðY; tÞ� dt ð5:182Þ

and the covariance matrix can be evaluated through
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E½fdYðt1Þ�E½dYðt1Þ�gfdYðt2Þ�E½dYðt2Þ�gT� ¼ Ef½BðY;t1Þjðt1Þdt1�½jTðt2ÞBTðY;t2Þdt2�g
¼ E½BðY;t1Þ�E½jðt1ÞjTðt2Þ�E½BTðY;t2Þ�dt1 dt2
¼ E½BðY;t1Þ�DE½BTðY;t2Þ�dðt1�t2Þdt1 dt2

ð5:183aÞ
In an alternative form, this is

E½fdYðtÞ� E½dYðtÞ�gfdYðtÞ� E½dYðtÞ�gT� ¼ E½B�DE½BT� dt ð5:183bÞ

The arguments inB are omitted for notational simplicity. Here, we use the assumption thatB
(Y, t) and j(t) dt are mutually independent, the rigorous meaning of which will be clarified

later.

LetA¼ 0 andB¼ I, where I is the unit matrix. Then, fromEquations 5.180–5.183b, we find

that if we define the integral process

ZðtÞ ¼ Zðt0Þþ
ðt
t0

jðtÞ dt ð5:184Þ

thenZ(t) is a Brownianmotion process vector because themeans are zero and the variances are

proportional to time duration (Gardiner, 1983). However, Brownian motion is continuous but

not differentiable.

The paradox that appears here can be solved in a mathematically consistent form by the

Riemann–Stielgjes integral instead of Equation 5.184. By doing so, Equation 5.181 can be

rewritten as

dYðtÞ ¼ AðY; tÞ dtþBðY; tÞ dWðtÞ ð5:185Þ
whereY,A and B are as defined in Equation 5.178 andWðtÞ ¼ ðW1ðtÞ;W2ðtÞ; . . . ; WrðtÞÞT is
an r-dimensional Brownianmotion process vector (sometimeswewill also use the terminology

Wiener process later) with

E½dWðtÞ� ¼ 0 E½dWðtÞ dWTðtÞ� ¼ D dt ð5:186Þ

in which D ¼ ½Dij �r�r is the same as in Equation 5.179; correspondingly, Equation 5.180 is

rewritten as

YðtÞ ¼ Yðt0Þþ
ðt
t0

AðY; tÞ dtþ
ðt
t0

BðY; tÞ dWðtÞ ð5:187Þ

The first integral here is the commonmean-square integral, while special attention should be

paid to the second integral heuristically because of the highly irregular nature of the trajectory

of W(t).

As usual, we replace the second integral by a limit of summation:

I ¼
ðt
t0

BðY; tÞdWðtÞ ¼ lim
n!¥

Xn
j¼1

BðY; tjÞ½WðtjÞ�Wðtj� 1Þ� ð5:188Þ
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where tj is some value over the interval [tj�1, tj]. In the common integral, it is known that tj can
be anywhere over the integral [tj�1, tj] and the limit in Equation 5.188 is invariant, and this

invariant value is defined as thevalue of the integral. In the caseW(t) is aWiener process vector,

however, this is not the case.

To make the concept clear, we first consider the expectation of a scalar integral with respect

to a Wiener process W(t), of which the mean and variance of increment are given by

E½dWðtÞ� ¼ 0 and Ef½dWðtÞ�2g ¼ D dt respectively:

E
ðt
t0

WðtÞ dWðtÞ

 �

¼ lim
n!¥

Xn
j¼1

EfWðtjÞ½WðtjÞ�Wðtj� 1Þ�g ð5:189Þ

Note that

E½WðtjÞWðtjÞ� ¼ EfWðtjÞ½WðtjÞ�WðtjÞþWðtjÞ�g
¼ EfWðtjÞ½WðtjÞ�WðtjÞ�gþ E½WðtjÞWðtjÞ�
¼ Dtj

ð5:190aÞ

where use has been made of

EfWðtjÞ½WðtjÞ�WðtjÞ�g ¼ 0 ð5:190bÞ
due to the independence of increments of the Wiener process. Likewise, E½WðtjÞWðtj� 1Þ�
¼ Dtj� 1. Thus, we can get

E
ðt
t0

WðtÞ dWðtÞ

 �

¼ lim
n!¥

D
Xn
j¼1

ðtj � tj� 1Þ ð5:191Þ

Somewhat surprisingly, this value is varies with different positions of tj. For instance, if we
choose for all j

tj ¼ atj þð1�aÞtj� 1 ð0 � a � 1Þ ð5:192Þ
it follows that

E
ðt
t0

WðtÞ dWðtÞ

 �

¼ ðt� t0ÞaD ð5:193Þ

Evidently, this indicates that the expectation of the integral depends on the position of the

intermediate points.

This issue can be further understood. Supposing a¼ 0, Equation 5.189 becomes

E
ðt
t0

WðtÞ dWðtÞ

 �

¼ lim
n!¥

Xn
j¼1

EfWðtj� 1Þ½WðtjÞ�Wðtj� 1Þ�g ð5:194aÞ

Owing to the independence of increments, we have EfWðtj� 1Þ½WðtjÞ�Wðtj� 1Þ�g ¼ 0 for

all j. Equation 5.194a immediately yields E½Ð t
t0
WðtÞ dWðtÞ� ¼ 0, which is consistent with

Equation 5.193 in the case a¼ 0.
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Now suppose a¼ 1; Equation 5.189 then becomes

E
ðt
t0

WðtÞ dWðtÞ

 �

¼ lim
n!¥

Xn
j¼1

EfWðtjÞ½WðtjÞ�Wðtj� 1Þ�g ð5:194bÞ

In this case, W(tj)¼W(tj�1) þ [W(tj)�W(tj�1)]; therefore, W(tj) is not independent of the

increment [W(tj)�W(tj�1)] because

EfWðtjÞ½WðtjÞ�Wðtj� 1Þ�g ¼ EðfWðtj� 1Þþ ½WðtjÞ�Wðtj� 1Þ�g½WðtjÞ�Wðtj� 1Þ�Þ
¼ Ef½WðtjÞ�Wðtj� 1Þ�½WðtjÞ�Wðtj� 1Þ�g
¼ ðtj � tj� 1ÞD

ð5:194cÞ

Thus, we now have E½Ð t
t0
WðtÞ dWðtÞ� ¼ ðt� t0ÞD. Again, this is consistent with Equa-

tion 5.193 in the case a¼ 1.

Likewise, if we use a¼ 1/2 and W ½ðtj þ tj� 1Þ=2� ¼ ½WðtjÞþWðtj� 1Þ�=2, then Equa-

tion 5.189 is now

E
ðt
t0

WðtÞ dWðtÞ

 �

¼ lim
n!¥

Xn
j¼1

E WðtjÞþWðtj� 1Þ
2

WðtjÞ�Wðtj� 1Þ
� �� 	

ð5:194dÞ

Here,W(tj�1) is independent of the increment of [W(tj)�W(tj�1)] butW(tj) is not. Combining

Equations 5.194a and 5.194b, we now find E½Ð t
t0
WðtÞ dWðtÞ� ¼ ðt� t0ÞD=2, which is consis-

tent with Equation 5.193 in the case a¼ 1/2.

The preceding discussions from Equations 5.194a–5.194d show the reason that the limit of

the summation inEquation 5.189 depends on the intermediate point lies in the fact that different

positions of the intermediate points means different correlations between the increment

DWj¼W(tj)�W(tj�1) and the integrand. This is also true when the integrand is other types

of function, say denoted by G(Y(t),t), where Y(t) is a stochastic process determined by a

stochastic differential equation, provided at any arbitrary time t1 the value of G(Y(t1),t1) is

independent of the value of W(t) at the times t > t1. Such a function G(Y(t),t) is a non-

anticipating function. Now it is obvious that, because of the nonanticipating feature, the

integral defined byðt
t0

GðYðtÞ; tÞ dWðtÞ ¼ lim
n!¥

Xn
j¼1

GðYðtj� 1Þ; tj� 1Þ½WðtjÞ�Wðtj� 1Þ� ð5:195Þ

is the mathematically simplest treatment, sinceG(Y(tj�1),tj�1) is independent of the increment

DWj, which will make the further mathematical manipulations much simpler than other

intermediate values as demonstrated above. The definition in Equation 5.195 is the renowned

Itô integral. Accordingly, the stochastic differential equation (Equation 5.185), when under-

stood in this sense, is referred to as the Itô stochastic differential equation (we can now go back

to Equation 5.183a, where essentially we assume that the Bij(Y, t) are nonanticipating

functions).

Here, we find that the fact of causality (that is, a present event is independent of the future

events) is of critical importance in Itô calculus.
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In the manipulation of Itô stochastic differentiation, because the second-order moment

Ef½dWðtÞ�2g ¼ D dt is in the order of dt, if l is a random variablewithmeanvalue E½l� ¼ 0 and

variance E½l2� ¼ D, then we can let dWðtÞ ¼ l
ffiffiffiffiffi
dt

p
. Thus, dW(t) is in the order of

ffiffiffiffiffi
dt

p
;

therefore, rather than being ignorable, the terms with regard to dW(t) will play important roles

in computation of the second-order moments. Thus, in contrast to common differentiation, the

terms of second order in the Taylor expansion should remain in Itô stochastic differentiation.

For instance, for a function f(Y(t)) where Y(t) is the solution of the Itô stochastic differential

Equation 5.185, the differentiation of f(Y(t)) is given as

df ðYðtÞÞ ¼ f ðYðtÞþ dYðtÞÞ� f ðYðtÞÞ

¼
Xm
‘¼1

@f

@Y‘
dY‘ðtÞþ 1

2

Xm
k¼1

Xm
‘¼1

@2f

@Yk@Y‘
dYkðtÞ dY‘ðtÞþ . . .

¼
Xm
‘¼1

@f

@Y‘
A‘ðYðtÞ; tÞ dtþ

Xr
s¼1

B‘sðYðtÞ; tÞ dWsðtÞ
" #

þ 1

2

Xm
k¼1

Xm
‘¼1

@2f

@Yk@Y‘

Xr
s¼1

BksðYðtÞ; tÞ dWsðtÞ
" # Xr

s¼1

B‘sðYðtÞ; tÞ dWsðtÞ
" #

þ . . .

¼
Xm
l¼1

@f

@Y‘
A‘ðYðtÞ; tÞ dtþ

Xr
s¼1

B‘sðYðtÞ; tÞ dWsðtÞ
" #

þ 1

2

Xm
k¼1

Xm
‘¼1

ðBDBTÞk‘
@2f

@Yk@Y‘
dtþ . . .

¼
Xm
‘¼1

A‘
@f

@Y‘
þ 1

2

Xm
k¼1

ðBDBTÞk‘
@2f

@Yk@Y‘

" #
dtþ

Xm
‘¼1

Xr
k¼1

B‘kðYðtÞ; tÞ @f

@Y‘
dWkðtÞ ð5:196Þ

where use has been made of the component form of Equation 5.185:

dY‘ ¼ A‘ðYðtÞ; tÞ dtþ
Xr
k¼1

B‘kðYðtÞ; tÞ dWkðtÞ ‘ ¼ 1; 2; . . . ;m ð5:197Þ

In the case m¼ 1, r¼ 1, Equation 5.196 reduces to

df ðYðtÞÞ ¼ f ðYðtÞþ dYðtÞÞ� f ðYðtÞÞ ¼ @f

@Y
dYðtÞþ 1

2

@2f

@Y2
½dYðtÞ�2 þ . . .

¼ @f

@Y
AðYðtÞ; tÞdtþBðYðtÞ; tÞ dWðtÞ½ � þ 1

2

@2f

@Y2
B2ðYðtÞ; tÞ½dWðtÞ�2 þ . . .

¼ AðYðtÞ; tÞ @f
@Y

þ D

2
B2ðYðtÞ; tÞ @

2f

@Y2


 �
dtþ @ f

@Y
BðYðtÞ; tÞ dWðtÞ

ð5:198Þ
Equations 5.196 and 5.198 are usually called the Itô lemma. The difference between

Equation 5.198 and common differentiation is that the terms of second order with respect to
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[dY(t)]2 (see the second equality) cannot be eliminated because they are in the order of dt

and, therefore, an additional corrected term occurs in the final equality in the terms with

respect to dt.

5.6.1.2 Stratonovich’s Stochastic Differential Equation

The Itô integral is elegant in dealing with mathematical white noise whose correlative time is

zero. In practice, however, the correlative time of the physical noise might be short, but finite

and not zero. To consider this fact, the correlation should be considered; namely, a in

Equation 5.192 should take values 0 <a< 1 rather than zero as is done in the Itô integral.

Stratonovich (1963) defined the integral with G(Y(t),t) being the integrand by

S
ðt
t0

GðYðtÞ; tÞ dWðtÞ ¼ lim
n!¥

Xn
j¼1

G
YðtjÞþ Yðtj� 1Þ

2
; tj� 1

� 

WðtjÞ�Wðtj� 1Þ
� � ð5:199Þ

The corresponding stochastic differential equation is referred to as the Stratonovich’s
stochastic differential equation.4

There is no constant relationship between the Itô and Stratonovich’s integrals. However, for
the case where the stochastic process is related to a stochastic differential equation, we can

establish a relationship. To be clear, we consider the Stratonovich’s stochastic differential

equation

dYðtÞ ¼ aðY; tÞ dtþbðY; tÞ dWðtÞ ð5:200Þ
where a ¼ ða1;a2; . . . ;amÞT and b ¼ ½bij �m�r. Its solution is given by the Stratonovich’s

integral

YðtÞ ¼ Yðt0Þþ
ðt
t0

aðY; tÞ dtþS
ðt
t0

bðY; tÞ dWðtÞ ð5:201Þ

We assume that the solutions to Equations 5.201 and 5.187 are equivalent.

First, we will compute the terms of the Stratonovich’s integral:

S
ðt
t0

bðY; tÞ dWðtÞ ¼ lim
n!¥

Xn
i¼1

b
Yj þYj� 1

2
; tj� 1

� 

Wj �Wj� 1

� � ð5:202Þ

Noting that Yj¼Yj�1 þ DYj, we have

b
Yj þYj� 1

2
; tj� 1

� 

¼ b Yj� 1 þ DYj

2
; tj� 1

� 

¼ bðYj� 1; tj� 1Þþ 1

2

Xm
‘¼1

@b

@Y‘
DY‘;j

ð5:203aÞ

4 At first glance one may be confused why the argument t in G(Y, t) still takes tj�1 and does not get replaced by

(tj þ tj�1)/2.We can try replacing tj�1 by (tj þ tj�1)/2 and then expandingG(Y, t) with respect to t at tj�1, then we find

that thiswill lead to a termof the orderOðDtÞ3=2 inEquation5.199.Thismeans thatwhetherwe replace t by (tj þ tj�1)/2

or by tj�1 will essentially have no influence on the results. Again, one can see from here that the influence of Y and t is

different in G(Y, t) because Y(t) is associated with a Wiener process.
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where DYl,j can be obtained from Equation 5.197 by Itô differentiation:

DY‘;j ¼ A‘ðYj� 1; tj� 1Þðtj � tj� 1Þþ
Xr
k¼1

B‘kðYj� 1; tj� 1Þ½WkðtjÞ�Wkðtj� 1Þ� ð5:203bÞ

Introducing Equations 5.203a and 5.203b into Equation 5.202 yields

lim
n!¥

Xn
j¼1

b
Yj þYj� 1

2
; tj� 1

� 

DWj

¼ limn!¥
Xn
j¼1

bðYj� 1; tj� 1ÞDWj þ 1

2
lim
n!¥

Xm
‘¼1

Xn
j¼1

@b

@Y‘
DWj

� A‘ðYj� 1; tj� 1ÞDtj þ
Xr
k¼1

B‘kðYj� 1; tj� 1ÞDWk;jÞ
" #

¼
ðt
t0

bðY; tÞ dWðtÞþ 1

2
lim
n!¥

Xm
‘¼1

Xn
j¼1

@b

@Y‘
DWj �

Xr
k¼1

B‘kðYj� 1; tj� 1ÞDWk;j

" #

¼
ðt
t0

bðY; tÞ dWðtÞþ 1

2

Xm
‘¼1

ðt
t0

@b

@Y‘
DBT

‘; � ðY; tÞ dt ð5:204Þ

where BT
‘; � ¼ ðB‘1;B‘2; . . . ;B‘rÞT, Dtj¼ tj� tj�1, DWj¼Wj�Wj�1 and DWk,j¼Wk(tj)�

Wk(tj� 1).

Combining Equations 5.201, 5.202 and 5.204 and comparing with Equation 5.187, we have

aðY; tÞ ¼ AðY; tÞ� 1

2

Xm
‘¼1

@B

@Y‘
DBT

‘; � ðY; tÞ ð5:205aÞ

bðY; tÞ ¼ BðY; tÞ ð5:205bÞ

where Equation 5.205b is used to replace b by B in Equation 5.204 to yield Equation 5.205a,

which is referred to as the Wong–Zakai correction (Wong and Zakai, 1965). Note that, when

b is independent of Y, the Wong–Zakai correction vanishes. Conversely, we have

AðY; tÞ ¼ aðY; tÞþ 1

2

Xm
‘¼1

@b

@Y‘
DbT

‘; � ðY; tÞ ð5:206aÞ

BðY; tÞ ¼ bðY; tÞ ð5:206bÞ
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By Equations 5.206a and 5.206b, when a practical engineering structure subjected to

physical white noise was modeled by the Stratonovich’s stochastic differential equation, it can
be transformed into an Itô stochastic differential equation which is mathematically favorable.

This is particularly preferred in establishment of the FPK equation, as discussed in the

following sections.

Before we go there, the existence and uniqueness for the stochastic differential equations

should be noted here. For Equation 5.185, the following theorem can be proved (Øksendal,

2005). Let T > 0 and A(y, t) and B(y, t) be measurable functions satisfying

jAðy; tÞj þ jBðy; tÞj � Cð1þ jyjÞ y 2 R
m; t 2 ½0; T� ð5:207aÞ

for some constant C (where jBj2 ¼P jBijj2) and such that

jAðx; tÞ�Aðy; tÞj þ jBðx; tÞ�Bðy; tÞj � Djx� yj x; y 2 R
m; t 2 ½0; T� ð5:207bÞ

for some constant D. Let Z be a random variable which is independent of the s-algebra FðmÞ
¥

generated by W(s), s� 0 and such that

E½jZj2�<¥ ð5:207cÞ
Then the stochastic differential Equation 5.185 has a unique t-continuous solution Y(t, v)

with the property thatY(t,v) is adapted to the filtrationF Z
t generated by Z andW(s), s� 0, and

E
ðT
0

jYðtÞj2 dt

 �

<¥ ð5:207dÞ

5.6.2 Fokker–Planck–Kolmogorov Equation

Let a stochastic process vector Y(t) be determined by the Itô stochastic differential Equa-

tion 5.185, which is quoted here for convenience:

dYðtÞ ¼ AðY; tÞ dtþBðY; tÞ dWðtÞ ð5:208Þ
We are interested in the function, say f(Y(t)), with Y(t) being the argument. As a stochastic

process, let us first examine the evolution of the mean; that is, dE½f ðYðtÞÞ�=dt. Because the

derivative and the expectation operator are interchangeable, there is

dE½f ðYðtÞÞ�
dt

¼ E df ðYðtÞÞ
dt

� 

ð5:209aÞ

SinceY(t) is determined by the Itô stochastic differential Equation 5.208, then according to

Equation 5.196 it follows that

E½df ðYðtÞÞ� ¼ E
Xm
‘¼1

A‘
@f

@Y‘
þ1

2

Xm
k¼1

ðBDBTÞk‘
@2f

@Yk@Y‘

" #
dtþ

Xm
‘¼1

Xr
k¼1

B‘kðYðtÞ;tÞ @f
@Y‘

dWkðtÞ
( )

¼ E
Xm
‘¼1

A‘
@f

@Y‘
þ1

2

Xm
k¼1

ðBDBTÞk‘
@2f

@Yk@Y‘

" #
dt

( )

ð5:209bÞ
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Here, use has been made of the fact that the B‘kðYðtÞ; tÞ are nonanticipating functions so that
the second term with respect to dWk(t) vanishes and ðBDBTÞ‘k represents the ‘kth component

of the matrix BDBT.

Combination of Equations 5.209a and 5.209b yields

dE½ f ðYðtÞÞ�
dt

¼ E
Xm
‘¼1

A‘
@f

@Y‘
þ 1

2

Xm
‘¼1

Xm
k¼1

ðBDBTÞk‘
@2f

@Yk@Y‘

( )
ð5:209cÞ

On theotherhand, denoting the conditional probabilitydensity ofY(t) | (y0, t0) asp(y, t | y0,t0),
we have

dE½f ðYðtÞÞ�
dt

¼ d

dt

ð¥
�¥

f ðyÞpYðy; tjy0; t0Þ dy ¼
ð¥
�¥

f ðyÞ @pYðy; tjy0; t0Þ
@t

dy ð5:210Þ

And simultaneously, the right-hand side of Equation 5.209c yields

E
Xm
‘¼1

A‘
@f

@Y‘
þ 1

2

Xm
‘¼1

Xm
k¼1

ðBDBTÞk‘
@2f

@Yk@Y‘

( )
¼
ð¥
�¥

Xm
‘¼1

A‘ðy; tÞ @f ðyÞ
@y‘

(

þ 1

2

Xm
‘¼1

Xm
k¼1

½Bðy; tÞDBTðy; tÞ�k‘
@2f ðyÞ
@yk@y‘

)
pYðy; tjy0; t0Þ dy ð5:211aÞ

Integrating by parts and noting usually it holds that

A‘ðy; tÞf ðyÞpYðy; tjy0; t0Þjy‘ !�¥ ¼ 0 ‘ ¼ 1; 2; . . . ;m ð5:211bÞ

Bðy; tÞDBTðy; tÞ @f ðyÞ
@y‘

pYðy; tjy0; t0Þ
����
y‘ !�¥

¼ 0 ‘ ¼ 1; 2; . . . ;m ð5:211cÞ

Bðy; tÞDBTðy; tÞf ðyÞpYðy; tjy0; t0Þjy‘ !�¥ ¼ 0 ‘ ¼ 1; 2; . . . ;m ð5:211dÞ

Equation 5.211a becomes

E
Xm
‘¼1

A‘
@f

@Y‘
þ 1

2

Xm
‘¼1

Xm
k¼1

ðBDBTÞk‘
@2f

@Yk@Y‘

( )
¼
ð
W
f ðyÞ �

Xm
‘¼1

@½A‘ðy; tÞpYðy; tjy0; t0Þ�
@y‘

(

þ 1

2

Xm
‘¼1

Xm
k¼1

@2f½Bðy; tÞDBTðy; tÞ�k‘pYðy; tjy0; t0Þg
@yk@y‘

	
dy ð5:211eÞ

Comparing Equations 5.210 and 5.211e and noting that f (y) is arbitrary, we must have

@pY
@t

¼ �
Xm
‘¼1

@½A‘ðy; tÞpY�
@y‘

þ 1

2

Xm
‘¼1

Xm
k¼1

@2f½Bðy; tÞDBTðy; tÞ�k‘pYg
@yk@y‘

ð5:212Þ

where pY represents pY(y, t | y0, t0) for simplicity.

182 Stochastic Dynamics of Structures



Equation 5.212 is the well-known FPK equation.

IfQðy; tÞ ¼ ½Q‘k�r�r is an orthogonal matrix –that is,QQT¼ Ir�r, where Ir�r is the r� r unit

matrix – it can be seen thatQDQT¼D becauseD is an r� r diagonalmatrix. Therefore, ifW(t)

is replaced byQW(t), then the matrix B(y, t)DBT(y, t) is replaced by B(y, t)Q(y, t)DQT(y, t)
BT(y, t)¼B(y, t)DBT(y, t), which is essentially invariant. This means that the FPK equation is

invariant against the orthogonal transformation on the Wiener process vector. In other words,

the stochastic differential equation associated with an FPKequation is nonunique. This may be

important to understanding the relationship between the FPK equation and the related

stochastic differential equation. Actually, the physical sense of the nonuniqueness is that the

description of probability density usually corresponds to an infinite set of trajectories.

In addition, Equation 5.212 also holds when pY represents the instantaneous probability

density pY(y, t) instead of the transition probability density. This can be achieved if we note that
pYðy; tÞ ¼

Ð
pYðy; tjy0; t0ÞpYðy0; t0Þ dy0, where pY(y0, t0) is the initial joint PDF.

Wenow further discuss themeanings of the coefficients in the FPKequation, Equation 5.212.

According to Equation 5.182 in Section 5.6.1.1, noting that, given {Y(t)¼ y}, we have

Aðy; tÞ ¼ E½dYðtÞjYðtÞ ¼ y�
dt

¼ lim
Dt! 0

E½DYðtÞjYðtÞ ¼ y�
Dt

ð5:213aÞ

where DY(t)¼Y(t þ Dt)�Y(t). Likewise, from Equation (5.183b), we have

Bðy; tÞDBTðy; tÞ ¼ E½dYðtÞ dYTðtÞjYðtÞ ¼ y�
dt

¼ lim
Dt! 0

Ef½DYðtÞDYTðtÞ�jYðtÞ ¼ yg
Dt

ð5:213bÞ

These quantities are called the derivate moments (Moyal, 1949). Equation 5.213a means

that the coefficient A(y, t) reflects the average tendency; therefore, it is referred to as the drift

coefficient, which characterizes the mean drift velocity. In contrast, Equation 5.213b means

that the matrix B(y, t)DBT(y, t) results from the effect of Brownian motion, or a diffusion

process; therefore, it is referred to as the diffusion coefficient. Now it is clear that the physical

sense of Equation 5.212 is that the change of probability is due to drift and diffusion.

By the way, we point out that the derivate moments of higher order vanish if Y(t) is

Markovian; for instance, it can be proved that (Gardiner, 1983)

~Cijk ¼ lim
Dt! 0

Ef½DYiðtÞDYjðtÞDYkðtÞ�jYðtÞ ¼ yg
Dt

¼ 0 ð5:213cÞ

This is essentially due to the fact that the transition probability density of aMarkov process is

determined by only two time instants; therefore, only themoment of increment of nomore than

second order is in the order of increment of time. More specifically, if the Markov process is

related to a Brownian motion process, then we have Ef½dWðtÞ�Ng ¼ 0 forN > 2; therefore, the

derivate moment in the form of Equation 5.213c must vanish.

In a more general sense, the FPK equation can be deduced from the Chapman–Kolmogorov

equation

pYðy; tjy0; t0Þ ¼
ð¥
�¥

pYðy; tjz; t1ÞpYðz; t1jy0; t0Þ dz ð5:214Þ
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as a specific case of differential Chapman–Kolmogorov equation when there is no jumps

(Gardiner, 1983), or it can also be derived as a probability evolution equation in the specific case

of a Markov process (Lin, 1967).

The initial condition for the FPK equation (Equation 5.212), when pY represents the

transition PDF pY(y, t | y0, t0), is

pYðy; t0jy0; t0Þ ¼ dðy� y0Þ ð5:215aÞ
In the case pY represents the instantaneous probability density pY(y, t), the initial condition is

pYðy; t0Þ ¼ pY0
ðyÞ ð5:215bÞ

The boundary condition, according to different physical problems, may be different. For

instance, for some systems an absorbing or reflection barrier exists in the space. For structural

response analysis, the simplest but most widely used conditions for the transition PDF and the

instantaneous PDF are

pYðy; tjy0; t0Þjy‘ !�¥ ¼ 0 ð5:216aÞ

and

pYðy; tÞjy‘ !�¥ ¼ 0 ð5:216bÞ
respectively.

5.6.3 Solution to the Fokker–Planck–Kolmogorov Equation

5.6.3.1 Closed-Form Transient Solution to the Fokker–Planck–Kolmogorov

Equation

Linear Systems
Consider the linear stochastic differential equation

dYðtÞ ¼ ~aY dtþ ~b dWðtÞ ð5:217Þ
where ~a ¼ ½~aij�m�m and ~b ¼ ½~bij�m�r are the systemmatrix and the input force influence matrix

respectively.

According to complex modal theory, Equation 5.217 can be uncoupled (Fang and Wang,

1986). Denote the eigenmatrix of ~a by c. Let Y(t)¼cZ(t), where ZðtÞ ¼ ðZ1ðtÞ; Z2ðtÞ;
. . . ; ZmðtÞÞT. Introducing this into Equation 5.217, pre-multiplying it by cT and noting the

orthogonality, we have

dZðtÞ ¼ aZ dtþ b dWðtÞ ð5:218aÞ
where a ¼ CT~aC ¼ diag½a1; a2; . . . ; am� and b ¼ ½bjk�m�r ¼ CT~b. The component form is

given as

dZ‘ðtÞ ¼ a‘Z‘ dtþ
Xr
k¼1

b‘k dWkðtÞ ‘ ¼ 1; 2; . . . ;m ð5:218bÞ
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Because the Wk(t) are Wiener processes, the process W
P
‘ ðtÞ ¼

Pr
k¼1 b‘kWkðtÞ is also a

Wiener process, for which the variance is

Ef½dWP
‘ ðtÞ�2g ¼

Xr
k¼1

Xr
j¼1

b‘kb‘jDkj dt ¼ k‘ dt ð5:219Þ

where k‘ ¼
Pr

k¼1

Pr
j¼1 b‘kb‘jDkj . The FPKequation associatedwith Equation 5.218b is then

@pZ‘ðz‘; tjz‘;0; t0Þ
@t

¼ � @½a‘z‘pZ‘ðz‘; tjz‘;0; t0Þ�
@z‘

þ 1

2
k‘

@2½pZ‘ðz‘; tjz‘;0; t0Þ�
@z2‘

ð5:220Þ

where pZ‘ðz‘; tjz‘;0; t0Þ is the transition PDF of Z‘ðtÞ. The initial condition is

pZ‘ðz‘; tjz‘;0; t0Þ ¼ dðz‘ � z‘;0Þ.
Taking the Fourier transform on both sides of Equation 5.220 and noting that

fðq; tjz‘;0; t0Þ ¼
ð¥
�¥

pZ‘ðz‘; tjz‘;0; t0Þe� iqz‘ dz‘ ð5:221Þ

then from Equation 5.220 we have

@f

@t
¼ a‘q

@f

@q
� 1

2
k‘q

2f ð5:222Þ

in the deduction of which use has been made of

q
@fðiqÞ
@q

¼
ð¥
�¥

pZ‘ðz‘; tjz‘;0; t0Þiqz‘ e� iqz‘ dz‘ ð5:223Þ

which is clear from Equation 5.221.

The method of characteristics can be used to solve Equation 5.222. In order to do so, a

subsidiary equation is introduced as follows:

dt

1
¼ � dq

a‘q
¼ � df

1
2
k‘q

2f
ð5:224Þ

The integral of the first equation is given as

q ¼ c‘e
� a‘ðt� t0Þ ð5:225aÞ

while introducing it into the second equation gives

f ¼ c exp
k‘
4a‘

q2

� 

ð5:225bÞ

The general solution to Equation 5.222, therefore, is

fðq; tjz‘;0; t0Þ ¼ gðqea‘ðt� t0ÞÞ exp k‘
4a‘

q2

� 

ð5:225cÞ

where g(�) is an arbitrary function.
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Note from Equation 5.221 that the initial condition

fðq; t0jz‘;0; t0Þ ¼
ð¥
�¥

dðz‘ � z‘;0Þe� iqz‘ dz‘ ¼ e� iqz‘;0 ð5:226Þ

From the above two equations it follows that

gðqÞ ¼ exp � iqz‘;0 � k‘
4a‘

q2

� 

ð5:227Þ

Hence, we have

fðq; tjz‘;0; t0Þ ¼ exp � iqz‘;0 e
a‘ðt� t0Þ þ k‘

4a‘
q2 1� e2a‘ðt� t0Þ
h i� 	

ð5:228Þ

Taking the inverse Fourier transform on both sides of it yields

pZ‘ðz‘; tjz‘;0; t0Þ ¼ 1

2p

ð¥
�¥

fðq; tjz‘;0; t0Þeiqz‘ dq

¼ 1ffiffiffiffiffiffi
2p

p
sZ‘ðtÞ

exp
z‘ �mZ‘

ðtÞ
2sZ‘ðtÞ


 �2 ð5:229Þ

where

mZ‘
ðtÞ ¼ z‘;0 e

a‘ðt� t0Þ ð5:230aÞ

sZ‘ðtÞ ¼
k‘
2a‘

1� e2a‘ðt� t0Þ
h i

ð5:230bÞ

Equation 5.229 shows that the stochastic process Z‘ðtÞ governed by the linear stochastic

differential equation (Equation 5.218b) is Gaussian. Because the Wiener processes W(t) are

Gaussian, this means that the linear stochastic differential operator will transform a Gaussian

process to another Gaussian process. Actually, directly from Equation 5.218b, it follows that

Z‘ðtÞ ¼ Z‘;0 e
a‘ðt� t0Þ þ

ðt
t0

ea‘ðt� tÞ dW
P
‘ ðtÞ ð5:231Þ

Note there that
Pr

k¼1 b‘kWkðtÞ is replaced by W
P
‘ ðtÞ for notational convenience. Under

the condition Z‘;0 ¼ z‘;0, noting that ea‘ðt� tÞ is a nonanticipating function and using the Itô

integral (see Section 5.6.1), we immediately get

E½Z‘ðtÞ� ¼ z‘;0 e
a‘ðt� t0Þ ð5:232aÞ

EðfZ‘ðtÞ� E½Z‘ðtÞ�g2Þ ¼ k‘
2a‘

1� e2a‘ðt� t0Þ
h i

ð5:232bÞ

which are exactly the same as Equations 5.230a and 5.230b respectively.
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The preceding derivation holds for all ‘ ¼ 1; 2; . . . ;m; therefore, the vector process Z(t) is a

Gaussianvector processwith the componentmZ‘
ðtÞ of themeanmZðtÞ given byEquation 5.230a

for ‘ ¼ 1; 2; . . . ;m. However, because all theZ‘ are dependent on theW‘ðtÞ, it is possible that the
Z‘ are correlated rather than independent. In other words, Z(t) is a joint correlated Gaussian

vector. This can be demonstrated when we compute

EðfZ‘ðtÞ� E½Z‘ðtÞ�gfZkðtÞ� E½ZkðtÞ�gÞ ¼
Ð t
t0

Ð t
t0
ea‘ðt� t1Þeakðt� t2Þ

�E
Xr
s¼1

b‘sdWsðt1Þ
 ! Xr

j¼1

bkjdWjðt2Þ
 !" #

¼ 1

a‘ þ ak

Xr
s¼1

Xr
j¼1

b‘sbkjDsj

 !
1� eða‘ þ akÞðt� t0Þ
h i

¼ ½bDbT�‘k
a‘ þ ak

1� eða‘ þ akÞðt� t0Þ
h i

ð5:233Þ

Therefore, let CZ(t) be the covariance matrix, then the component is given by Equa-

tion 5.233, namely ½CZðtÞ�‘k ¼ EðfZ‘ðtÞ� E½Z‘ðtÞ�gfZkðtÞ� E½ZkðtÞ�gÞ.
On the other hand, the FPK equation associated with Equation 5.218a is

@pZ
@t

¼ �
Xm
‘¼1

@½a‘z‘pZ�
@z‘

þ 1

2

Xm
k¼1

Xm
‘¼1

@2f½bDbT�‘kpZg
@z‘@zk

ð5:234Þ

where pZ represents the transition probability density pZ(z, t | z0, t0).
According to the preceding analysis, the joint transition probability density is

pZðz; tjz0; t0Þ ¼ ð2pÞ�m=2jCZðtÞj� 1=2
exp � 1

2
½z�mZðtÞ�TC� 1

Z ðtÞ z�mZðtÞ½ �
� 	

ð5:235Þ

where the component ofmZ(t) is given by Equation 5.230a and the component ofCZ(t) is given

by Equation 5.233. This, of course, must be the closed-form solution to the FPK equation

Equation 5.234, as also can be verified by directly introducing Equation 5.235 into

Equation 5.234 and knowing the uniqueness of the solution.

Likewise, the FPK equation associated directly with Equation 5.217 is

@pY
@t

¼ �
Xm
‘¼1

@

@y‘

Xm
k¼1

~a‘y‘kpY

 !
þ 1

2

Xm
k¼1

Xm
‘¼1

@2f½~bD~b
T�‘kpYg

@y‘@yk
ð5:236Þ

where pY represents the transition probability density pY(y, t | y0, t0), ½~bD~bT�‘k is the comp-

onent of the matrix ~bD~b
T
and ~a‘ is the component of ~a. The solution of Equation 5.236 is

pYðy; tjy0; t0Þ ¼ ð2pÞ�m=2jCYðtÞj� 1=2
exp � 1

2
½y�mYðtÞ�TC� 1

Y ðtÞ y�mYðtÞ½ �
� 	

ð5:237Þ

where the mean vector mY(t) and the covariance matrix CY(t) can be computed directly by

corresponding operators on the stochastic integral solution to Equation 5.217 under the
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condition Y(t0)¼ y0. Because

YðtÞ ¼ Y0 e
~aðt� t0Þ þ

ðt
t0

e~aðt� t0Þ~b dWðtÞ ð5:238Þ

we can get

mYðtÞ ¼ y0 e
~aðt� t0Þ ð5:239aÞ

CYðtÞ ¼
ðt
t0

e~aðt� t0Þ~bD~b
T
e~a

Tðt� t0Þ dt ð5:239bÞ

Certainly, the solution equation (Equation 5.237) can also be acquired by using the linear

transformationY(t)¼cZ(t), where the transition probability density ofZ(t) has been given by
Equation 5.235.

By the way, the FPK Equation 5.234 can also be solved by directly using the Fourier

transform and following the like steps as employed above.

The process defined by the form of Equation 5.217 is termed the Ornstein–Uhlenbeck

process, due to their initial investigations in 1930 (Uhlenbeck and Ornstein, 1930).

Understanding Nonlinear Systems
For the FPK Equation 5.212 associated with the nonlinear stochastic differential Equa-

tion 5.185, now we consider the transition probability density pY(y, t þ Dt | z, t) with the

initial condition pY(y, t | z, t)¼ d(y� z).

In the case Dt is appropriately small, the coefficients of Equation 5.212 can be regarded as

invariant and, therefore, it is approximated by

@pY
@t

¼ �
Xm
‘¼1

A‘ðz; tÞ @pY
@y‘

þ 1

2

Xm
‘¼1

Xm
k¼1

½Bðz; tÞDBTðz; tÞ�‘k
@2pY

@y‘@yk
ð5:240Þ

By the same steps employed in the preceding section, the solution of the above equation is

pYðy; tþDtjz; tÞ ¼ ð2pÞ�m=2jCYjzðt;DtÞj� 1=2

�exp � 1

2
½y�mYjzðt;DtÞ�TC� 1

Yjz ðt;DtÞ y�mYjzðt;DtÞ
h i� 	

ð5:241Þ

where the mean vector and the covariance matrix are

mYjzðt;DtÞ ¼ zþAðz; tÞDt ð5:242aÞ

and

CYjzðt;DtÞ ¼ Bðz; tÞDBTðz; tÞDt ð5:242bÞ

respectively.
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These results demonstrate that the instantaneous transition probability density is Gaussian,

while the stochastic process vector can be regarded, in an appropriate small time increment

[t, t þ Dt], as the superposition of a mean (deterministic process) and the effect of a diffusion

process; namely:

YðtþDtÞ ¼ zþAðz; tÞDtþBðz; tÞDWðtÞ ð5:243Þ
It is certainly quite easy to acquire Equations 5.242a and 5.242b directly from Equa-

tion 5.243, instead of solving Equation 5.240. Alternatively:

YðtþDtÞ ¼ zþAðz; tÞDtþhðz; tÞðDtÞ1=2 ð5:244Þ
where h(z, t) is an m-dimensional zero-mean Gaussian stochastic process vector with

covariance matrix E½hðz; tÞhTðz; tÞ� ¼ Bðz; tÞDBTðz; tÞ. Clearly, Equation 5.244 is consistent
with Equation 5.243. The above equation shows that the trajectory ofY(t) is continuous but is

quite irregular due to the terms of ðDtÞ1=2. More specifically, if A(z, t)¼ 0 and h(z, t) do not

depend on z and t, then the trajectory ofY(t) is so irregular that it is undifferentiable at any time.

Moreover, from the understanding that the processY can be regarded as the combination of a

drift process and the effect of a diffusion process (see Equations 5.243 and 5.244), we can

derive the FPK equation using the principle of preservation of probability as a physical basis.

This issue will be discussed in detail in Section 6.3.2.

5.6.3.2 Notes on Solution to General Fokker–Planck–Kolmogorov Equation

In past decades, great endeavors have been devoted to seeking solutions to the FPK equation.

As demonstrated in the preceding section, the closed-form solution to the FPK equation

associatedwith linearMDOF systems is known.Moreover, the closed-form solution to the FPK

equation associated with some specific SDOF nonlinear systems, say, the Duffing oscillator, is

available (Caughey, 1971; Zhu and Wu, 1990). However, as far as the solution to the FPK

equation associated with general MDOF nonlinear systems is concerned, little is available so

far in spite of the decades of effort.

The problem with less difficulty is the steady-state, stationary solution to the FPK equation;

that is, the solution as t ! ¥ is time independent provided specified conditions are satisfied. In

this case, @pY=@t ¼ 0 and the FPK equation, Equation 5.212, reduces to

�
Xm
j¼1

@½AjðyÞpY�
@yj

þ 1

2

Xm
j¼1

Xm
k¼1

@2

@yj@yk
½BðyÞDBTðyÞ�jkpY
n o

¼ 0 ð5:245Þ

In the past decade, a family of new approaches in the framework of a Hamiltonian

formulation has been developed and the availability of stationary solutions is greatly extended

(Zhu, 2003, 2006). Unfortunately, although in many problems of practical interest the

stationary solution is meaningful or sometimes provides enough information, this is not the

case in many problems in, say, earthquake engineering, where the transient response, or

nonstationary response, is, of course, what really matters.

Meanwhile, a number of numerical approaches for the solution of the FPK equation have

also been investigated: for example, the path-integral method (Wehner and Wolf, 1983; Naess

and Johnsen, 1993; Naess and Moe, 2000), the finite-element method (Spencer and Bergman,
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1993), the random walk method, the cell-mapping method and expansion solutions and so on

(Schu€eller, 1997). However, no approach works in the FPK equation of large dimension, for

m� 6 for instance, while in the problems of practical interest the dimension is usually in the

order from hundreds to millions. The gap is so huge that in the near future few approaches can

tackle such problems in the theoretical frame of the FPK equation.
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6

Probability Density Evolution
Analysis: Theory

6.1 Introduction

In his investigations on differential equations, Liouville proved a theorem in 1838, the

alternative form of which in the Hamiltonian systems was later called the celebrated Liouville

theorem on the volume of phase space (see L€utzen (1990)). This theory was later extensively

elaborated and developed by Gibbs (1902) in statistical mechanics and finally resulted in what

is now called the Liouville equation. The equation could reflect the evolution of the joint

probability density of states of systems with randomness involved only in the initial conditions

(Kozin, 1961; Syski, 1967; Soong, 1973; Arnold, 1978).

On the other hand, as described inChapter 1, Einstein derived a diffusion equation in terms of

the probability density of the position of a particle in Brownian motion in 1905 (Einstein,

1905). The sequent investigations onmore general caseswhere the effects of drift and diffusion

occur simultaneously by Fokker (1914) and Planck (1917) led to the celebrated equation

nowadays attributed to their names in physicist circles. Without knowing their pioneering

work, Kolmogorov independently established the same partial differential equation in his

investigations onMarkov processes (Kolmogorov, 1931). In addition to what is now called the

FPK equation, he also came up with a backward equation in the same paper. This was not only

very elegant result, but also of methodological sense, because it indicates that a stochastic

system can be treated by a deterministic equation. Since then, with the explosive development

of theory on stochastic processes and stochastic differential equations, particularly the

establishment of the Itô and Stratonovich�s stochastic calculus and the straightforward relation
between the stochastic differential equation and the FPK equation, as discussed in detail in

Chapter 5, the FPK equation has become one of the major tools in a wide range of science and

engineering disciplines (Itô, 1957; Stratonovich, 1963; Lin, 1967; Gihman and Skorohod,

1975). Representing the stochastic excitations in a different way from Kolmogorov, Dostupov

and Pugachev (1957) transformed a system with stochastic excitations to a system involving

random parameters and reached a partial differential equation, which is in a form like the

Liouville equation containing parameters.
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Obviously, the Liouville equation, the FPK equation and the Dostupov–Pugachev equation

are different types of probability density evolution equations. Had these equations been

solvable, we could capture the evolution of the probability density of a stochastic system.

Unfortunately, this is not the case for most problems of practical interest, because these

equations are usually high-dimensional partial differential equations and usually strong

nonlinearity is involved in the coefficients. Despite great endeavors, the available solutions

to the above equations are still very limited (Soong, 1973; Risken, 1984; Zhu, 2003, 2006).

Since the celebrated work of Kolmogorov (1931), the rigorous mathematical aspect has been

increasingly stressed.While great advancement has beenmade, the physical fundamental aspect

seems to have been somewhat ignored bymany investigators. In 2003 to 2006, on the grounds of

a physical fundamental point of view, the Dostupov–Pugachev equation was first uncoupled for

the linear systems by Li and Chen (2003, 2004a) and then a generalized density evolution

equation (GDEE) was established in a unified way for linear and nonlinear systems (Li and

Chen, 2004b, 2006a, 2006c). This family of density evolution equations threw a new light upon

the feasibility of probability density evolution analysis for stochastic dynamical systems.

In this chapter, thoughts on the evolution of densities are elaborately investigated. The

principle of preservation of probability is adopted as a unified foundation to derive different

types of probability density evolution equations. Rather than mathematics-oriented deriva-

tions, a direct physical treatment cooperatingwith the state space description of the principle of

preservation of probability is adopted to re-establish the Liouville equation and the FPK

equation. In addition, the Dostupov–Pugachev equation is found to be the result when a hybrid

treatment of the random event description of the principle of preservation of probability and

coupling physical equations of the system is adopted. As a logically spontaneous result, when

the problem is viewed from the random event description and uncoupling physical equations,

the generalized probability density evolution equation is reached.

For brevity, in this chapter we will sometimes just use the term ‘density’ to represent

‘probability density’ or ‘PDF.’

6.2 The Principle of Preservation of Probability

6.2.1 Functions of Random Variables and their Probability
Density Function Revisited

Let X(v) be a continuous random variable with PDF pX(x); namely:

PrfXðvÞ 2 ðx; xþ dxÞg ¼ d Prfvg ¼ pXðxÞ dx ð6:1Þ
where Pr{�} is the probability measure and v represents a basic random event.

If a map G exists from X to Y such that

G :X! Y or Y ¼ gðXÞ ð6:2Þ

then Y is a random variable. Denoting the density of Y by pY(y), our present task is to obtain

pY(y) through the known density pX(x).

Suppose the CDF of Y is differentiable; we then have

pYðyÞ dy ¼ PrfYðvÞ 2 ðy; yþ dyÞg ð6:3aÞ
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or

pYðyÞ ¼ d

dy
Pr YðvÞ 2 ðy; yþ dyÞf g ð6:3bÞ

Because

PrfYðvÞ 2 ðy; yþ dyÞg ¼ d Prfvg ð6:4Þ
and noting Equations 6.4 and 6.1, it follows that

PrfYðvÞ 2 ðy; yþ dyÞg ¼ PrfXðvÞ 2 ðx; xþ dxÞg ¼ d Prfvg ð6:5Þ
Namely:

pYðyÞ dy ¼ pXðxÞ dx ð6:6Þ
For the same set of v, the relationship between X(v) and Y(v) is given by Equation 6.2;

therefore, the relationship
y ¼ gðxÞ ð6:7Þ

exists for x and y in Equation 6.6. Consequently, if g(�) has an inverse, denoting the inverse

function by g�1(�), then from Equation 6.6 for the monotonic functions we have1

pYðyÞ ¼ pX g� 1ðyÞ� � dx
dy

¼ jJjpX g� 1ðyÞ� � ð6:8aÞ

where J is the Jacobian:

J ¼ dx

dy
¼ 1

dgðxÞ=dx
� �

x¼g� 1ðyÞ
¼ dg� 1ðyÞ

dy
ð6:8bÞ

In fact, Equations 6.5 and 6.6 aremore fundamental thanEquation 6.8a, in that no constraints

are imposed on the attributes of g(�) in the former two equations. Likewise, the same thoughts

hold in the case of random vectors.

Denote the joint density of the random vector X ¼ ðX1;X2; . . . ;XnÞT by pX(x), where

x ¼ ðx1; x2; . . . ; xnÞT; namely:

PrfXðvÞ 2 ðx; xþ dxÞg ¼ d Prfvg ¼ pXðxÞ dx ð6:9Þ
Suppose there is a map determining a vector Y ¼ ðY1; Y2; . . . ; YmÞT by X through

G :X!Y or Y ¼ gðXÞ ð6:10Þ
Here, n and m are respectively the dimension of X and Y.

Denoting the joint density of Y by pY(y), where y ¼ ðy1; y2; . . . ; ymÞT, we of course have
PrfYðvÞ 2 ðy; yþ dyÞg ¼ d Prfvg ¼ pYðyÞ dy ð6:11Þ

1 Here, note that, because the probability densities are nonnegative, dx and dy should both be positive. Thus, an absolute

value of the Jacobian is adopted here.
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Considering Equation 6.11 in conjunction with Equation 6.9 yields2

pYðyÞ dy ¼ pXðxÞ dx ð6:12Þ
where, from Equation 6.10:

y ¼ gðxÞ ð6:13Þ
Equations 6.12 and 6.13 mean that when there exists a map from the space ofX to the space

of Y, then if we can find X in an element domain dx in the space of X with a prescribed

probability, thenwemust be able to findY in a corresponding element domain dy in the space of

Y, which is determined by the map from X to Y, with the same probability. In this sense, the

probability is preserved in a map, as shown schematically in Figure 6.1. The principle can be

called the principle of preservation of probability.

The map in Equation 6.10 is essentially in the sense of a sample. Consequently, if an

arbitrary ensemble domain DX is considered in the x-system, then a corresponding ensemble

domain DY is determined by the map

G :DX !DY or DY ¼ gðDXÞ ð6:14Þ
Because the probability is preserved in the map of any arbitrary element, we then haveð

DY

pYðyÞ dy ¼
ð
DX

pXðxÞ dx ð6:15Þ

This can be understood as an integral form of preservation of probability. From

Equation 6.15, it is known that pY(y) can be determined by pX(x). Formally, we have

pYðyÞ ¼ F½pXðxÞ� ð6:16Þ
where F is called the Frobenius–Perron operator (Lasota and Mackey, 1994).

Figure 6.1 Map and preservation of probability.

2 A more rigorous and general treatment is to use the form of Riemann–Stieltjes integral instead of the Riemann

integral, which is widely used in many monographs on probability theory because it can cover the case when

discontinuity occurs in the distribution functions (Lo�eve, 1977).
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With Equations 6.12 and 6.13 in mind, for a one-to-one map and n¼m, we have

pYðyÞ ¼ jJjpX½x ¼ g� 1ðyÞ�
where J¼ |@x/@y| is the Jacobian.

The preceding elaboration indicates that the principle of preservation of probability results

from the fact that the probability will be preserved as long as the random event, which can be

represented in a different but equivalent form and is the argument of the associated random

variables, is retained in the map. Here, the concept is essentially important that the random

variable itself is not an independent argument but a function of basic random events. Insight is

provided in Equations 6.5, 6.9 and 6.11 where the term d Pr{v} is explicitly written, which is

rooted in the measure theory of probability (Chung, 1974).

6.2.2 The Principle of Preservation of Probability

In a general sense, the principle of preservation of probability can be stated as: if the random

factors involved in a stochastic system are retained – in other words, if no new random factors

arise nor existing factors vanish in a physical process – then the probability will be preserved in

the evolution process of the system.

We will now investigate the principle both from the random event description and the state

space description.

6.2.2.1 Random Event Description of the Principle of Preservation of Probability

The analysis in Section 6.2.1 on the functions of random variables via a map holds in a very

general sense, because any function, transformation, or operator can be regarded as a map.

Specifically, a dynamical system can also be taken into account in this framework.

For example, consider a dynamical system with the state equation

_Y ¼ AðY; tÞ Yðt0Þ ¼ Y0 ð6:17Þ

whereY ¼ ðY1; Y2; . . . ; YmÞT is them-dimensional state vector,Y0 ¼ ðY1;0; Y2;0; . . . ; Ym;0ÞT is
the initial value vector and A ¼ ðA1;A2; . . . ;AmÞT is the m-dimensional operator vector.

This system establishes a map Gt from Y(t0) to Y(t); namely:

Gt : ðY1ðt0Þ; Y2ðt0Þ; . . . ; Ymðt0ÞÞ! ðY1ðtÞ; Y2ðtÞ; . . . ; YmðtÞÞ or YðtÞ ¼ g½t;Yðt0Þ�
ð6:18aÞ

Here, Y(t) is the solution of Equation 6.17, or, in other words, the Lagrangian description

of the system in Equation 6.17.

Compared with the map in Equation 6.10, G, X and Y here are respectively replaced by

Gt, Y(t0) and Y(t). Accordingly, Figure 6.1 becomes Figure 6.2.

Examine an arbitrary ensemble domainDt0 in the state space, which belongs to the definition

domain. The map in Equation 6.18a simultaneously determines a corresponding domain Dt;

namely:

Dt ¼ gðt;Dt0Þ ð6:18bÞ
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According to Equation 6.15, it follows thatð
Dt

pYðy; tÞ dy ¼
ð
gðt;Dt0

Þ
pYðy; tÞ dy ¼

ð
Dt0

pYðy; t0Þ dy ð6:19Þ

where pY(y, t) is the joint PDF of Y(t).

This is essentially what the Liouville theorem ‘on the volume in phase space’ states, and the

latter is extensively elaborated by Gibbs in statistical mechanics (Gibbs, 1902; Syski, 1967;

Arnold, 1978; L€utzen, 1990; Lasota and Mackey, 1994).

Certainly, Equation 6.19 is equivalent to

D

Dt

ð
Dt

pYð y; tÞ dy ¼ 0 ð6:20Þ

where D(�)/Dt denotes the total derivative, which is usually also called the substantial or

material derivative (Fung and Tong, 2001). Equation 6.20 should be understood as

D

Dt

ð
Dt

pYðy; tÞ dy ¼ lim
Dt! 0

1

Dt

ð
DtþDt

pYðy; tþDtÞ dy�
ð
Dt

pYðy; tÞ dy
� �

¼ 0 ð6:21Þ

In the previous discussions, the principle of preservation of probability is understood by

rooting on the samples and then ensembles. That is, tracing the trajectory of a given random

eventv, which is shown clearly schematically in Figure 6.2.We refer to this point of view as the

random event description of the principle of preservation of probability. Recalling the motion

of particles in continuum physics, this is of course the counterpart of the Lagrangian

description (Fung, 1994; Dafermos, 2000; Li and Chen, 2008; Chen and Li, 2009).

6.2.2.2 State Space Description of the Principle of Preservation of Probability

Instead of tracing the trajectories, a dynamical system can also be examined by considering the

change of quantities in an arbitrary fixed domain Dfixed; that is, using the domain Dfixed as a

window to figure out what happens there.

Figure 6.2 Dynamical system, map and probability.
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Focusing attention now on the fixed domain Dfixed with boundary @Dfixed in the state

space, because this domain is fixed in a time-variant velocity field determined by

Equation 6.17, the phase of an ensemble will change with time. As time goes, through

the boundary @Dfixed some of the phase particles will enter this window whereas some other

phase particles might go out of the window (see Figure 6.3). Adherent to the phase particles

is the probability. Therefore, according to the principle of preservation of probability, during

an arbitrary time interval [t1, t2], the incremental change of probability in the domain Dfixed

is due to the transition of probability through the boundary @Dfixed. Mathematically, this

means that

D½t1;t2�PDfixed
¼ D½t1;t2�P@Dfixed

ð6:22Þ

where

D½t1;t2�PDfixed
¼
ð
Dfixed

pYðy; t2Þ dy�
ð
Dfixed

pYðy; t1Þ dy ð6:23Þ

is the incremental change of probability in the domainDfixed during the time interval [t1, t2] and

D½t1;t2�P@Dfixed
¼ �

ðt2
t1

ð
@Dfixed

pYðy; tÞðvdtÞ � n dS ¼ �
ðt2
t1

ð
@Dfixed

pYðy; tÞAðy; tÞ � n dS dt

ð6:24Þ
is the probability transiting through the boundary @Dfixed during the time interval [t1, t2], where

n is the unit outward normal vector of the boundary surface @Dfixed; the negative sign exists

because when the probability transits outward the retained probability in the domain decreases.

Here, the principle of preservation of probability is understood in the state space by

examining the change of the probability density at a fixed position in the space. This shows

that, because of the preservation of probability, the increment of probability in any arbitrary

fixed domain is equivalent to the probability imported through the boundary.

Figure 6.3 Fixed domain and transition of probability.
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6.3 Markovian Systems and State Space Description: Liouville
and Fokker–Planck–Kolmogorov Equations

6.3.1 The Liouville Equation

6.3.1.1 Derivation of the Liouville Equation

Inmany systems of engineering interest, the initial conditionsmight not be known exactly. This

uncertainty can usually be described by randomvariables with known probability distributions.

Without loss of generality, the state equation of the system and the initial condition read

_Y ¼ AðY; tÞ Yðt0Þ ¼ Y0 ð6:25Þ
where Y ¼ ðY1; Y2; � � � ; YmÞT is the m-dimensional state vector, A ¼ ðA1;A2; . . . ;AmÞT is a

deterministicm-dimensional operator vector andY0 ¼ ðY1;0; Y2;0; . . . ; Ym;0ÞT is the initial value
vectorwhichis randomwithknownjointdensitypY0

ðy0Þ inwhichy0denotes ðy1;0; y2;0; . . . ; ym;0Þ.
Being a first-order ordinary differential equation, if A is well behaved, the solution process

Y(t) is completely determined once the initial vector is known. Further, at any time t1� t0, Y

(t1) is completely determined; therefore, it can be regarded as the new initial condition for t� t1
if t1 is regarded as the new initial time. Thus, onceY(t1) is known, the solution processY(t) for

t� t1 is completely determined without knowledge at time t < t1; namely:

fYðtÞ; t > t1jYðtÞ; t � t1g ¼ fYðtÞ; t > t1jYðt1Þg ð6:26Þ
The above discussions hold true no matter whether Y0 is a deterministic or random vector.

Consequently, the stochastic process Y(t) determined by the system in Equation 6.25 is a

Markov process.

Because all the randomness comes from the initial condition without other random factors

involved, the system in Equation 6.25 is a probability preserved system. According to the state

space description of the principle of preservation of probability elaborated in Section 6.2.2.2,

when the behavior of the phase particles in an arbitrary fixed domainDfixed during an arbitrary

time duration [t1, t2] is examined, Equations 6.22–6.24 hold.

Further, the incremental change of probability inDfixed during the time interval [t1, t2], given

by Equation 6.23, can be rewritten as

D½t1;t2�PDfixed
¼

ð
Dfixed

pYðy; t2Þ dy�
ð
Dfixed

pYðy; t1Þ dy

¼
ð
Dfixed

ðt2
t1

@pYðy; tÞ
@t

dy dt

ð6:27Þ

Simultaneously, the probability of transiting through the boundary @Dfixed during the time

interval [t1, t2], given by Equation 6.24, can be rearranged into

D½t1;t2�P@Dfixed
¼ �

ðt2
t1

ð
@Dfixed

pYðy; tÞðv dtÞ �n dS ¼ �
ðt2
t1

ð
@Dfixed

pYðy; tÞAðy; tÞ �n dS dt

¼ �
ðt2
t1

ð
Dfixed

Xm
‘¼1

@½pYðy; tÞA‘ðy; tÞ�
@y‘

dy dt

ð6:28Þ

where use has been made of the divergence theorem (Korn and Korn,1968).
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The probability being preserved requires that D½t1;t2�PDfixed
¼ D½t1;t2�P@Dfixed

(see Equa-

tion 6.22). Substituting Equations 6.27 and 6.28 in this and noting the arbitrariness of Dfixed

and [t1, t2], the integrands must be equal; therefore:

@pYðy; tÞ
@t

þ
Xm
‘¼1

@½pYðy; tÞA‘ðy; tÞ�
@y‘

¼ 0 ð6:29Þ

This is the Liouville equation.

To provide more insight into the equation, we may consider the problem from the total

probability formula as well. If we consider the transition probability density pY(y, t | y0, t0), for

a general stochastic process we have

pYðy3; t3jy1; t1Þ ¼
ð
pYðy3; t3jy2; t2; y1; t1Þ � pYðy2; t2jy1; t1Þ dy2 ð6:30Þ

which can be verifiedwhenwe note that pYðy3; t3jy1; t1Þ ¼ pYðy3; t3; y1; t1Þ=pYðy1; t1Þ and the
like relationship. Equation 6.30 is of course essentially the total probability formula. Here, we

stress that Equation 6.30 is also an embedment of the preservation of probability.

For a Markov process at time instants t3 > t2 > t1, Equation 6.30 reduces to

pYðy3; t3jy1; t1Þ ¼
ð
pYðy3; t3jy2; t2Þ � pYðy2; t2jy1; t1Þ dy2 ð6:31aÞ

This is the Chapman–Kolmogorov equation for Markov processes. Clearly, it is an

embedment of the preservation of probability from the state space description in the case

of Markov processes.

When we consider the time instants t0, t and t þ Dt, Equation 6.31a becomes

pYðy; tþDtjy0; t0Þ ¼
ð
pYðy; tþDtjz; tÞ � pYðz; tjy0; t0Þ dz ð6:31bÞ

When introducing the increment k¼ y�z, we have

pYðy; tþDtjy0; t0Þ ¼
ð
pYðy; tþDtjy� k; tÞ � pYðy� k; tjy0; t0Þ dk ð6:31cÞ

In the time interval [t, t þ Dt], fromEquation 6.25 it is known that the incremental change of

the state Y is

DY ¼ YðtþDtÞ�YðtÞ ¼ AðY; tÞDtþ oðDtÞ ð6:32Þ

which is of course a randomvector becauseY(t) is random. For notational convenience, denote

DY by h ¼ ðh1;h2; . . . ;hmÞT and the conditional probability density of h given Y(t)¼ y by

fhjYðh; y; t;DtÞ. From Equation 6.32 it is seen that

hj½YðtÞ ¼ y� ¼ Aðy; tÞDtþ oðDtÞ ð6:33Þ
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This means that the conditional random vector h | [Y(t)¼ y] is essentially a deterministic

vector; thus, it follows that ð
fhjYðh; y; t;DtÞ dh ¼ 1 ð6:34aÞð

h‘fhjYðh; y; t;DtÞ dh ¼ A‘ðy; tÞDtþ oðDtÞ ‘ ¼ 1; 2; . . . ;m ð6:34bÞð
h‘hkfhjYðh; y; t;DtÞ dh ¼ oðDtÞ ‘; k ¼ 1; 2; . . . ;m ð6:34cÞ

Clearly, from Equations 6.32 and 6.33 it is known that

pYðyþh; tþDtjy; tÞ ¼ fhjYðh; y; t;DtÞ ð6:35Þ

Introducing this transition probability density into Equation 6.31c and changing the notation

accordingly, we have

pYðy; tþDtjy0; t0Þ ¼
ð
fhjYðh; y�h; t;DtÞ � pYðy�h; tjy0; t0Þ dh ð6:36Þ

Expanding the integrand up to second order by the Taylor series:

fhjYðh; y�h; t;DtÞ � pYðy�h; tjy0; t0Þ ¼ fhjYðh; y; t;DtÞ � pYðy; tjy0; t0Þ

�
Xm
‘¼1

@fhjYpY
@y‘

h‘ þ
1

2

Xm
‘¼1

Xm
k¼1

@2fhjYpY
@y‘@yk

h‘hk þ � � � ð6:37Þ

where fh|YpY in the last two terms represents fhjYðh; y; t;DtÞ � pYðy; tjy0; t0Þ for simplicity of

notation. Substituting it in Equation 6.36 and noting Equations 6.34a–6.34c, we have

pYðy; tþDtjy0; t0Þ ¼ pYðy; tjy0; t0Þ�
Xm
‘¼1

@

@y‘
A‘ðy; tÞpYðy; tjy0; t0Þ½ �Dtþ oðDtÞ ð6:38Þ

Subtracting pYðy; tjy0; t0Þ from both sides of Equation 6.38, dividing by Dt and then letting
Dt ! 0 yields

@pYðy; tjy0; t0Þ
@t

þ
Xm
‘¼1

@

@y‘
A‘ðy; tÞpYðy; tjy0; t0Þ½ � ¼ 0 ð6:39aÞ

Multiplying this by pYðy0; t0Þ and integrating with respect to y0 on both sides of

Equation 6.39a, we have

@pYðy; tÞ
@t

þ
Xm
‘¼1

@

@y‘
A‘ðy; tÞpYðy; tÞ½ � ¼ 0 ð6:39bÞ

This is of course the Liouville equation, identical to Equation 6.29.

In the preceding derivations, particularly from Equations 6.33, 6.34b, and 6.34c, it is seen

that the probability density evolution equation, here the Liouville equation, is associated tightly

with the dynamical system. That is, the evolution of probability must be associated with a

physical mechanism.
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It should be noted that theLiouville equation governs the evolution of the probability density of a

system when randomness is only involved in the initial conditions. If randomness is also involved

in, say, the systemparameters, then theLiouville equationdoesnot hold.But some technique canbe

used so that the random system parameters can be mathematically treated as part of the random

initial conditions and thus a modified Liouville equation can still be derived (Soong, 1973).

6.3.1.2 Solution of the Liouville Equation

The Liouville equation is a first-order quasi-linear partial differential equation. For such an

equation, the method of characteristics works (Soong, 1973; Sarra, 2003), as has once been

employed in Section 5.6.3.1. The method will be used here to yield the closed-form solution,

whereas the theroretical basis and physical sense of the method will be discussed in detail later

in Section 6.6.1.

First we rewrite the Liouville equation, Equation 6.39b, as

@pYðy; tÞ
@t

þ
Xm
‘¼1

A‘ðy; tÞ @pYðy; tÞ
@y‘

þ
Xm
‘¼1

pYðy; tÞ @A‘ðy; tÞ
@y‘

¼ 0 ð6:40Þ

The subsidiary equation is then

dt

1
¼ � dpYðy; tÞ

pYðy; tÞ
Xm
‘¼1

@A‘ðy; tÞ
@y‘

¼ dy1

A1ðy; tÞ ¼ � � � ¼ dym

Amðy; tÞ ð6:41Þ

The last m equalities are essentially the state equation. The first equality will give the

solution

pYðy; tÞ ¼ pY0
ðy0Þexp �

ðt
t0

Xm
‘¼1

@A‘½y ¼ Hðy0; tÞ; t�
@y‘

dt

( )" #
y0¼H� 1ðy;tÞ

ð6:42Þ

where y¼H(y0, t) is the closed-form solution of the state equation from the lastm equalities in

Equation 6.41 and H�1(�) is the inverse function of H.

The solution establishes the relationship between the density ofY(t) and that ofY(t0), where
the closed-form solution of the associated state equation is involved. By theway,we point out at

present that the characteristic curves of the Liouville equation are in essence the trajectories on

which the probability measure is invariant.

On the other hand, according to Equation 6.18a, where the map Gt is essentially the function

H here, we have

pYðy; tÞ dy ¼ pY0
ðy0Þ dy0 ð6:43Þ

The PDF is thus given in an alternative form by

pYðy; tÞ ¼ @y0
@y

����
����½pY0

ðy0Þ�y0¼H� 1ðy;tÞ ¼ jJjpY0
y0 ¼ H� 1ðy; tÞ� � ð6:44Þ

where J¼ |@y0/@y| is the Jacobian.
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Comparing Equation 6.44 with Equation 6.42, we reach the equality

jJj ¼ exp �
ðt
t0

Xm
‘¼1

@A‘½y ¼ Hðy0; tÞ; t�
@y‘

dt

( )" #
y0¼H� 1ðy;tÞ

ð6:45Þ

which can sometimes be used to compute the Jacobian.

Note that, for a given y0, the state is determined by Y¼H(y0, t). Therefore, it is a

deterministic vector; namely, the transition probability density is given as

pYðy; tjy0; t0Þ ¼ d½y�Hðy0; tÞ� ð6:46Þ

where d(�) is the Dirac delta function (see Appendix A). From the total probability formula, the

density of Y(t) is thus

pYðy; tÞ ¼
ð
pYðy; tjy0; t0ÞpY0

ðy0Þ dy0

¼
ð
d½y�Hðy0; tÞ�pY0

ðy0Þ dy0
ð6:47Þ

It is easy to verify that the transition probability density given by Equation 6.46 satisfies

Equation 6.39a and the probability density given by Equation 6.47 satisfies Equation 6.39b.

Actually, a further step of integrating the Dirac delta function in Equation 6.47 by changing the

variables will immediately yield Equation 6.44.

The above discussion shows that Equations 6.42, 6.44 and 6.47 are all equivalent, although

Equation 6.42 is obtained from the solution of the Liouville equation, Equation 6.44 is from the

preservation of probability when an arbitrary ensemble domain in the state space is examined,

and Equation 6.47 is in essence directly from the point of view of the sample.

The asymptotic attributes of the solution of the Liouville equation are now discussed.

For a global asymptotic stable system (for example, a damped linear system subject to

deterministic external excitations), as the time elapses, the effect of the initial condition will

vanish; namely:

lim
t!¥

YðtÞ ¼ lim
t!¥

HðY0; tÞ ¼ H¥ðtÞ ð6:48Þ

where H¥(t) is the asymptotic response of the system. From Equation 6.47 we have

lim
t!¥

pYðy; tÞ ¼ lim
t!¥

ð
d½y�Hðy0; tÞ�pY0

ðy0Þ dy0 ¼
ð
d½y�H¥ðtÞ�pY0

ðy0Þ dy0 ¼ d½y�H¥ðtÞ�
ð6:49Þ

This indicates that as time passes, the stochastic response of the system tends to be a

deterministic process.

On the other hand, if there are some attractors with the attracting domain W‘,

‘ ¼ 1; 2; . . . ; nattractor, where nattractor is the number of attractors, then there are nattractor possible

asymptotic responses H¥;‘ðtÞ, ‘ ¼ 1; 2; . . . ; nattractor (Strogatz, 1994), and we have

lim
t!¥

pYðy; tÞ ¼ lim
t!¥

ð
d½y�Hðy0; tÞ�pY0

ðy0Þ dy0 ¼
Xnattractor
‘¼1

P‘d½y�H¥;‘ðtÞ� ð6:50Þ
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where

P‘ ¼
ð
W‘

pY0
ðy0Þ dy0

Example 6.1. Solution of aLiouvillian System To provide a visual impression, we consider

the linear system3

_X ¼ �
�
zvþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
tan

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
vt

	�
X Xð0Þ ¼ X0 ð6:51aÞ

where X0 is a random variable with known density pX0(x0). The formal solution of the state is

given by

X ¼ HðX0; tÞ ¼ X0 e
� zvtcos

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
vt

	
ð6:51bÞ

Therefore, from Equation 6.42, the density of X(t) yields

pXðx; tÞ ¼ ezvt

cosð
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
vtÞ

pX0
ðx0Þ

�����
x0¼xezvt=cos

� ffiffiffiffiffiffiffiffiffi
1� z2

p
vt

	 ð6:51cÞ

This equation also holds if we denote pX(x,t)¼ d(x) for t ¼ ðkþ 1
2
Þp=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
vÞ,

k ¼ 0; 1; 2; . . . .
The contour of the PDF in Equation 6.51c is shown in Figure 6.4 when v¼ 1 and X0 is a

normally distributed randomvariablewith amean of 3mm and a standard deviation of 1mm. It

Figure 6.4 Contour of PDF.

3 The physical sense of this system is as follows. Consider an SDOF system €Xþ 2zv _Xþv2X ¼ 0 with the initial

condition X(0)¼X0. Then, according to the analytical solutions of the displacement and the velocity, we can get the

state equation in Equation 6.51a except some singular points at tk ¼ ðkþ 1
2
Þp=½ð1� z2Þ1=2v�, k ¼ 0; 1; 2; . . ..
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is seen that at the time instants t ¼ ðkþ 1
2
Þp=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
vÞ, k ¼ 0; 1; 2; . . ., singular points

occur where the probability density is infinity because all samples are now concentrated at the

same point. At these time instants, note here that Equation 6.51a is undetermined.

This also provides an example that themapGt in Equation 6.18a does not have an inverse and

demonstrates that Gt having an inverse is not a necessary condition; simultaneously, the

Jacobian in Equation 6.44 does not exist. However, the PDF still makes sense if we introduce

the distribution function of Dirac�s delta. This is in contrast to conservation of mass in

continuum mechanics. &

6.3.2 Fokker–Planck–Kolmogorov Equation Revisited

When randomness is involved in the nonhomogeneous terms of a dynamical system, especially

as the excitations are white-noise processes, the state equation can be understood as the Itô

stochastic differential equation, as discussed in Section 5.6.1. That is

dYðtÞ ¼ AðY; tÞ dtþBðY; tÞ dWðtÞ ð6:52Þ

where Y and A are the same as defined in Equation 6.25, Bðy; tÞ ¼ ½B‘kðy; tÞ�m�r is

the input force influence matrix, the B‘kðy; tÞ are nonanticipating functions and

WðtÞ ¼ ðW1ðtÞ;W2ðtÞ; . . . ;WrðtÞÞT is an r-dimensional Wiener process vector with the mean

and covariance matrix of increment

E½dWðtÞ� ¼ 0 E½dWðtÞ dWTðtÞ� ¼ D dt ð6:53Þ

in which D¼ [Dij]r�r is the same as in Equation 5.179.

Equation 6.52 can be rewritten in an incremental form:

DYðtÞ ¼ AðY; tÞDtþBðY; tÞDWðtÞþ oðDtÞ ð6:54Þ

As elaborated in Section 5.6, the transition probability density of Y(t) satisfies the FPK

equation. We now examine the physical sense of this equation in detail. To this end, the

probability flow in the state space is studied herein. For schematic convenience, we use the case

m¼ 2inFigure6.5.Letusconsideradomaindy ¼ dy1 dy2 � � � dym.The incrementofprobability

in this domain is

DP ¼ @pY
@t

dy1dy2 � � � dymDtþ oðDtÞ ð6:55Þ

During the time interval [t, t þ Dt], due to the drift effect (or effect of differentiation of the
first order), in the direction of y1, the probability in the domain on the left-hand side

Dy1;Ldy2 dy3 � � � dym will enter the domain dy1dy2 � � � dym, while on the right-hand side the

probability in the domain Dy1;R dy2 dy3 � � � dym will leave the domain; thus, the net imported

probability in the direction of y1 is given as (see Figure 6.5a)

DPy1 ¼ pYðy1; y2; tÞDy1;L dy2 dy3 � � � dym � pYðy1 þ dy1; y2; tÞDy1;R dy2 dy3 � � � dym þ oðDtÞ
ð6:56aÞ
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Noting Dy1;L ¼ A1ðy; tÞDtþ oðDtÞ and Dy1;R ¼ A1ðy1 þ dy1; y2; y3; � � � ; ym; tÞDtþ oðDtÞ,
we have

DPy1 ¼ � @

@y1
A1ðy; tÞpYðy; tjy0; t0Þ½ �dyDtþ oðDtÞ ð6:56bÞ

Simultaneously, the analogous thing happens in the direction of yjðj ¼ 2; 3; . . . ;mÞ;
therefore, the net imported probability in the domain dy1dy2 � � � dym due to the effect of drift

is given as

DP1 ¼
Xm
‘¼1

DPy‘ ¼ �
Xm
‘¼1

@½A‘ðy; tÞpY�
@y‘

dyDtþ oðDtÞ ð6:56cÞ

Now we consider the effect of a diffusion field (arising from the terms of Brownian

motion). Denote the instantaneous probability density of l ¼ Bðy; tÞDWðtÞ ¼ hðy; tÞðDtÞ1=2
by flðl; y; t;DtÞ, where h(y, t) is an m-dimensional zero-mean stochastic process vector

with covariance matrix E½hðy; tÞhTðy; tÞ� ¼ Bðy; tÞDBTðy; tÞ.4 Certainly, we haveð
flðl; y; t;DtÞ dl ¼ 1 ð6:57aÞð

l‘flðl; y; t;DtÞ dl ¼ 0 ‘ ¼ 1; 2; . . . ;m ð6:57bÞð
l‘lkflðl; y; t;DtÞ dl ¼ ½Bðy; tÞDBTðy; tÞ�‘kDt ‘; k ¼ 1; 2; . . . ;m ð6:57cÞ

The probability of the point in the vicinity of the position (y þ l) at time t is

pYðyþ l; tjy0; t0Þdl, while the probability of this point transit to the domain dy during the time

interval [t, t þ Dt] is pYðy; tþDtjyþ l; tÞpYðyþ l; tjy0; t0Þdl, where pYðy; tþDtjyþ l; tÞ is

Figure 6.5 Schematic diagram of probability flow in the state space: (a) the probability flow due to drift;

(b) the probability flow due to diffusion.Here, two points are illustrated; the arrow represents the diffusion

and the different lengths of the arrows represent that the diffusion coefficients depend on the position. The

probability of the point in the vicinity of the position ðy1 þ l1; y2 þ l2Þ at time t is pYðy1 þ l1; y2 þ
l2; tÞdl1dl2, while the probability of this point transit to the domain dy1 dy2 is pYðy1 þ l1; y2 þ l2; tÞ
flðl1; l2; y1 þ l1; y2 þ l2; t;DtÞdl1dl2dy1dy2.

4 For details, refer to Section 5.6.3.1, Equation 5.244.
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the transition probability density from the time instant t to t þ Dt. The probability in the domain

dy at the time instant t þ Dt is thus (see Figure 6.5b)

pYðy; tþDtjy0; t0Þ dy ¼ dy

ð
pYðy; tþDtjyþ l; tÞpYðyþ l; tjy0; t0Þ dl ð6:58aÞ

Noting that the transition PDF from t þ Dt to t is just

pYðy; tþDtjyþ l; tÞ ¼ flðl; yþ l; t;DtÞ ð6:58bÞ

we have

pYðy; tþDtjy0; t0Þ dy ¼ dy

ð
pYðyþ l; tjy0; t0Þflðl; yþ l; t;DtÞ dl ð6:58cÞ

The increment of probability due to diffusion is then

DP2 ¼ pYðy; tþDtjy0; t0Þ dy� pYðy; tjy0; t0Þ dy ð6:59Þ

Expanding the integrand inEquations 6.58a and 6.58b to the second order in thevicinity of y,

regarding l as a vector of increment, we have

pYðyþ l; tjy0; t0Þflðl; yþ l; t;DtÞ ¼ pYðy; tjy0; t0Þflðl; y; t;DtÞ

þ
Xm
‘¼1

@½pYfl�
@y‘

l‘ þ 1

2

Xm
‘¼1

Xm
k¼1

@2½pYfl�
@y‘@yk

l‘lk þ � � � ð6:60Þ

Introducing this equation into Equations 6.58a and 6.58b, and noting Equations 6.57a–

6.57b, we therefore get

DP2 ¼ 1

2

Xm
‘¼1

Xm
k¼1

@2

@y‘@yk
½Bðy; tÞDBTðy; tÞ�‘k pY

 �

Dtþ oðDtÞ ð6:61Þ

Owing to the preservation of probability, the velocity field and the diffusion field both

contributing to the increment of probability, it follows that

DP ¼ DP1 þDP2 ð6:62Þ
Employing Equations 6.55, 6.56c and 6.61, dividing both sides by Dt and taking the limit

Dt ! 0, we get

@pY
@t

¼ �
Xm
‘¼1

@½A‘ðy; tÞpY�
@y‘

þ 1

2

Xm
‘¼1

Xm
k¼1

@2

@y‘@yk
½Bðy; tÞDBTðy; tÞ�‘kpY

 � ð6:63Þ

This is nothing but the FPK equation identical to Equation 5.212.

The sense of Equation 6.62 is that the increment of probability in a domain during a time

interval equals the net probability imported through the boundary into this domain. This is, of

course, the principle of preservation of probability viewed from the state space description. The

above analysis demonstrates that the FPK equation is the result of this principle. Meanwhile,

because the coefficients of the FPK equation are related to the coefficients of the associated

stochastic differential equation, which is the embedment of the physical law, keeping the
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preceding analysis in mind, we find that the transition process of probability, or the probability

flow, must result from a certain physical system, which is usually a stochastic differential

equation physically representing the sampling path. In other words, a transition of probability

must have a physical mechanism.

The treatment in Equation 6.62 is in an intuitiveway inwhich the effects of drift and diffusion

are superposed by a summation. Employing a more rigorous treatment starting with the

Chapman–Kolmogorov equation, we can derive the associated FPK equation in a different

way and provide some new insights into the physical sense.

Denote

h ¼ AðY; tÞDtþ oðDtÞ l ¼ BðY; tÞDWðtÞ k ¼ DYðtÞ ¼ hþ l ð6:64Þ
It is seen that h represents the contribution from the effect of drift and l represents the

contribution from the effect of diffusion. BecauseA andB are both nonanticipating functions,5

the conditional expectations of h and l given {Y(t)¼ y} are given by

E½hjYðtÞ ¼ y� ¼ Aðy; tÞDtþ oðDtÞ ð6:65aÞ

E½hhTjYðtÞ ¼ y� ¼ oðDtÞ ð6:65bÞ

E½ljYðtÞ ¼ y� ¼ 0 ð6:65cÞ

E½llTjYðtÞ ¼ y� ¼ BDBTDtþ oðDtÞ ¼ sDtþ oðDtÞ ð6:65dÞ
where s ¼ ½s‘k�m�m , BDBT.

If we denote the conditional density of h given {Y(t)¼ y} by fhjYðh; y; t;DtÞ, likewise
denoting that of l by fljYðl; y; t;DtÞ, then Equations 6.65a and 6.65b will lead to

Equations (6.34b) and (6.34c) respectively, while Equations 6.65c and 6.65d will lead toð
l‘fljYðl; y; t;DtÞ dl ¼ 0 ‘ ¼ 1; 2; . . . ;m ð6:66aÞ

and ð
l‘lkfljYðl; y; t;DtÞ dl ¼ s‘kDtþ oðDtÞ ‘; k ¼ 1; 2; . . . ;m ð6:66bÞ

In addition, the consistency condition requires thatð
fljYðl; y; t;DtÞ dl ¼ 1 ð6:66cÞ

Note fromEquation 6.64 that k¼h þ l, whereh and l are conditionally independent given
{Y(t)¼ y} because A and B are both nonanticipating functions. Therefore, using

Equations (6.65a–6.65d), we have the conditional expectations of k:

E½kjYðtÞ ¼ y� ¼ E½hjYðtÞ ¼ y� þ E½ljYðtÞ ¼ y� ¼ Aðy; tÞDtþ oðDtÞ ð6:67aÞ

E½kkTjYðtÞ ¼ y� ¼ E½hhTjYðtÞ ¼ y� ¼ sðy; tÞDtþ oðDtÞ ð6:67bÞ
where s is the same as that in Equation (6.65d).

5 The significance of nonanticipating functions was elaborated in Section 5.6.1.1.
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Therefore, if the conditional density of k given {Y(t)¼ y} is denoted by fkjYðk; y; t;DtÞ,
then we haveð

k‘fkjYðk; y; t;DtÞ dk ¼ A‘ðy; tÞDtþ oðDtÞ ‘ ¼ 1; 2; . . . ;m ð6:68aÞð
k‘kkfkjYðk; y; t;DtÞ dk ¼ s‘kðy; tÞDtþ oðDtÞ ‘; k ¼ 1; 2; . . . ;m ð6:68bÞ

Certainly, the consistency condition requires thatð
fkjYðk; y; t;DtÞ dk ¼ 1 ð6:68cÞ

Because of the independence of dW(t) and nonanticipation of A and B, Y(t) determined by

Equation 6.52 is a Markov process vector. From the Chapman–Kolmogorov equation

(Equation (6.31c)):

pYðy; tþDtjy0; t0Þ ¼
ð
pYðy; tþDtjy� k; tÞ � pYðy� k; tjy0; t0Þ dk ð6:69aÞ

where the transition PDF from time t to t þ Dt, instead of being given by Equation 6.35, is now
given by

pYðyþ k; tþDtjy; tÞ ¼ fkjYðk; y; t;DtÞ ð6:69bÞ
We then have

pYðy; tþDtjy0; t0Þ ¼
ð
fkjYðk; y� k; t;DtÞ � pYðy� k; tjy0; t0Þ dk ð6:70Þ

Expanding the integrand up to second order by the Taylor series:

fkjYðk; y� k; t;DtÞ � pYðy� k; tjy0; t0Þ ¼ fkjYðk; y; t;DtÞ � pYðy; tjy0; t0Þ

�
Xm
‘¼1

@fkjYpY
@y‘

k‘ þ 1

2

Xm
‘¼1

Xm
k¼1

@2fkjYpY
@y‘@yk

k‘kk þ � � � ð6:71Þ

where the arguments in fh|Y and pY(�) have been omitted in the last two terms for simplicity

of notation. Substituting this in Equation 6.70 and noting Equations 6.68a–6.68c, we have

pYðy; tþDtjy0; t0Þ ¼ pYðy; tjy0; t0Þ�
Xm
‘¼1

@A‘pY

@y‘
Dtþ 1

2

Xm
‘¼1

Xm
k¼1

@2s‘kpY

@y‘@yk
Dtþ oðDtÞ

ð6:72Þ
Further, subtracting pYðy; tjy0; t0Þ from both sides of Equation 6.72, dividing by Dt and

letting Dt ! 0 yields

@pY
@t

¼ �
Xm
‘¼1

@A‘pY

@y‘
þ 1

2

Xm
‘¼1

Xm
k¼1

@2s‘kpY

@y‘@yk
ð6:73Þ

where pY can either be understood as the transition probability density pYðy; tjy0; t0Þ or be
taken as the instantaneous PDF pY(y, t).

Equation6.73 is nothingbut theFPKequation identical to that derived inSection 5.6.2.Again,

stressed here is the tight relationship between the evolution of probability density and the
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physical mechanism of the dynamical system. Undoubtedly, noting that the Chapman–

Kolmogorov equation (Equations 6.31a, 6.31b and 6.31c) is in essence the embedment of

the preservation of probability from the point of view of the state space description for the

Markovian systems, the previous derivations demonstrate clearly that the FPK equation is the

natural result of the preservation of probability in the state space description.

6.4 Dostupov–Pugachev Equation

6.4.1 From Equation of Motion to Random State Equation

Without loss of generality, the equation of motion of a general nd-degree-of-freedom structural

or mechanical system can be written as

M €Xþ fð _X;XÞ ¼
~
BðX; tÞjðtÞ _Xðt0Þ ¼ _X0;Xðt0Þ ¼ X0 ð6:74Þ

where X, _X and €X are the nd-dimensional displacement, velocity and acceleration vectors

respectively,M ¼ ½M‘k�nd�nd
is the mass matrix, f(�) is the nd-dimensional internal force vector

including the damping and restoring forces,
~
BðX; tÞ ¼ ½

~
B‘kðX; tÞ�nd�r is the input force

influence matrix, j(t) is the r-dimensional external excitation vector, and _X0 and X0 are

respectively the initial velocity and displacement vectors.

When introducing the state vector Y ¼ ð _XT
;XTÞT, Equation 6.74 can be rewritten as

_Y ¼ AðY; tÞþBðY; tÞjðtÞ Yðt0Þ ¼ Y0 ð6:75aÞ
where

AðY; tÞ ¼ �M� 1fðYÞ
_X

� 

BðY; tÞ ¼ M� 1

~
BðX; tÞ
0

� �
ð6:75bÞ

If randomness is involved in the excitations, then Equation (6.75a) can be remodeled by

_Y ¼ AðY; tÞþBðY; tÞjðv; tÞ Yðt0Þ ¼ Y0 ð6:76Þ
One approach to tackling the problem is to model the random excitations as Wiener

processes, thus leading to the Itô stochastic differential equation and the FPK equation, as

elaborated in Sections 5.6 and 6.3.2. An alternative approach is to decompose the excitation

using, for example, the Karhunen–Lo�eve decomposition (see Equation 2.120 in Section 2.2.5):

jjðv; tÞ¼: jj0ðtÞþ
XNj

n¼1
zj;nðvÞ

ffiffiffiffiffiffiffi
lj;n

q
fj;nðtÞ ð6:77aÞ

where jj (v, t) is the jth component of j(v, t), jj0(t) is the mean, lj,n and fj,n(t) are the

eigenvalues and eigenfunctions, jj,n(v) are the uncorrelated standard random variables and Nj

is the number of truncated terms. This treatment is particularly useful for the nonstationary

process encountered in practice.

If we denoteQ ¼ ½z1;1ðvÞ; z1;2ðvÞ; . . . ; z1;N1
ðvÞ; z2;1ðvÞ; . . . ; z2;N2

ðvÞ; . . . ; zr;Nr
ðvÞ�, then

according to Equation 6.77a the excitation vector can be represented explicitly by

jðv; tÞ ¼ FðQ; tÞ ð6:77bÞ
Substituting this, Equation 6.76 can then be rewritten as

_Y ¼ GðQ;Y; tÞ Yðt0Þ ¼ Y0 ð6:78Þ
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where G ¼ ðG1;G2; . . . ;GmÞT is given by

GðQ;Y; tÞ ¼ AðY; tÞþBðY; tÞFðQ; tÞ
Equation 6.78 is a random state equation with random variables made explicit.

6.4.2 The Dostupov–Pugachev Equation

To capture the probability density evolution of the system in Equation 6.78, we first start as was

suggested by Dostupov and Pugachev (1957). Then we will tackle it from the unified point of

view of the preservation of probability.

If we consider a given u, the random variable Y(t þ Dt) can be regarded as a linear

transformation of Y(t); namely:

YðtþDtÞ ¼ YðtÞþGðY; u; tÞDtþ oðDtÞ ð6:79Þ
Denoting the density of Y(t þ Dt) with the parameter u by pYQðy; u; tÞ, then from

Equation 6.12 we have

pYQð~y; u; tþDtÞ d~y ¼ pYQðy; u; tÞ dy ð6:80Þ
where, according to Equation 6.79:

~y ¼ yþGðy; u; tÞDtþ oðDtÞ ð6:81Þ
Differentiating Equation 6.81, we have6

d~y ¼ 1þ
Xm
‘¼1

@G‘ðy; u; tÞ
@y‘

" #
dy ¼ jJjdy ð6:82Þ

where J is the Jacobian.

Introducing Equations 6.81 and 6.82 into the left-hand side of Equation 6.80 yields

pYQ½yþGðy;u;tÞDtþoðDtÞ;u;tþDt�jJjdy

¼ pYQðy;u;tþDtÞþ
Xm
‘¼1

@pYQ
@y‘

G‘ðy;u;tÞDt
" #

1þ
Xm
‘¼1

@G‘ðy;u;tÞ
@y‘

Dt

" #
dyþoðDtÞ

¼ pYQðy;u;tþDtÞþ
Xm
‘¼1

@pYQ
@y‘

G‘ðy;u;tÞþpYQðy;u;tþDtÞ
Xm
‘¼1

@G‘ðy;u;tÞ
@y‘

" #
Dt

( )
dyþoðDtÞ

ð6:83Þ
in which the first-order terms are retained in the Taylor expansion.

6 This can be obtained as a product of the differentiation of the components. From Equation 6.81, we have

d~yk ¼ dyk þ
Xm
‘¼1

@Gkðy; u; tÞ
@y‘

dy‘ Dt ¼ 1þ @Gkðy; u; tÞ
@yk

Dt
� 


dyk þ
Xm

‘¼1;‘„k

@Gkðy; u; tÞ
@y‘

dy‘ Dt

k ¼ 1; 2; . . . ;m

Multiplying d~yk and ignoring the terms of higher order of Dt yields d~y ¼ d~y1 d~y2 � � � d~ym ¼

1þ
Xm
k¼1

@Gkðy; u; tÞ
@yk

Dt

" #
dy1 dy2 � � � dym ¼ jJj dy
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Replacing the left-hand side term of Equation 6.80 by Equation 6.83, subtracting

pYQðy; u; tÞdy on both sides, then dividing it by Dt and letting Dt ! 0, we have

@pYQðy; u; tÞ
@t

þ
Xm
‘¼1

@½pYQðy; u; tÞG‘ðy; u; tÞ�
@y‘

¼ 0 ð6:84Þ

where dy on both sides is eliminated. We call this equation the Dostupov–Pugachev equation,

which was first derived by Dostupov and Pugachev (1957). Comparing Equation 6.84 with

Equation 6.39b, we find that Equation 6.84 may be regarded as a parametric Liouville

equation where u occurs explicitly. This change is essential, because the Liouville equation

does not hold for the system in Equation 6.78.

It is noted that the derivation of Equation 6.84 holds for every possible value of u; that is, for
any prescribed random event. In this sense, Equation 6.84 is the result from the random event

description of the preservation of probability. Thus, in contrast to the Liouville equation, the

methodology of the Dostupov–Pugachev equation is changed from incorporation of the state

space description and coupling physical equations to incorporation of the random event

description and coupling physical equations. To understand this point further, we will derive

the Dostupov–Pugachev equation on the basis of the preservation of probability (Chen and

Li, 2009).

Comparedwith Equation 6.25, in the visual form the difference of Equation 6.78 is that u is
involved in the operator. This difference leads to a distinct feature that the evolution process

of Y(t) itself may not be probability preserved because of the effect of u. In other words, in

order to form a probability preserved system, we should consider Q is time invariant;

namely:

_Q ¼ 0 ð6:85Þ

Actually, it is the time invariance ofQ, which is the embedment of the nondisappearance of a

random event, that ensures the preservation of probability (see Section 6.2.2.1).

According to Equation 6.20, the probability being preserved leads to

D

Dt

ð
Dt�DQ

pYQðy; u; tÞ dy du ¼ 0 ð6:86Þ

Noting the map from time 0 to time t, Equation 6.86 can be rearranged to

D

Dt

ð
Dt�DQ

p
YQ
ðy; u; tÞdy du

¼ D

Dt

ð
Dt0

�DQ

p
YQ
ðy; u; tÞjJjdy du

¼
ð
Dt0

�DQ

jJjDpYQ
ðy; u; tÞ
Dt

þ p
YQ

y; u; tð ÞDjJ
Dt

� 	
dy du
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¼
ð
Dt0

�DQ

jJj @p
YQ
ðy; u; tÞ
@t

þ
Xm
‘¼1

G‘ y; u; tð Þ @pYQ
ðy; u; tÞ
@y‘

 !(

þjJjp
YQ
ðy; u; tÞ

Xm
‘¼1

@G‘ðy; u; tÞ
@y‘

gdy du

¼
ð
Dt0

�DQ

@p
YQ
ðy; u; tÞ
@t

þ
Xm
‘¼1

@½p
YQ
ðy; u; tÞGlðy; u; tÞ�

@y‘

 !
jJjdy du

¼
ð
Dt�DQ

@p
YQ
ðy; u; tÞ
@t

þ
Xm
‘¼1

@½p
YQ
ðy; u; tÞG‘ðy; u; tÞ�

@y‘

 !
dy du ð6:87Þ

where the total derivative is given as

DpYQðy; u; tÞ
Dt

¼ @pYQðy; u; tÞ
@t

þ
Xm
‘¼1

G‘ðy; u; tÞ @pYQðy; u; tÞ
@y‘

ð6:88Þ

in which Equation 6.85 has been considered, and the total derivative of the Jacobian is

(Belytschko, 2000)

DjJj
Dt

¼ jJj
Xm
‘¼1

@ _y‘
@y‘

¼ jJj
Xm
‘¼1

@G‘ðy; u; tÞ
@y‘

ð6:89Þ

In addition, we should note that when the integral domain is Dt�DQ, the corresponding

arguments y and u in the integrand are Eulerian coordinates, while the integral domain is

Dt0 � DQ, the arguments y and u in the integrand should be understood as Lagriangian

coordinates yL,uL, where ðy; uÞ ¼ HðyL; uL; tÞ is the solution of the system in Equations 6.78

and 6.85 and the Jacobian is given by

jJj ¼ @ðy; uÞ
@ðyL; uLÞ
����

���� ¼ @HðyL; uL; tÞ
@ðyL; uLÞ

����
���� ð6:90Þ

However, for notational simplicity,we use the same symbols for theEulerian andLagrangian

coordinates in Equation 6.87 without inducing confusion.

Combining Equations 6.86 and 6.87 and noting the arbitrariness of Dt�DQ, it follows that

@pYQðy; u; tÞ
@t

þ
Xm
‘¼1

@½pYQðy; u; tÞG‘ðy; u; tÞ�
@y‘

¼ 0 ð6:91Þ

This is nothing but the Dostupov–Pugachev equation identical to Equation 6.84.

It is interesting that although the random event description of the principle of preservation of

probability, as discussed inSections 6.2.1 and 6.2.2.1, seems logicallymore straightforward than

the state space description, the latter is preferred in the history of developing the probability

density evolution equations such as the Liouville equation and FPK equation. In the above

derivation of Equation 6.91, however, the random event description of the principle is employed
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in conjunction with the coupling physical equation. In other words, the Dostupov– Pugachev

equation canbe regarded as theprobabilitydensity evolution equation that turns thepoint of view

from the complete state space description to partly considering the random event description.

6.5 The Generalized Density Evolution Equation

6.5.1 Derivation of the Generalized Density Evolution Equation

6.5.1.1 From Random Event Description to Generalized Density Evolution Equation

As discussed, the Dostupov-Pugachev equation is the result of cooperating the random event

description of the principle of preservation of probability and the coupling physical equations

in state space description. Actually, a further step will open the way to a generalized density

evolution equation (GDEE). In fact, when viewed from the random event description of the

principle of preservation of probability and introducing the physical solution of the system, a

completely uncoupled, any arbitrary-dimensional density evolution equation can be reached

(Li and Chen, 2006c, 2008).

We now consider the generic stochastic dynamical system

_Y ¼ GðQ;Y; tÞ Yðt0Þ ¼ Y0 ð6:92Þ
whereY ¼ ðY1; Y2; . . . ; YmÞ is the state vector,Y0 is the initial value vector,m is the dimension

of the system andQ ¼ ðQ1;Q2; . . . ;QsÞ is an s-dimensional random vector characterizing the

randomness involved with known joint PDF pQ(u). The randomness might come not only from

the excitations, but also from the system properties. Generally, the random excitations are

modeled as stochastic processes, which could be further represented by some types of random

functions of some standard basic random variables, say through decompositions or physical

stochastic modeling as elaborated in Sections 2.2.5 and 6.4.1 and Chapter 3. The randomness

involved in the system properties might originally occur as random fields or directly as some

random parameters. Again, the random fields can be discretized or decomposed to a set of

standard random variables, by employing the methodologies in Section 2.3 for example. The

random vector Q consists of these two sets of standard basic random variables coming

respectively from random excitations and system properties. This is different from Equa-

tion 6.78, where the random parameters come only from random excitations.

As a random state equation, Equation 6.92 can be understood as an Eulerian description of a

dynamical system, where a velocity field is specified and thus a Dostupov–Pugachev equation

will be led to. However, the system can also be specified by a Lagrangian description. Without

loss of generality, suppose the Lagrangian description is given by

Y ¼ HðQ;Y0; tÞ or Y‘ ¼ H‘ðQ;Y0; tÞ ‘ ¼ 1; 2; . . . ;m ð6:93Þ
which, of course, is the physical solution of Equation 6.92 and satisfies Y0 ¼ HðQ;Y0; t0Þ.
Correspondingly, the velocity can be assumed to take the form

_Y ¼ hðQ;Y0; tÞ or _Y ‘ ¼ h‘ðQ;Y0; tÞ ‘ ¼ 1; 2; . . . ;m ð6:94Þ
where h¼ @H/@t. The expressions of H‘ð�Þ and h‘ð�Þ need not be explicitly figured out in the

present instance; it is sufficient to know that they exist.

In a general sense, if there are a set of physical quantities ZðtÞ ¼ ðZ1ðtÞ; Z2ðtÞ; . . . ; ZnZðtÞÞT
associatedwith the system inEquation 6.92, thenZ can usually be determined by its connection
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with the state vectors, for instance by

_ZðtÞ ¼ y½ _YðtÞ� Zðt0Þ ¼ z0 ð6:95Þ
where c½�� is a transfer operator. For example, for a structural system in which geometric

nonlinearity is ignored, if Z‘ðtÞ are the strains at some points, then c½��will be a linear operator
bridging the displacement and the strains (Fung and Tong,2001).While ifZ representsY itself,

then c½�� is an identity operator.

Introducing Equation 6.94 into Equation 6.95 we have

_ZðtÞ ¼ y½ _YðtÞ� ¼ y½hðQ;Y0; tÞ� ¼ hZðQ; tÞ ð6:96aÞ
or in a component form as

_Z‘ðtÞ ¼ hZ;‘ðQ; tÞ ‘ ¼ 1; 2; . . . ; nZ ð6:96bÞ
Here, hZ ¼ ðhZ;1; hZ;2; . . . ; hZ;nZÞT, where nz is the number of the physical quantities considered

in Z. For brevity, we now consider the case of deterministic Y0 and omit it in the equation.

From Equations (6.96a) and (6.96b), it is noted that the randomness involved in Z(t) results

completely from Q; therefore, the system (Z(t),Q) is a probability preserved system. From

Equation 6.20, if the joint density of (Z(t),Q) is denoted by pZQðz; u; tÞ, where

z ¼ ðz1; z2; . . . ; znZÞ, then it follows that

D

Dt

ð
Dt�DQ

pZQðz; u; tÞ dz du ¼ 0 ð6:97Þ

Following a process analogous to Equation 6.87, we have

D

Dt

ð
Dt�DQ

pZQðz; u; tÞ dz du ¼ D

Dt

ð
Dt0

�DQ

pZQðz; u; tÞjJj dz du

¼
ð
Dt0

�DQ

jJjDpZQ
Dt

þ pZQ
DjJj
Dt

� 	
dz du

¼
ð
Dt0

�DQ

jJj @pZQ
@t

þ
XnZ
‘¼1

hZ;‘
@pZQ
@z‘

 !
þ jJjpZQ @hZ;‘

@z‘

" #
dz du

¼
ð
Dt0

�DQ

@pZQ
@t

þ
XnZ
‘¼1

hZ;‘
@pZQ
@z‘

 !
jJj dz du

¼
ð
Dt�DQ

@pZQ
@t

þ
XnZ
‘¼1

hZ;‘
@pZQ
@z‘

 !
dz du

ð6:98Þ
where the arguments of the functions pZQð�Þ and hZ;‘ð�Þ are omitted for notational simplicity.

Again, as pointed out in Equation 6.87, in each step of Equation 6.98 the arguments should be

carefully understood as sometimes Eulerian but sometimes as Lagrangian coordinates,

according to the integral domain.

Introducing Equation 6.98 into Equation 6.97 and noting the arbitrariness of Dt�DQ, we

have

@pZQðz; u; tÞ
@t

þ
XnZ
‘¼1

hZ;‘ðu; tÞ @pZQðz; u; tÞ
@z‘

¼ 0 ð6:99aÞ
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or in an alternative form, when considering Equation 6.96b, as

@pZQðz; u; tÞ
@t

þ
XnZ
‘¼1

_Z‘ðu; tÞ @pZQðz; u; tÞ
@z‘

¼ 0 ð6:99bÞ

The joint density of Z(t) can then be given by

pZðz; tÞ ¼
ð
WQ

pZQðz; u; tÞ du ð6:100Þ

where WQ is the distribution domain of Q.

It is noted that the dimension nZ of Equation 6.95 depends only on the research requirement

and is independent of the dimensionm of the system in Equation 6.92. In this regard, we might

call Equations 6.96a and 6.96b the result of an arbitrary-dimensional Lagrangian description. It

is the flexibility here thatmakes the dimension of Equations 6.99a and 6.99b flexible rather than

fixed to be the same as the dimension of the state vector of the system as in the Liouville, FPK

and Dostupov–Pugachev equations.

6.5.1.2 From Multidimensions to One Dimension: A Formal Treatment

When employing a formal expression of the density of the responses and handling it directly,

we can also reach the one-dimensional uncoupled density evolution equation (Chen and Li,

2005a; Li and Chen, 2005a, 2006a).

Clearly, owing to Equation 6.93, the density of Y(t) is given by (see Appendix A)

pYðy; tÞ ¼
ð
d½y�Hðu; y0; tÞ�pQðuÞ du ð6:101Þ

where dð�Þ is the Dirac delta function and

pYQðy; u; tÞ ¼ d½y�Hðu; y0; tÞ�pQðuÞ ¼
Ym
‘¼1

d½y‘ �H‘ðu; y0; tÞ�pQðuÞ ð6:102Þ

is the joint density of (Y(t),Q). Here, without loss of generality and for simplicity, we consider

Y0¼ y0 as a deterministic vector.

Differentiating with respect to t on both sides of Equation 6.102 yields

@pYQðy;u;tÞ
@t

¼ @

@t

Ym
‘¼1

d½y‘�H‘ðu;y0;tÞ�pQðuÞ

¼
Xm
‘¼1

Ym
k¼1;k„‘

d yk�Hkðu;y0;tÞ½ �@d½y‘�H‘ðu;y0;tÞ�
@t

( )
pQðuÞ

¼
Xm
‘¼1

� @H‘ðu;y0;tÞ
@t

� � Ym
k¼1;k„‘

d yk�Hkðu;y0;tÞ½ �@d½y‘�H‘ðu;y0;tÞ�
@y‘

 !
pQðuÞ

¼
Xm
‘¼1

� @H‘ðu;y0;tÞ
@t

� �
@
Qm

k¼1d½yk�Hkðu;y0;tÞ�pQðuÞ

 �

@y‘

� 	

¼ �
Xm
‘¼1

h‘ðu;y0;tÞ
@pYQðy;u;tÞ

@y‘

ð6:103Þ
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or in an alternative form as

@pYQðy;u;tÞ
@t

þ
Xm
‘¼1

h‘ðu;y0;tÞ
@pYQðy;u;tÞ

@y‘
¼0 ð6:104Þ

Comparing this equation with the Dostupov–Pugachev Equation 6.91 shows that the

coefficients here are no longer coupled with the density in the partial differentiation operator.

In mathematical form, this is because Equation 6.92 is replaced by Equation 6.94 and,

therefore, G‘ð�Þ in the coefficient is replaced by h‘ð�Þ. Here, it is worth pointing out that we

have turned from the Eulerian system to the Lagrangian system; that is, from the coupling

physical equations to the uncoupled physical equations (physical solutions).

Taking multiple integrals with respect to y1; . . . ; y‘� 1; y‘þ 1; . . . ; ym and denoting the

marginal density by

pY‘Qðy‘; u; tÞ ¼
ð
pYQðy; u; tÞdy1 � � � dy‘� 1dy‘þ 1 � � � dym ð6:105Þ

we immediately have

@pY‘Qðy‘; u; tÞ
@t

þ h‘ðu; y0; tÞ
@pY‘Qðy‘; u; tÞ

@y‘
¼ 0 ð6:106aÞ

or in an alternative form, when Equation 6.94 is considered, as

@pY‘Qðy‘; u; tÞ
@t

þ _Y ‘ðu; tÞ @pY‘Qðy‘; u; tÞ
@y‘

¼ 0 ð6:106bÞ
where use has been made of

pY‘Qðy‘; u; tÞjy‘ !�¥ ¼ 0 and y‘pY‘Qðy‘; u; tÞjy‘ !�¥ ¼ 0 ð6:107Þ
Clearly, Equations 6.106a and 6.10b are identical to Equations 6.99a and 6.99b respectively

if nZ¼ 1 and Z is replaced by Y‘.

These equations can also be obtained in amore straightforwardway. FromEquation 6.93 it is

known that the density of Y‘ðtÞ is given by (see Appendix A)

pY‘ðy‘; tÞ ¼
ð
d½y‘ �H‘ðu; y0; tÞ�pQðuÞ du ð6:108Þ

Therefore, the joint density of ðY‘ðtÞ;QÞ is
pY‘Qðy‘; u; tÞ ¼ d½y‘ �H‘ðu; y0; tÞ�pQðuÞ ð6:109Þ

Differentiating this equation on both sides with respect to t yields

@pY‘Qðy‘; u; tÞ
@t

¼ @

@t
d y‘ �H‘ðu; y0; tÞ½ �pQðuÞ

¼ @d½y‘ �H‘ðu; y0; tÞ�pQðuÞ
@y‘

@½y‘ �H‘ðu; y0; tÞ�
@t

¼ � @H‘ðu; y0; tÞ
@t

@pY‘Qðy‘; u; tÞ
@y‘

¼ � h‘ðu; y0; tÞ
@pY‘Qðy‘; u; tÞ

@y‘

ð6:110Þ

which is of course the same equation as Equations 6.106a and 6.106b.
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Clearly, if we replaceY and h byZ and hZ respectively, then following the above derivations

we can also reach Equations 6.99a and 6.99b.

In the above manipulations, we note that when the Dirac delta function is employed, we are

tackling the problem starting from the perspective of the sample. In other words, we can reach

the density evolution equation by establishing a relationship between the sample and the

density.

6.5.2 Linear Systems: Uncoupling of the Dostupov–Pugachev Equation

For linear systems, the GDEE can also be obtained by uncoupling the Dostupov–Pugachev

equation, which is a high-dimensional partial differential equation. Actually, this is the first

way that we found to reach the completely uncoupled GDEE for multidimensional problems

(Li and Chen, 2004a).

Suppose Equation 6.78 takes the form

_Y ¼ aðQÞYþFðQ; tÞ; Yðt0Þ ¼ Y0 ð6:111Þ
where a ¼ ½a‘k�m�m andF ¼ ðF1;F2; . . . ;FmÞT, which can be determined from the equation of

motion, say, through transformation used in Equations 6.74–6.76.

In this case, the component G‘ of Equation 6.78 is given by

_Y‘ðQ; tÞ ¼ G‘ðQ;Y; tÞ ¼
Xm
k¼1

a‘kðQÞYk þF‘ðQ; tÞ ð6:112Þ

Substituting this in the Dostupov–Pugachev equation, Equation 6.91, yields

@pYQ
@t

þ
Xm
‘¼1

@

@y‘

Xm
k¼1

a‘kyk þF‘

 !" #
pYQ ¼ 0 ð6:113Þ

Here, for notational brevity, the arguments in a‘kð�Þ, F‘ð�Þ and pYQð�Þ have been omitted.

Equation 6.113 can further be rearranged to

@pYQ
@t

þ
Xm
‘¼1

Xm
k¼1

a‘kyk þF‘

 !
@pYQ
@y‘

" #
þ pYQTrðaÞ ¼ 0 ð6:114Þ

where TrðaÞ ¼Pm
j¼1 ajj is the trace of matrix a.

Integrating both sides of Equation 6.114 with respect to y1; . . . ; y‘� 1; y‘þ 1; . . . ; ym, for the
first and the third terms on the left-hand side of Equation 6.114 we need only replace pYQ by

pY‘Q (see Equation 6.105), while for the second term we are led to

ðXm
j¼1

Xm
k¼1

ajkyk þFj

 !
@pYQ
@yj

" #
dy1 � � � dy‘� 1dy‘þ 1 � � � dym

¼
ðXm

j¼1

Xm
k¼1

ajkyk
@pYQ
@yj

 !
dy1 � � � dy‘� 1dy‘þ 1 � � � dym þF‘

@pY‘Q
@y‘
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¼
ð Xm

k¼1

a‘kyk
@pYQ
@y‘

 !
dy1 � � � dy‘� 1dy‘þ 1 � � � dym �

Xm
j¼1; j„‘

ajjpY‘Q þF‘
@pY‘Q
@y‘

¼
Xm

k¼1;k„‘

ð
a‘kyk

@pYkY‘Q
@y‘

dyk

� 	
þ a‘‘y‘

@pY‘Q
@y‘

�
Xm

j ¼ 1; j „ ‘
ajjpY‘Q þF‘

@pY‘Q
@y‘

ð6:115Þ

where

pY‘YkQðy‘; yk; u; tÞ ¼
ð
pYQðy; u; tÞdy1 � � � dyk� 1dykþ 1 � � � dy‘� 1dy‘þ 1 � � � dym ð6:116Þ

Because, for a given u, yk can essentially take only a single value Yk(u), Equation 6.115 then
becomes

ðXm
j¼1

Xm
k¼1

ajkyk þFj

 !
@pYQ
@yj

" #
dy1 � � � dy‘� 1dy‘þ 1 � � � dym

¼
Xm
k¼1

a‘kYkðuÞþF‘

" #
@pY‘Q
@y‘

�
Xm

j¼1; j„‘
ajjpY‘Q

ð6:117Þ

Substituting this in Equation 6.114, we have

@pY‘Q
@t

þ
Xm
k¼1

a‘kYkðuÞþF‘

" #
@pY‘Q
@y‘

þ a‘‘pY‘Q ¼ 0 ð6:118Þ

According to the definition of the state vector, when Y‘ here is the displacement, namely

‘ ¼ nd þ 1; nd þ 2; . . . ;m, it is seen that a‘‘ ¼ 0, then the above equation becomes

@pY‘Q
@t

þ
Xm
k¼1

a‘kYkðuÞþF‘

" #
@pY‘Q
@y‘

¼ 0 ð6:119aÞ

In contrast to the original Dostupov–Pugachev equation, which is anm-dimensional partial

differential equation, Equation 6.119a is a one-dimensional equation. Further, noting Equa-

tion 6.112, we find that the coefficient is essentially the velocity; therefore, the equation can

also be rewritten as

@pY‘Q
@t

þ _Y ‘ðu; tÞ @pY‘Q
@y‘

¼ 0 ð6:119bÞ

This is nothing but Equation 6.106b.

The above manipulations uncouple the high-dimensional density evolution equation to a

one-dimensional equation and simplify the problem greatly in the case of linear systems.

Although it does not work in nonlinear systems, the idea that we have to consider the evolution

of probability from the point of view of random event description has essentially been used,

particularly in the derivation of Equation 6.117.

218 Stochastic Dynamics of Structures



6.5.3 Initial and Boundary Conditions

If the initial value vector in Equation 6.95

Zðt0Þ ¼ z0 ð6:120Þ
is a deterministic vector, where z0 ¼ ðz0;1; z0;2; . . . ; z0;nZÞT, then the initial condition of

Equation 6.99 will be given by

pZQðz; u; t0Þ ¼ dðz� z0ÞpQðuÞ ¼
YnZ
‘¼1

dðz� z0;‘ÞpQðuÞ ð6:121aÞ

In the case that randomness is also involved in the initial conditions, the corresponding

random variables can be absorbed into and then become part of Q. For such cases, there are

pZQðz; u; t0Þ ¼ pZ0
ðzÞpQðuÞ ð6:121bÞ

where pZ0
ðz0Þ is the joint density of Z0.

For the system without external constraint on Z(t), the boundary condition for

Equations 6.99a and 6.99b can take

pZQðz; u; tÞjz‘ !�¥ ¼ 0 ‘ ¼ 1; 2; . . . ; nZ ð6:122Þ

while for some special cases (for instance, in the first-passage reliability assessment), some

other conditions (such as absorbing boundary conditions)might be imposed on the equation (Li

and Chen, 2005a; Chen and Li, 2005a). This will be discussed in Chapter 8.

6.5.4 Physical Sense of the Generalized Density Evolution Equation

Equation 6.99 holds for arbitrary physical quantities involved in a physical system. For

stochastic structural systems,Z as determined in Equations 6.99a and 6.99b can be a vector of,

say the stress, strain, internal force, displacement, velocity and acceleration, and so on. In

particular, if Z represents Y, then Equations 6.99a and 6.99b essentially become Equa-

tion 6.104, while ifZ represents one component ofY, say Y‘ðtÞ, then Equations 6.99a and 6.99b
are then identical to Equations 6.106a and 6.106b. In the case nZ¼ 1, Equations 6.99a

and 6.99b reduce to a one-dimensional partial differential equation which, for clarity, can

be rewritten as

@pZQðz; u; tÞ
@t

þ hZðu; tÞ @pZQðz; u; tÞ
@z

¼ 0 ð6:123aÞ

or in an alternative form as

@pZQðz; u; tÞ
@t

þ _Zðu; tÞ @pZQðz; u; tÞ
@z

¼ 0 ð6:123bÞ

where _Zðu; tÞ is the velocity given Q¼ u.
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If two physical quantities are involved, then Equations 6.99a and 6.99b become

@pZ1Z2Qðz1; z2; u; tÞ
@t

þ hZ;1ðu; tÞ @pZ1Z2Qðz1; z2; u; tÞ
@z1

þ hZ;2ðu; tÞ @pZ1Z2Qðz1; z2; u; tÞ
@z2

¼ 0

ð6:124aÞ
or in an alternative form

@pZ1Z2Qðz1; z2; u; tÞ
@t

þ _Z1ðu; tÞ @pZ1Z2Qðz1; z2; u; tÞ
@z1

þ _Z2ðu; tÞ @pZ1Z2Qðz1; z2; u; tÞ
@z2

¼ 0

ð6:124bÞ

where _Z1ðu; tÞ and _Z2ðu; tÞ are the corresponding velocities given Q¼ u.
From Equation 6.123b, the physical sense of the GDEE is clear that the change of the

probability density is due to change of the position; therefore, the time rate of change of

the probability density is associated with the time rate of change of the position. In this

equation, the inseparable ties between the physical system and the evolution of probability

are clearly exhibited. It is quite interesting to revisit Section 6.5.2 and find that the same

result is reached in Equation 6.119b, which is obtained in a quite different way from that

in this section.

Further, the most important point distinct from the classical Liouville equation and FPK

equation is that the probability density of each physical quantity is due to the change of the state

itself, not by other components, no matter whether the physical quantities are coupled or not.

Because of this, the GDEE can be of any arbitrary dimensionwithout constraints on nZ. Then it

is possible to extract the probabilistic information of any single or any two or more physical

quantities, which can be at least numerically feasible, as will be elaborated in Chapter 7. The

crux of the uncoupling is to view the principle of preservation of probability from the random

event description incorporating with the physical solution instead of the state space description

together with the coupling physical equation.

The embedded reason of the above difference of the two different descriptions essentially

lies in the different methodologies. In the state space description, as elaborated in Section 6.3,

the investigator is focused on the transition of probability in a fixed domain in different ways

according to their different phenomenological origins; for example, the effect of drift and

diffusion. This requires globally taking into account the state vector, because each component

of the vector is an indispensable dimension in the state spacewhere the fixed domain examined

is located. On the other hand, in the random event description, it is stressed that the transition of

probability is adherent to random events and their probability measure; namely, the transition

of probability results, in essence, not from the superfluous phenomenological exhibition

of change of state, but from its embedded random events. In other words, the transition of

probability density is adherent to a physical evolution process. Thus, the transition of

probability is treated in a unified way by its association with the random event. In fact, such

a principle is suitable for all physical stochastic systems.

In the above sense, Equations 6.99a and 6.99b are called the generalized density evolution

equation (GDEE). The methodology for tackling stochastic dynamical problems through

solving theGDEE is called the probability density evolution theory (Li andChen, 2006c, 2009).
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6.6 Solution of the Generalized Density Evolution Equation

6.6.1 Analytical Solution

6.6.1.1 The Method of Characteristics

We have encountered themethod of characteristics several times, in Sections 5.6.3 and 6.3.1 for

instance. Here, wewill discuss its basic idea and the embedded physical sense. For simplicity of

concept, we first consider the one-dimensional first-order partial differential equation

@pðx; tÞ
@t

þ aðx; tÞ @pðx; tÞ
@x

þ bðx; tÞpðx; tÞ ¼ 0 ð6:125Þ

where p(x,t) is the unknown function of x and t and a(x,t) and b(x,t) are known functions of x

and t. Clearly, we note that if b(x,t)¼ @a(x,t)/@x, then Equation 6.125 becomes

@pðx; tÞ
@t

þ @

@x
pðx; tÞaðx; tÞ½ � ¼ 0 ð6:126Þ

which is the Liouville equation elaborated in Section 6.3.1.

If we introduce a parameter t and use the parametric equation

x ¼ xðtÞ
t ¼ tðtÞ

�
ð6:127Þ

then we have

dp½xðtÞ; tðtÞ�
dt

¼ @pðx; tÞ
@t

dt

dt
þ @pðx; tÞ

@x

dx

dt
ð6:128Þ

Comparing this equation with Equation 6.125, when setting

dt

dt
¼ 1 ð6:129aÞ

dx

dt
¼ aðx; tÞ ð6:129bÞ

it is found that Equation 6.125 becomes

dp½xðtÞ; tðtÞ�
dt

þ b xðtÞ; tðtÞ½ �p xðtÞ; tðtÞ½ � ¼ 0 ð6:130Þ

Here, we see that Equations 6.129a and 6.129b determine a family of curves represented by a

parametric equation, Equation 6.127, in the x–t plane. Along this family of curves, the partial

differential equationEquation 6.125becomes an ordinary differential equationEquation 6.130.

These curves are called the characteristic curves or characteristics.

Note that the initial condition of Equations 6.129a and 6.129b can take

tð0Þ ¼ 0 xð0Þ ¼ x ð6:131Þ
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The coordinate system (x, t), therefore, is transformed to the coordinate system (x, t) by

x ¼ xðx; tÞ
t ¼ tðx; tÞ ¼ t

�
ð6:132Þ

This implies that, for a given initial value x, Equation 6.132 (through integration of

Equations 6.129a and 6.129b) determines a curve in the x–t plane, which is one specified

characteristic curve. Figure 6.6 shows two typical characteristic curves for different initial

values x1 and x2. The transformation in Equation 6.132 is nonsingular, so that the inverse

transformation exists:
x ¼ xðx; tÞ
t ¼ tðx; tÞ ¼ t

�
ð6:133Þ

It is well known that the solution of Equation 6.130 is given by

f ðx; tÞ, p½xðx; tÞ; tðx; tÞ� ¼ p½xðx; t0Þ; tðx; t0Þ�exp �
ðt
t0
b½xðx; tÞ; tðx; tÞ� dt

� 

ð6:134aÞ

Here, x(t) and t(t) used in Equation 6.130 are replaced by x(x,t) and t(x,t) respectively.
Noting Equations 6.131 and 6.132, Equation 6.134a becomes

f ðx; tÞ ¼ p½xðx; tÞ; tðx; tÞ� ¼ p0ðxÞexp �
ðt
0

b½xðx; tÞ; tðx; tÞ� dt
� 


ð6:134bÞ

where p0(x) is the initial function of p(x,t); that is, p(x,0)¼ p0(x).

Introducing the inverse transformation in Equation 6.133 will then give the solution of the

original Equation 6.125 by

pðx; tÞ ¼ f ðx; tÞjx¼xðx;tÞ;t¼tðx;tÞ

¼ p0½xðx; tÞ�exp �
ðt
0

b½xðx; tÞ; tðx; tÞ� dt
� 
����

x¼xðx;tÞ;t¼tðx;tÞ

ð6:135Þ

x

tt0

( , )x x t2=

( , )x x t1=dx

dt
=

a(x , t)

a(x , t)

dx

dt
=

x1

x2

x

x

Figure 6.6 Characteristics of the first-order partial differential equation.
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The above method for solution of the first-order partial differential equation is called the

method of characteristics (Hodge,1950; Petrovsky,1954; Farlow,1993; Sarra,2003), which has

been employed in Sections 5.6.2 and 6.3.1.2.

The physical sense of the method of characteristics is of particular interest. From

Equations 6.129a, 6.129b and 6.131 it is seen that the characteristic curves are determined by

dx

dt
¼ aðx; tÞ xð0Þ ¼ x ð6:136Þ

If b(x,t)¼ 0, then from Equation 6.130 we have

dp½xðx; tÞ; tðx; tÞ�
dt

¼ 0 ð6:137Þ

Here, we note that x is invariant against t. This indicates that along the characteristic curve
for a specified x, which is determined by Equation 6.132, p(x,t) is invariant and equal to p

(x,0). In the case p(x,t) is a PDF, this underlies that the probability density will be preserved
along the characteristic curves, which is nothing but what is embedded in the random event

description of the principle of preservation of probability. Referring to Section 6.2.2.1 will

provide more insight. Actually, if randomness is only involved in the initial condition, then it

is seen clearly that the characteristic curves have a Lagrangian coordinate description of the

position of the particle being studied. This is particularly clear when we view Equation 6.132

and rewrite it as

x ¼ xðx; tÞ ð6:138Þ

where t¼ t is used.

When Equation 6.136 is viewed as a state space equation in an Eulerian system, Equa-

tion 6.138 as its solution is nothing but the corresponding Lagrangian description. Here, once

again, we find the essential relation between the Lagrangian description and the preservation of

probability.

6.6.1.2 Analytical Solution of Generalized Density Evolution Equation

We now consider the special case when Equation 6.125 becomes

@pðx; tÞ
@t

þ aðtÞ @pðx; tÞ
@x

¼ 0 ð6:139Þ

This is essentially in the same form as the one-dimensional generalized density equation

(Equation 6.123a) for a specified u. In this case, from Equations 6.129a and 6.129b and the

initial condition in Equation 6.131, the characteristic curves are given by

x ¼ xþ
ðt
0

aðtÞ dt ¼ xþcðtÞ ð6:140Þ

where cðtÞ ¼
ðt
0

aðtÞ dt.
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From Equation 6.135 it is known that the solution of Equation 6.139 reads

pðx; tÞ ¼ p0½x�yðtÞ� ð6:141Þ

where p0(x) is the initial function of p(x,t). This is actually a one-way wave propagating at a

velocity of a(t) (Graff, 1975).

Now we consider Equation 6.123a again, repeated here for convenience:

@pZQðz; u; tÞ
@t

þ hZðu; tÞ @pZQðz; u; tÞ
@z

¼ 0 ð6:123aÞ

According to Equation 6.141, the solution is

pZQðz; u; tÞ ¼ p0½z�Hðu; tÞ� ð6:142Þ

where

Hðu; tÞ ¼
ðt
0

hZðu; tÞ dt ð6:143Þ

Note that

p0ðzÞ ¼ dðz� z0ÞpQðuÞ ð6:144Þ

Combining Equations 6.142 and 6.144, we have

pZðz; tÞ ¼
ð
WQ

pZQðz; u; tÞ du ¼
ð
WQ

d½z�Hðu; tÞ�pQðuÞ du ð6:145Þ

If only one random parameter Q is involved, then we have

pZðz; tÞ ¼
ð
WQ

d½z�Hð�; tÞ�pQð�Þ d� ð6:146Þ

Considering the integration rules of the Dirac delta function (see Appendix A), this can be

changed further to

pZðz; tÞ ¼ jJjpQð�Þj�¼H � 1ðz;tÞ ð6:147Þ

where jJj ¼ j@H � 1=@zj.
The closed-form solution is consistent withwhatwas employed in Section 6.5.1.2, where the

solution of Equations 6.106a and 6.106b will be Equation 6.109 according to Equation 6.145.

Example 6.2. Response of an Uncertain SDOF System Consider the SDOF system

€Xþv2X ¼ 0 _Xð0Þ ¼ 0 Xð0Þ ¼ x0 ð6:148Þ
where v is a random variable uniformly distributed over [v1, v2].
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Because v is a random variable, the response X(t) is a stochastic process. The formal

solution of the displacement and velocity of the system in Equation 6.148 is given by

X ¼ x0 cosðvtÞ ð6:149aÞ

_X ¼ � x0v sinðvtÞ ð6:149bÞ

For clarity, denote v by Q. The GDEE of the process (X,Q) is given by

@pXQðx; �; tÞ
@t

� x0�sin ð�tÞ @pXQðx; �; tÞ
@x

¼ 0 ð6:150Þ

According to Equation 6.142, under the initial condition

pXQðx; �; t0Þ ¼ dðx� x0ÞpQð�Þ ð6:151Þ

the solution of Equation 6.150 is

pXQðx; �; tÞ ¼ dðx� x0 cos �tÞpQð�Þ ð6:152Þ

Thus, according to Equation 6.146, we have

pXðx; tÞ ¼
ð
dðx� x0cos�tÞpQð�Þ d� ð6:153Þ

Or further (see. Equation 6.147):

pXðx;tÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x20�x2
p X¥

‘¼0

ph 2‘pþ2p�cos�1 x

x0

� 	
;t

� �
þph 2‘pþcos�1 x

x0

� 	
;t

� �� 

jxj�jx0j

0 otherwise

8<
:

ð6:154Þ

where h¼Qt and

phðxÞ¼1

t
pQðx=tÞ ð6:155aÞ

pQð�Þ¼
1

v2�v1

for v1���v2

0 otherwise

8<
: ð6:155bÞ

Figure 6.7 shows the typical PDF at different time instants given by Equation 6.154 (Li and

Chen, 2004a).
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6.6.2 Numerical Solving Flow of the Generalized Density
Evolution Equation

6.6.2.1 Numerical Solving Flow

To resolve a stochastic dynamical system by the GDEE, some special methods must be

developed. Here, we only give a brief description. A more detailed discussion is given in

Chapter 7.

It is seen that Equations 6.99a and 6.99b are linear partial differential equations where there

are no terms with respect to partial differentiation in terms of u involved. That is, for a given u,
Equations 6.99a and 6.99b become partial differential equations where the arguments of the

unknown function are only z and t. This equation can of course be solved through a numerical

algorithm once the time-variant coefficients _Z‘ðu; tÞ are available.

Therefore, to solve the GDEE, we should first select a set of representative points in the

random parameter space WQ. Then, for each representative point chosen, carry out a

deterministic dynamic analysis to obtain _Z‘ðu; tÞ. These results are then introduced into

the GDEE and solved by, say, some type of numerical method. Finally, the results associated

with all the representative points are synthesized to obtain the instantaneous probability

density of the responses of interest. For simplicity of illustration, we will consider the

solution of the one-dimensional GDEE (Equation 6.123b). The same idea can be used for

Equations 6.99a and 6.99b.

Explicitly, the above procedures usually involve the following four steps:

Step 1. Select representative points in the random parameter space WQ.

Denote this point set by P ¼ fuq ¼ ðu1;q; u2;q; . . . ; us;qÞ; q ¼ 1; 2; . . . ; nselg, where s is the
total number of random variables involved, as discussed in Section 6.5.1.1, and nsel is the

cardinal number of the point set. For each representative point uq, a representative volume

(domain), say the Voronoi cell Vq, exists (Conway and Sloane, 1999). These cells form a

partition of WQ. The probability measure over this domain is assigned to this point and
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denoted by Pq; namely:7

Pq ¼
ð
Vq

pQðuÞ du ð6:156Þ

Clearly,
Pnsel

q¼1 Pq ¼ 1. The initial conditions (Equations 6.121a and 6.121b) are partially

discretized correspondingly to

pZQðz; uq; t0Þ ¼ dðz� z0ÞPq q ¼ 1; 2; . . . ; nsel ð6:157aÞ

pZQðz; uq; t0Þ ¼ pZ0ðzÞPq q ¼ 1; 2; . . . ; nsel ð6:157bÞ

Step 2. For each representative point uq, carry out deterministic analysis on the dynamical

system (Equation 6.92) when setting Q¼ uq and then obtain the velocity of _Zðuq; tÞ from
Equation 6.95.

Step 3. For each representative point uq, introduce _Z‘ðuq; tÞ obtained in Step 2 into the

discretized version of Equation 6.123b:

@pZQðz; uq; tÞ
@t

þ _Zðuq; tÞ @pZQðz; uq; tÞ
@z

¼ 0 q ¼ 1; 2; . . . ; nsel ð6:158Þ

Then solve this equation under the initial conditions (Equations 6.121a and 6.121b) with,

say, the finite difference method. In this step, the space (z,t) should be meshed. Denote the

nodes of the mesh by ðzi; tkÞ, i ¼ 0;�1;�2; . . ., k ¼ 0; 1; 2; . . ., where zi ¼ iDz, tk ¼ kDt,
k ¼ 0; 1; 2; . . . ;Dz is the space step in the direction of z and Dt is the time step.

Equation 6.158 is then transformed to an algebraic equation set and can be solved to give

the values of the density at the nodes, denoted by pZQðzi; uq; tkÞ.
Step 4. Synthesize the results in Step 3 to obtain the instantaneous density through the

discretized version of Equation 6.100:

pZðzi; tkÞ ¼
Xnsel
q¼1

pZQðzi; uq; tkÞ ð6:159Þ

6.6.2.2 Schematic Solution Process of a One-Dimensional Liouvillian System

To illustrate further the meanings of the GDEE and its difference from the Liouville equation,

we consider the solving flow of a one-dimensional system with randomness involved only in

the initial condition:
_X ¼ AðX; tÞ Xðt0Þ ¼ X0 ð6:160Þ

where X0 is a random variable with the density pX0
ðx0Þ.

Denote the density ofX(t) by px(x,t). According to Equation 6.29, the Liouville equation and

its initial conditions are respectively

@pXðx; tÞ
@t

þ @

@x
Aðx; tÞpXðx; tÞ½ � ¼ 0 ð6:161aÞ

pXðx; t0Þ ¼ pX0
ðxÞ ð6:161bÞ

7 This will be elaborated in Section 7.2.2.
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On the other hand, the Lagrangian description of the system in Equation 6.160 and its

velocity are assumed to be given respectively by (see Equations 6.93 and 6.94)

X ¼ HðX0; tÞ and _X ¼ hðX0; tÞ ð6:162Þ

When (X(t),X0) is examined, it is a probability preserved system and the GDEE is given by

@pXX0
ðx; x0; tÞ
@t

þ hðx0; tÞ @pXX0
ðx; x0; tÞ
@x

¼ 0 ð6:163aÞ

with the initial condition

pXX0
ðx; x0; t0Þ ¼ dðx� x0ÞpX0

ðx0Þ ð6:163bÞ

where pXX0
ðx; x0; tÞ is the joint density of (X(t), X0).
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Figure 6.8 Schematic solution process through (a) the Liouville equation and (b) the GDEE.
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The density of X(t) can then be obtained by

pXðx; tÞ ¼
ð
pXX0

ðx; x0; tÞ dx0 ð6:163cÞ

If we solve the above sets of equations numerically by the difference method, for the system

in Equations 6.161a and 6.161b the solving process is implemented on a meshed x–t plane, the

initial condition (Equation 6.161b) will be first discretized and then Equation 6.161a is solved

through a difference scheme, where the velocity field A(x, t) can be computed instantaneously

at the discretized mesh node points (xj,tk) (Figure 6.8a). For the system in Equations 6.163a

–6.163c, however, what is done first is to select some representative point of the random

parameter X0, which can be denoted by x0;1;x0;2; . . . ; x0;nsel, then take time integration on

Equation 6.160 for each given x0;q to obtain the time history of the velocity in Equation 6.162.

After that the time histories of the velocity are employed in the finite differencemethod to solve

Equations 6.163a and 6.163b and finally synthesize all the results to obtain the joint density, as

shown in Equation 6.163c (Figure 6.8b).

Here, it is seen clearly that in the solving process of the Liouville equation a velocity field in

the state space is used and computed instantaneously, whereas in the solving process of the

GDEE the tracing of some representative trajectories is needed instead of computing the

velocity field. This is just the difference between the state space description and the random

event description.

It seems, in this example, that the implementation process of the probability density

evolution method is more complicated than the Liouville equation. However, in the analysis

of a large system, the Liouville equation might be impossible because a multidimensional

partial differential equationmust be handled, which is usually impossible for large dimensions.

In contrast, there are no essential difficulties arising compared with the one-dimensional

problems in the probability density evolution method.
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7

Probability Density Evolution
Analysis: Numerical Methods

7.1 Numerical Solution of First-Order Partial Differential Equation

7.1.1 The Finite-Difference Method

Despite the endeavors devoted to analytical solutions of first-order partial differential equations,

it is more feasible to seek numerical solutions for most problems of practical interest. Because

the generalized density evolution equation, as a first-order partial differential equation, is in a

form similar to conservative equations in fluid dynamics, some of the approaches developed

there can be applied in the probability density evolution method. Actually, the numerical

methods for first-order partial differential equation, such as the finite-difference method, the

finite-volume method and the cell-mapping method, and so on, have been well developed,

particularly some special approaches or schemes stimulated by demands in computational fluid

dynamics (Anderson, 1995; Wesseling, 2001). The finite-difference method, which has been

well dealt with in general textbooks (Mitchell and Griffiths, 1980; Smith, 1985; Stricwerda,

1989) and especially in tackling problems of conservative laws in physical systems (Godlewski

and Raviart, 1996), exhibits satisfactory performances in probability density evolution analysis

when the appropriate difference schemes are employed (Chen and Li, 2004a).

Without loss of generality, we first deal with the equation in the form of Equation 6.139,

which is given again here for convenience:

qpðx; tÞ
qt

þ aðtÞ qpðx; tÞ
qx

¼ 0 ð7:1Þ

This is a hyperbolic partial differential equation. The basic idea of the finite-difference

method is to discretize the partial differential Equation 7.1 into an algebraic equation, referred

to as the difference equation.

To use the finite-difference method, the x–t planewill bemeshed by the two families of lines

x ¼ xj t ¼ tk j ¼ 0;�1;�2; . . . ; k ¼ 0; 1; 2; . . . ð7:2Þ
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such that a uniform grid with time step Dt and spatial mesh size Dx is determined. For

notational convenience, denote the value p(xj, tk) at the point (xj¼ jDx, tk¼ kDt) by p
ðkÞ
j .

Representing the partial differentiation by the difference between the values on the nodes

will give an algebraic equation, then solving the algebraic equation will give the approximate

values of p(xj, tk). Obviously, different approximate representations of the partial differentia-

tions will result in different difference schemes.

7.1.1.1 One-Sided Difference Schemes

Using the first-order Taylor expansion in terms of t

p
ðkþ 1Þ
j ¼ p

ðkÞ
j þ qp

qt

� �ðkÞ
j

Dtþ oðDtÞ ð7:3Þ

we can approximate the partial differentiation in terms of t by

qp
qt

� �ðkÞ
j

_¼
p
ðkþ 1Þ
j � p

ðkÞ
j

Dt
ð7:4Þ

Likewise, in terms of x, we have the first-order Taylor expansion

p
ðkÞ
j ¼ p

ðkÞ
j� 1 þ

qp
qx

� �ðkÞ
j� 1

Dxþ oðDxÞ ð7:5Þ

Therefore, partial differentiation in terms of x can be approximated by

qp
qx

� �ðkÞ
j� 1

_¼
p
ðkÞ
j � p

ðkÞ
j� 1

Dx
ð7:6Þ

Substituting Equations 7.4 and 7.6 in Equation 7.1, replacing a(t) by a(k) and rearranging the

equation yields

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � laðkÞ½ pðkÞj � p

ðkÞ
j� 1� ð7:7aÞ

or in the alternative form

p
ðkþ 1Þ
j ¼ ð1� laðkÞÞpðkÞj þ laðkÞpðkÞj� 1 ð7:7bÞ

where l¼Dt/Dx is the ratio of the time step to the spacial mesh size.

A schematic illustration of this difference scheme is shown in Figure 7.1.

The most important attributes of a difference scheme for a hyperbolic partial differential

equation are the consistency, convergence and stability. A difference scheme is consistent if the

difference equation tends to the original partial differential equation as Dx ! 0 and Dt ! 0.

On the other hand, a difference scheme is convergent if the solution of the difference equation

at the grid tends to the solution of the original partial differential equation as Dx ! 0

and Dt ! 0. Generally, a consistent scheme cannot guarantee convergence. The stability,

here the numerical stability, requires that the increase of the computed value of the solution
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of the difference equation should be bounded. The Lax–Richtmyer equivalent theorem

asserts that a consistent finite-difference scheme for a partial differential equation for which

the initial value problem is well posed is convergent if and only if it is stable (Stricwerda,

1989). Because of this, the stability of a difference scheme should be stressed. Otherwise it

will be of no practical use.

The scheme in Equation 7.7 is, of course, consistent because Equations 7.4 and 7.6

are consistent.

To understand the other features of the scheme in Equation 7.7, we consider the special case

a(k)� a. In this case, the characteristic linewill be a familyof parallel lineswith slopea, ofwhich

the one from the origin is shown in Figures 7.2a and 7.2b respectively for a > 0 and a < 0.

For simplicity, we consider the initial value condition1

p
ð0Þ
j ¼ d0j ¼

1 for j ¼ 0

0 otherwise

�
ð7:8Þ

(k)
jp

(k)
j−1p

(k+1)
jp

Figure 7.1 One-sided scheme (Equation 7.7).
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Figure 7.2 Characteristics and propagation of probability.

1It should be noted that using this initial condition is also without loss of generality, because any discretized

initial condition p
ð0Þ
j ¼ pj;0, j ¼ 0;�1;�2; . . ., can be represented by a linear combination. In addition,

Equation 7.8 is also the discretized initial condition for many practical problems, say in discretization of

Equation 6.121a, except from a difference in a constant factor.
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which means that p
ð0Þ
j is nonzero only at the origin. Here, d is the Kronecker delta. Using

Equation 7.7b, it is noticed that the nonzero points at the time instants t1, t2, . . . , are limited

in the shaded area in Figure 7.2a, denoted by the small hollow circles. In the case a > 0, the

actual propagation of the probability is along the characteristic line from the origin on which

the points at t1, t2, . . . are denoted by the black points. In addition, we notice that

x0p
ð1Þ
0 þ x1p

ð1Þ
1 ¼ aDt ð7:9aÞ

and it is easy to verify that X
j

xjp
ðkÞ
j ¼ kaDt ð7:9bÞ

Thismeans that, at a specified time instant, the actual propagation point (on the characteristic

line) is the mean point of the nonzero points in the numerical solution. In particular, noting

that we require the probability2 1 � p
ð1Þ
0 � 0; 1 � p

ð1Þ
1 � 0 and x0¼ 0, x1¼Dx, from

Equation 7.9a we have

0 � p
ð1Þ
1 ¼ aDt=Dx � 1 or 0 � la � 1 ð7:10Þ

What will happen if Equation 7.10 is not satisfied? From Equation 7.7b, it is seen that if

la > 1, then

p
ð1Þ
0 ¼ ð1� laÞpð0Þ0 < 0 p

ð1Þ
1 ¼ lapð0Þ0 > 1 ð7:11aÞ

and further

p
ð2Þ
0 ¼ ð1� laÞ2pð0Þ0 p

ð2Þ
1 ¼ 2ðla� l2a2Þpð0Þ0 p

ð2Þ
2 ¼ l2a2pð0Þ0 ð7:11bÞ

Actually, we have in general

p
ðkÞ
j ¼ k

j

� �
ð1� laÞk� jljajpð0Þ0 ð7:11cÞ

where

k

j

� �
¼ k!

j!ðk� jÞ!

is the combinatorial number. This leads to

p
ðkÞ
k ¼ lapðk� 1Þ

k� 1 ¼ lkakpð0Þ0 ¼ lkak ð7:11dÞ

This is an unbounded quantity and increasing very rapidly against k if la > 1. Therefore, if

Equation 7.10 is violated, the scheme in Equation 7.7 is unstable.

2The quantity p(x, t) is the PDF. However, it is usually more convenient to understand the discretized value

as a value of probability. This can be achieved when we replace the discretized initial condition p
ð0Þ
j ¼ dj0=Dx

by p
ð0Þ
j ¼ dj0, as is done in Equation 7.8. Then, after we get the numerical solution, we in turn replace p(x, t) by

p(x, t)/Dx.
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On the other hand, if a < 0, then the practical propagation of probability is along the

characteristic line shown in Figure 7.2b; however, the numerical probability in the scheme in

Equation 7.7 propagates in the shaded area in Figure 7.2a. In this case, from Equation 7.7b

or Equation 7.11c:

p
ðkÞ
0 ¼ ð1� laÞpðk� 1Þ

0 ¼ ð1� laÞkpð0Þ0 ¼ ð1� laÞk ð7:12Þ

Because now a < 0, and thus 1� la > 1 and then (1� la)k is an unbounded quantity and

increasing very rapidly against k, this means that the scheme in Equation 7.7 is now unstable.

Therefore, in this case, the scheme should be modified such that the propagation direction

should be the shaded area in Figure 7.2b.

Modify Equation 7.6 to

qpðx; tÞ
qx

_¼
p
ðkÞ
jþ 1 � p

ðkÞ
j

Dx
ð7:13Þ

Substituting Equations 7.13 and 7.4 in Equation 7.1 yields

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � laðkÞ½pðkÞjþ 1 � p

ðkÞ
j � ð7:14aÞ

or in an alternative form as

p
ðkþ 1Þ
j ¼ ½1þ laðkÞ�pðkÞj � laðkÞpðkÞjþ 1 ð7:14bÞ

Likewise, to guarantee the stability of the scheme in Equation 7.14 requires that

½1þ laðkÞ� � 0 or � 1 � laðkÞ � 0 ð7:15Þ

The schematic illustration of the scheme in Equation 7.14 is shown in Figure 7.3.

Equation 7.7 is sometimes called a forward-time backward-space scheme and Equation 7.14

is called a forward-time forward-space scheme. It should be stressed that, according to the

above analysis, the appropriate scheme should be chosen according to the sign of a(t) such that

the propagation direction of the numerical solution coincides with the propagation of the real

solution, which is determined by the characteristic curves.

The schemes for a > 0 (Equation 7.7) and a < 0 (Equation 7.14) can also be written in a

unified way by

p
ðkþ 1Þ
j ¼ ð1� jlajÞpðkÞj þ 1

2
ðjlaj � laÞpðkÞjþ 1 þ

1

2
ðjlaj þ laÞpðkÞj� 1 ð7:16aÞ

(k)
j+1p

(k)
jp (k+1)

jp

Figure 7.3 One-sided scheme (Equation 7.14).
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or

p
ðkþ 1Þ
j ¼ � lapðkÞjþ 1uð� aÞþ ð1� jlajÞpðkÞj þ lapðkÞj� 1uðaÞ ð7:16bÞ

where u(�) is the Heaviside unit step function, of which the value is unity when the argument is

nonnegative and otherwise zero (see Appendix A), and a here represents a(k) for simplicity.

The conditions in Equations 7.10 and 7.15 now become

jlaðkÞj � 1 ð7:17Þ

Actually, this is just the celebrated Courant–Friedrichs–Lewy (CFL) condition (Courant

et al.,1928).

One of the advantages of the one-sided scheme in Equation 7.16 is that the nonnegativeness

of probability can be preserved. In addition, the total probability is conversative; namely:X
j

p
ðkÞ
j ¼

X
j

p
ð0Þ
j ¼ 1 ð7:18Þ

which can beverified by introducing the unified scheme inEquation 7.16.However, it is of first-

order accuracy because only the first-order expansion is employed in the Taylor series

approximations in Equations 7.3, 7.5 and 7.13. The schemes of higher accuracy should retain

higher-order terms, which will be elaborated in the following sections.

Before leaving this section, we spend a little more time on the unified scheme in

Equation 7.16. It is seen that Equation 7.16 is a one-step linear scheme; namely:

p
ðkþ 1Þ
j ¼

Xn
‘¼� n

c‘p
ðkÞ
jþ ‘ ð7:19Þ

For the present case, n¼ 1, c� 1 ¼ 1
2
ðjlaj þ laÞ, c0¼ 1� |la| and c1 ¼ 1

2
ðjlaj � laÞ. This

shows that the value at the grid at time tkþ 1 is the linear combination of the values at the grid

at time tk.

The physical sense of Equation 7.19, however, is not so clear. In particular, preservation of

probability cannot be seen directly. If we let F(p)¼ ap(x, t), which is the flux of probability,

Equation 7.1 now becomes

qp
qt

þ qFðpÞ
qx

¼ 0 ð7:20Þ

This equation is usually called the convertive type partial differential equation. When it is

discretized using Equations 7.4 and 7.6, where p is replaced by F, we get

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � lðFðkÞ

j �F
ðkÞ
j� 1Þ ¼ p

ðkÞ
j � lDFðkÞ

j� 1
2

ð7:21aÞ

where F
ðkÞ
j and F

ðkÞ
j� 1 are the numerical flux and DFðkÞ

j� 1
2

¼ F
ðkÞ
j �F

ðkÞ
j� 1 is the difference in the

numerical flux.3

3Such convention for notation is widely used in numerical analysis and computational fluid dynamics and will

be widely used in the following sections. For any quantity pj, we denote Dpjþ ½ð2m� 1Þ=2� ¼ pjþm � pjþm� 1 for

m¼ 0,�1,�2, . . .. For instance, Dpjþ 3
2
¼ pjþ 2 � pjþ 1, while Dpj� 3

2
¼ pj� 1 � pj� 2.
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The physical sense of Equation 7.21a is, of course, clearer than Equation 7.19. We can now

rewrite Equation 7.16 in the form of Equation 7.21a by employing the numerical flux:

F
ðkÞ;One-sided
j , F

ðkÞ
j ¼ 1

2
ða� jajÞpðkÞjþ 1 þ

1

2
ðaþ jajÞpðkÞj ð7:22Þ

Using similar notation, Equation 7.21a can also be rewritten as

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � 1

2
ðla� jlajÞDpðkÞ

jþ 1
2

� 1

2
ðlaþ jlajÞDpðkÞ

j� 1
2

ð7:21bÞ

where DpðkÞ
jþ 1

2

¼ p
ðkÞ
jþ 1 � p

ðkÞ
j and DpðkÞ

j� 1
2

¼ p
ðkÞ
j � p

ðkÞ
j� 1.

7.1.1.2 Two-Sided Difference Schemes

Wenow construct the difference schemes with second-order accuracy. If we retain the terms up

to second order in the Taylor expansion in terms of t, then Equation 7.3 becomes

p
ðkþ 1Þ
j ¼ p

ðkÞ
j þ qp

qt

� �ðkÞ
j

Dtþ 1

2

q2p
qt2

� �ðkÞ
j

Dt2 þ oðDt2Þ ð7:23Þ

Differentiating Equation 7.1 with respect to t on both sides yields

q2p
qt2

¼ q
qt

qp
qt

� �
¼ q

qt
� aðtÞ qp

qx

� �
¼ � _aðtÞ qp

qx
� aðtÞ q

qt
qp
qx

� �
¼ � _aðtÞ qp

qx
� aðtÞ q

qx
qp
qt

� �
¼ � _aðtÞ qp

qx
þ a2ðtÞ q

2p

qx2

ð7:24aÞ

If a(t) is slowly varying in the time interval [t, t þ Dt], then _aðtÞ 	 0 and we have

q2p
qt2

¼ a2ðtÞ q
2p

qx2
ð7:24bÞ

Substituting Equations 7.1 and 7.24b in Equation 7.23 yields

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � aðtÞ qp

qx

� �ðkÞ
j

Dtþ a2ðtÞ
2

q2p
qx2

� �ðkÞ
j

Dt2 þ oðDt2Þ ð7:25Þ

Using the difference to approximate the partial differentiation with accuracy up to second

order, ½qp=qx�ðkÞj should be represented by a central difference; namely:

qp
qx

� �ðkÞ
j

¼
p
ðkÞ
jþ 1 � p

ðkÞ
j� 1

2Dx
þ oðDx2Þ ð7:26aÞ
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Simultaneously, the second-order partial differentiation can be approximated by a second-

order difference:

q2p
qx2

� �ðkÞ
j

¼
p
ðkÞ
jþ 1 þ p

ðkÞ
j� 1 � 2p

ðkÞ
j

Dx2
þ oðDx2Þ ð7:26bÞ

Substituting Equations 7.26a and 7.26b in Equation 7.25 and ignoring the effect of o(Dt2)
and o(Dx2), we have

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � la

2
p
ðkÞ
jþ 1 � p

ðkÞ
j� 1

h i
þ l2a2

2
p
ðkÞ
jþ 1 þ p

ðkÞ
j� 1 � 2p

ðkÞ
j

h i
ð7:27aÞ

where a(k) is simplified to a for notational convenience.4 The scheme can also be rewritten as

p
ðkþ 1Þ
j ¼ ð1� l2a2ÞpðkÞj þ 1

2
ðl2a2 � laÞpðkÞjþ 1 þ

1

2
ðl2a2 þ laÞpðkÞj� 1 ð7:27bÞ

This is the widely used Lax–Wendroff scheme (LeVeque, 1992), a schematic illustration

of which is shown in Figure 7.4.

Rewriting Equation 7.27b similar to the numerical flux form in Equation 7.21, the numerical

flux is now

F
ðkÞ;LW
j , F

ðkÞ
j ¼ 1

2
ða� la2ÞpðkÞjþ 1 þ

1

2
ðaþ la2ÞpðkÞj ð7:27cÞ

Comparing this with Equation 7.22, we find that

F
ðkÞ;LW
j ¼ F

ðkÞ;One-sided
j þ 1

2
ðjaj � la2ÞDpðkÞ

jþ 1
2

ð7:27dÞ

This indicates that the numerical flux of the Lax–Wendroff scheme can be regarded as the

numerical flux of the one-sided scheme plus a correction of a second-order term.

(k)
j+1p

(k)
jp (k+1)

jp

(k)
j−1p

Figure 7.4 Two-sided scheme (Equation 7.27).

4We point out here that if we consider the effect of the term � _aðtÞðqp=qxÞ in Equation 7.24a, the value of a in

the Lax–Wendroff scheme should take aðkþ
1
2
Þ ¼ 1

2
aðkÞ þ aðkþ 1Þ� �

. The proof is left to the reader.
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To understand the properties of the Lax–Wendroff scheme (Equation 7.27b), again we

consider the case when the initial condition is given by

p
ð0Þ
j ¼ d0j ð7:8Þ

in which only the origin is the nonzero point at the initial time.

The propagation of the nonzero points at time instants t1, t2, . . . is shown in the shaded area
in Figure 7.5, where the characteristic line when a is a constant is also plotted. Clearly, in

contrast to the one-sided schemes, it is seen that the scheme ofEquations 7.27a and 7.27bworks

both for a > 0 and a < 0.

Combining Equations 7.8 and 7.27b, it follows that

p
ð1Þ
� 1 ¼

1

2
ðl2a2 � laÞpð0Þ0 p

ð1Þ
0 ¼ ð1� l2a2Þpð0Þ0 p

ð1Þ
1 ¼ 1

2
ðl2a2 þ laÞpð0Þ0 ð7:28aÞ

and further:

p
ðkÞ
� k ¼ l2a2 � la

2

� �k

p
ð0Þ
0 p

ðkÞ
k ¼ l2a2 þ la

2

� �k

p
ð0Þ
0 ð7:28bÞ

To meet the requirement that p
ðkÞ
� k and p

ðkÞ
k be bounded against increasing k, it must be

satisfied that

l2a2 � la
2

				
				 � 1 and

l2a2 þ la
2

				
				 � 1 ð7:28cÞ

Consequently:

jlaj � 1; or jlaðkÞj � 1 ð7:29Þ

This is the CFL condition for the Lax–Wendroff scheme.

x

to
1t 2t kt

1x

x−1

0t

jx tΔ

Δx

1
λ

1
a

x−2

Characteristic line

Figure 7.5 The Lax-Wendroff scheme.
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Re-examining Figures 7.2a and 7.2b and 7.5 and the CFL conditions for the one-sided

scheme and the Lax–Wendroff scheme, we can see that no matter whether for the one-sided or

the two-sided schemes, the CFL conditions require that the angle of the diagonal line of the grid

should cover the angle of the characteristic line.

The Lax–Wendroff scheme is of second-order accuracy because in Equations 7.23, 7.26a

and 7.26b the second-order terms in terms of both Dt and Dx are retained. Using the

Lax–Wendroff scheme, the total probability is still conservative; namely:X
j

p
ðkÞ
j ¼

X
j

p
ð0Þ
j ¼ 1 ð7:30aÞ

and the mean points still coincide with the point determined by the characteristic line; for

example, at the first time step, this can be rewritten as

x� 1p
ð1Þ
� 1 þ x0p

ð1Þ
0 þ x1p

ð1Þ
1 ¼ aDt ð7:30bÞ

which can be verified by Equation 7.28a. However, unlike the one-sided scheme, the

nonnegativeness of the probability cannot be retained.

7.1.2 Dissipation, Dispersion and Total Variation Diminishing Schemes

The features of the difference schemes play one of the central roles in judging if the numerical

solution is a physically reasonable solution. To understand this point, we now first examine a

numerical example where the exact solution is a piece-wise continuous function, as shown in

Figure 7.6. It is seen that, if the one-sided difference scheme is employed, the numerical

solution is greatly smoothed in the vicinity of the left-hand side discontinuity point while a

tiny high-frequency oscillation occurs in the vicinity of the right-hand side discontinuity point.

If the Lax–Wendroff scheme is employed, on the other hand, the numerical solution is closer

to the exact solution in the vicinity of the left-hand side discontinuity point. However, severe

high-frequency oscillation occurs to the left of the two discontinuity points.

The effect of smoothing is related to dissipation, while the high-frequency oscillation is due

to dispersion. Intuitively, when we gave an analysis on stability of the schemes, from
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Figure 7.6 Numerical solutions computed by different schemes.
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Equations 7.11b, 7.11d and 7.12 it is seen that the amplitude of the numerical solution is

nonincreasing when the CFL condition is satisfied. This means that the scheme is dissipating

and the results will be smoother than the real solution. Amore rigorous basis is provided by the

modified equation (Warming and Hyett, 1974; Hedstrom, 1975; LeVeque, 1992) or the von

Neumann analysis (Stricwerda, 1989).

7.1.2.1 Modified Partial Differential Equations for Difference Schemes

In the preceding sections, the original partial differential equation is discretized on a uniform

grid through truncation of a Taylor series. The p
ðkÞ
j values obtained by the difference schemes

are approximations of the solution at the node (xj, tk). We now investigate what happens if we

regard the p
ðkÞ
j values as the exact p(xj, tk) values and replace them in the difference equation.

Certainly, because the difference equation is an approximation of the original differential

equation, not an exact replacement, we expect that the p(xj, tk) values will satisfy some kind of

partial differential equation as an approximation of the original partial differential equation.

We first consider the one-sided schemes. For convenience we use Equation 7.7a and replace

a(k) by a (a > 0) here:

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � la½pðkÞj � p

ðkÞ
j� 1� ð7:31Þ

Replacing p
ðkÞ
j by the exact value p(xj, tk), Equation 7.31 becomes

pðxj; tk þDtÞ ¼ pðxj; tkÞ� la½pðxj; tkÞ� pðxj �Dx; tkÞ� ð7:32aÞ

Performing the Taylor expansion in the vicinity of (xj, tk):

pðxj; tk þDtÞ ¼ pðxj; tkÞþ
qpðxj; tkÞ

qt
Dtþ 1

2

q2pðxj; tkÞ
qt2

Dt2 þ 1

6

q3pðxj ; tkÞ
qt3

Dt3 þ � � �

ð7:32bÞ

pðxj �Dx; tkÞ ¼ pðxj; tkÞ�
qpðxj ; tkÞ

qx
Dxþ 1

2

q2pðxj; tkÞ
qx2

Dx2 � 1

6

q3pðxj; tkÞ
qx3

Dx3 þ � � �

ð7:32cÞ
Using the similar manipulation in Equation 7.24a, we have

q2p
qt2

¼ a2
q2p
qx2

q3p
qt3

¼ � a3
q3p
qx3

ð7:32dÞ

Substituting Equations 7.32b–7.32d in Equation 7.32a yields5

qp
qt

þ a
qp
qx

¼ að1� laÞDx
2

q2p
qx2

þ aðl2a2 � 1ÞDx2
6

q3p
qx3

ð7:33Þ

5 This equation is different from that in LeVeque (1992), where the second term on the right-hand side of the equation is

ignored. The treatment here is more complete.
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We see that, as Dx ! 0, this partial differential equation tends to the original partial

differential equation, Equation 7.1. Equation 7.33 is the modified equation of the difference

scheme (Equation 7.31). The right-hand side of the equation is the local truncation error of the

difference scheme.

Physically speaking, the first term on the right-hand side of Equation 7.33 is the diffusive

term and the second one is the dispersive term. This means that, in the one-sided difference

scheme, artificial diffusion and dispersion are introduced. Of course, the term of diffusion is a

type of artificial viscosity which results in dissipation. In particular, because the coefficient of

the dispersive term is in the higher order of Dx, its effect is usually much less than the

dissipation term. When it is ignored, Equation 7.33 becomes

qp
qt

þ a
qp
qx

¼ að1� laÞDx
2

q2p
qx2

ð7:34aÞ

In thermodynamics, this is an advection–diffusion equation. Actually, it is also a one-

dimensional FPKequationwith the diffusion coefficient a(1� la)Dx/2. Aswe have understood
in Section 5.6.3.1, this equation will make the solution smoother and smoother as time passes.

For example, an initial delta functionwill become a normal distributionwith increasing standard

deviation. By the way, we know that for a physical meaning system it is required that

að1� laÞDx
2

� 0 ð7:35Þ

This essentially coincides with the CFL condition given by Equation 7.10.

More generally, for both a > 0 and a < 0, Equation 7.34a becomes

qp
qt

þ a
qp
qx

¼ jajð1� ljajÞDx
2

q2p
qx2

ð7:34bÞ

If we note Equation 7.27d, we see that the corrections in the numerical flux of the

Lax–Wendroff scheme are of course consistent with the right-hand side of Equation 7.34b;

this is how the second-order accuracy is achieved.

Similar treatment works for the Lax–Wendroff scheme. In this case, we replace

Equation 7.32a by

pðxj; tk þDtÞ ¼ pðxj; tkÞ�
la
2

pðxj þDx; tkÞ� pðxj �Dx; tkÞ
� �

þ l2a2

2
pðxj þDx; tkÞþ pðxj �Dx; tkÞ� 2pðxj; tkÞ
� �

ð7:36Þ

Substituting the Taylor expansion in the vicinity of (xj, tk) and rearranging the equation

yields

qp
qt

þ a
qp
qx

¼ aðl2a2 � 1ÞDx2
6

q3p
qx3

ð7:37Þ

Here, we see that the local truncation error is the dispersive term and the diffusive term

disappears. This is because the second term in the Taylor expansion has been considered in

Equation 7.25 and, therefore, the dissipation is not shown here. Actually, the dissipation of the
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Lax–Wendroff scheme is very small, as will be seen in the next section. In this case, however,

the effect of dispersion dominates the error. This accounts for the nonphysical spurious

phenomena near the discontinuity points in Figure 7.6.

7.1.2.2 Amplification Factors of Difference Schemes: von Neumann Analysis

To capture the features of the difference schemes for all possible initial function p0(x) is not

easy. However, we have successfully adopted the methodology that some types of special

function can be used to understand the properties of the system, as discussed in Section 5.2.1.

Similar to what is done in dynamical systems, we can also understand the features of the

difference scheme through tracing the propagation of a harmonic wave in the difference

equation. As a matter of fact, in the case where a Kronecker delta initial condition is used (see

Equation 7.8), we are trying to understand the features of the difference scheme by examining

the propagation of an impulse through the difference equation.

From Section 5.2.1 we know that any physical practical function can be represented by a

Fourier transform pair:

p0ðxÞ ¼
1

2p

ð?
�?

~p0ðkÞeikx dk ~p0ðkÞ ¼
ð?
�?

p0ðxÞe� ikx dx ð7:38Þ

For this reason, we can just consider the initial function as a unit harmonic function

p0(x)¼ eikx, where k is the wave number.

Note that both the one-sided and the Lax–Wendroff schemes are one-step linear schemes;

namely, they can be written in a unified scheme as in Equation 7.19, for convenience of

reference, repeated here as Equation 7.39:

p
ðkþ 1Þ
j ¼

Xn
‘¼� n

c‘p
ðkÞ
jþ ‘ ð7:39Þ

It is easy to see that for the one-sided and the Lax–Wendroff schemes n¼ 1 and the

coefficients c‘ can be determined by comparing this equation with Equations 7.16 and 7.27b

respectively.

The discretized initial condition of p0(x)¼ eikx reads

p
ð0Þ
j ¼ eikxj ¼ eikDxj ð7:40Þ

Here, use has been made of xj¼ jDx. We now consider the first step by Equation 7.39

p
ð1Þ
j ¼

Xn
‘¼� n

c‘p
ð0Þ
jþ ‘

¼
Xn
‘¼� n

c‘e
ikDxðjþ ‘Þ

¼
Xn
‘¼� n

c‘e
ikDx‘eikDxj

¼
Xn
‘¼� n

c‘e
ikDx‘

 !
p
ð0Þ
j ¼ gðqÞpð0Þj

ð7:41Þ
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where q¼ kDx and

gðqÞ ¼
Xn
‘¼� n

c‘e
iq‘ ð7:42Þ

is an amplification factor.

Because Equation 7.39 is a linear operator, it is clear that

p
ðkþ 1Þ
j ¼ gðqÞpðkÞj ð7:43aÞ

p
ðkÞ
j ¼ gkðqÞpð0Þj ¼ gkðqÞeiqj ð7:43bÞ

Intuitively, for a stable scheme we must require that

jgðqÞj � 1 ð7:44Þ

Otherwise, fromEquation 7.43, p
ðkÞ
j will increase rapidly and be unbounded as k ! ?. This is

the case for a uniform grid with constant l¼Dt/Dx.
For the case Dt and Dx are not constant, Equation 7.44 can be relaxed to

jgðq;Dt;DxÞj � 1þKDt ð7:45Þ

for all q, 0�Dt�Dtb and 0�Dx�Dxb, where K is a constant (independent of q, Dt and Dx)
and Dtb and Dxb are some positive grid spacings (Stricwerda, 1989).

According to Equation 7.42, it is easy to obtain the amplification factor and then give the

condition of stability by Equation 7.44 or 7.45. A more direct approach is to introduce

Equation 7.43b into the difference scheme. For example, examining the one-sided scheme

(Equation 7.7b) for a contant a > 0:

p
ðkþ 1Þ
j ¼ ð1� laÞpðkÞj þ lapðkÞj� 1 ð7:46aÞ

when replacing p
ðkÞ
j by gk eiqj, we have

gkþ 1eiqj ¼ ð1� laÞgkeiqj þ lagkeiqðj� 1Þ ð7:46bÞ

Eliminating gk eiqj on both sides yields

gðqÞ ¼ 1� lað1� e� iqÞ and jgðqÞj2 ¼ 1� 4lað1� laÞsin2 q
2

ð7:46cÞ

For constant l, using Equations 7.44 and 7.46c, we obtain

la � 1 ð7:46dÞ

This, again, gives the CFL condition for the scheme in Equation 7.46a.

Similar manipulation can be performed for the Lax–Wendroff scheme. Substituting

Equation 7.43b in the scheme in Equation 7.27b gives

gkþ 1eiqj ¼ ð1� l2a2Þgkeiqj þ 1

2
ðl2a2 � laÞgkeiqðjþ 1Þ þ 1

2
ðl2a2 þ laÞgkeiqðj� 1Þ ð7:47aÞ
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and thus

gðqÞ ¼ ð1� l2a2Þþ l2a2cosq� ilasinq ð7:47bÞ

and

jgðqÞj2 ¼ 1� 4l2a2ð1� l2a2Þsin4 q
2

ð7:47cÞ

From Equation 7.44, it follows that

jlaj � 1 ð7:47dÞ

which is the CFL condition for the Lax–Wendroff scheme given by Equation 7.29.

On the other hand, fromEquation 7.43, for a constant l, in the case |g(q)|¼ 1, therewill be no

dissipation because the amplitude does not decay. However, dissipation exists when |g(q)| < 1.
It is seen from Equations 7.46c and 7.47c that both the one-sided and Lax–Wendroff schemes

have dissipation; but, for the same l and a, the amplification factor of the Lax–Wendroff is

closer to unity than the one-sided scheme is, which is why stronger dissipation is seen in the

latter scheme.

7.1.2.3 Dispersion

As pointed out in Section 6.6.1, the solution of Equation 7.1 is a wave. Thus, to understand

the properties of the numerical methods, it is useful to consider the propagation of a real wave

in the original system and the propagation of the corresponding numerical wave in the

discretized system. As has been done in the preceding section, we consider the propagation of

an initial wavewith wave number k, eikx. The analytical solution, according to Equation 6.141,
is given by

pðx; tÞ ¼ eikðx� atÞ ð7:48Þ

In the numerical solution, there might be some distortion such that the velocity might not

exactly be a. Denoting it by a, the numerical solution can then be written as

pðx; tÞ ¼ eikðx�atÞ ¼ eiðkx�vtÞ and p
ðkÞ
j ¼ pðxj; tkÞ ¼ eikðxj �atkÞ ¼ eiðkxj �vtkÞ ð7:49Þ

where the frequency v¼ ka.
Substituting Equation 7.49 in the Lax–Wendroff scheme in Equation 7.27b we have

eiðkxj �vtk �vDtÞ ¼ ð1� l2a2Þeiðkxj �vtkÞ þ 1

2
ðl2a2 � laÞeiðkxj þ kDx�vtkÞ

þ 1

2
ðl2a2 þ laÞeiðkxj � kDx�vtkÞ ð7:50aÞ

Eliminating eiðkxj �vtkÞ on both sides yields

e� ivDt ¼ ð1� l2a2Þþ 1

2
ðl2a2 � laÞeikDx þ 1

2
ðl2a2 þ laÞe� ikDx ð7:50bÞ
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or in an alternative form as

tanðvDtÞ ¼ la sinðkDxÞ
ð1� l2a2Þþ l2a2 cosðkDxÞ

¼ la sinðkDxÞ
1� 2l2a2 sin2ðkDx=2Þ

ð7:50cÞ

This demonstrates that the frequency v is a nonlinear function of the wave number k.
Therefore, thewave velocitya¼v/k, which is now called the phase velocity6 for a specified k,
is dependent on the wave number k. Further, if we expand the above terms in the vicinity of

k¼ 0 by using the Taylor expansion series sinðxÞ ¼ x 1� 1
6
x2 þOðx4Þ

� �
and tan� 1ðxÞ ¼

x 1� 1
3
x2 þOðx4Þ

� �
, from Equation 7.50c we have

v _¼ ak 1� 1

6
k2Dx2ð1� l2a2Þ

� �
ð7:51Þ

Thus, the phase velocity is given by

aðkDxÞ ¼ v

k
¼ a 1� 1

6
k2Dx2ð1� l2a2Þ

� �
ð7:52Þ

Equation 7.52 can also be reached by directly introducing Equation 7.49 into the dispersive

equation (Equation 7.37) and then eliminating the common terms on both sides.

For practical situations, the wave is composed of many, or infinite, waves of different wave

numbers kj; they form a wave packet or wave group. For the jth component, the change of the

phase wj¼ (kjx�vjt) in dt is

dwj ¼ dðkjx�vj tÞ ¼ kj dx�vj dt ð7:53Þ

The same thing happens for the ‘th component with the wave number k‘ and frequency v‘.

In order for the wave group to be maintained, the change in the phase of different components

should be the same; that is, dwj ¼ dw‘. This leads to

ðkj � k‘Þdx�ðvj �v‘Þdt ¼ 0 ð7:54Þ

Since kj and k‘ and vj and v‘ differ only slightly, we have

dx

dt
¼ vj �v‘

kj � k‘
¼ dv

dk
ð7:55Þ

Thus, the group velocity, the velocity of the wave group, is defined (Graff, 1975) as

ag ¼
dv

dk
ð7:56Þ

For the Lax–Wendroff scheme, from Equation 7.51 it follows that

ag ¼
dv

dk
¼ a 1� 1

2
k2Dx2ð1� l2a2Þ

� �
ð7:57Þ

Because |la|� 1, it is found from Equations 7.52 and 7.57 that

6This term comes from the fact that it is the velocity that occurs in the phase angle kðx � atÞ of the wave

eikðx�atÞ, in contrast to the group velocity introduced later.

246 Stochastic Dynamics of Structures



agðkÞ � aðkÞ � a ð7:58Þ

That is, the wave obtained by the difference equation lags behind the real wave. Moreover,

this degree of lag is different for the components with different wave numbers. Thus, the

components with different wave numbers will separate as time elapses. This leads to dispersion

(Trefethen, 1982). The phenomenon is particularly severe when the real wave possesses

discontinuity, because a wide range of (particularly higher) wave number is needed in this

case. For the Lax–Wendroff scheme, Equation 7.58 also accounts for why the high-frequency

oscillation is always to the left of the discontinuity points (the propagation direction is

from left to right). However, for different schemes, the relationship amonga,ag and amight be

different from Equation 7.58; therefore, the properties of the high-frequency oscillation will

also be different.

Generally, there is competition between the dissipation and the dispersion. This can be

seen from themodifiedEquations 7.33 and 7.37. Usually, one of themdominates the local error.

The schemes with less dispersion usually exhibit stronger dissipation, and vice versa.

7.1.2.4 Total Variation Diminishing Schemes

The one-sided difference scheme is nonnegativeness preserving and the numerical results are

usually smooth, but the dissipation is too large. On the other hand, the two-sided scheme

(for example, the Lax–Wendroff scheme) is much less dissipative, though much more

dispersive, especially in the vicinity of discontinuity. Can we have a balance between them

by some type of hybrid scheme? This is possible by constructing a total variation diminishing

(TVD) scheme (Harten, 1983; Shu, 1988).

The nonnegativeness preserving of the one-sided scheme, as noted in Section 7.1.1.1 and

Figure 7.6a, is more rigorously calledmonotonicity preserving, which means that if the initial

data p
ð0Þ
j is monotone as a function of j, then the solution p

ðkÞ
j should have the same property

for all k. Actually, a linear, monotonicity-preserving scheme is at most first-order accurate

(van Leer, 1974; LeVeque, 1992).

Intuitively, from Figure 7.6b we see that, compared with the real solution, the numerical

solution by the Lax–Wendroff scheme is more irregular because of the high-frequency

oscillation. This can be measured by a quantity called total variation of a function defined by

TV pð � ; tÞ½ � ¼
ð?
�?

qpðx; tÞ
qx

				
				 dx ð7:59Þ

of which the discretized form could be written as

TVðpðkÞ� Þ ¼
X?
j¼�?

p
ðkÞ
jþ 1 � p

ðkÞ
j

			 			 ð7:60Þ

It can be proved that the real solution of Equation 7.1 satisfies (LeFloch, 2002)

TV½pð � ; t2Þ� � TV½pð � ; t1Þ� � TV½pð � ; t0Þ� for t2 > t1 > t0 ð7:61Þ

This attribute of the solution function is TVD.AnyTVD scheme ismonotonicity preserving.
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Clearly, if a difference scheme is TVD, then spurious nonphysical phenomena will be

expected to reduce or even disappear. It can be verified that the one-sided scheme is TVD

but that the Lax–Wendroff scheme is not. Actually, it is readily seen that the high-

frequency oscillation makes the total variation of the numerical solution larger than the

exact solution.

To construct a scheme having a trade-off between the one-sided and the Lax–Wendroff

schemes, we first examine the relationship between them further. Comparing the modified

Equations 7.33 and 7.37, we judge that the Lax–Wendroff scheme must be some type of

modified version of the one-sided scheme where additional terms are imposed to suppress

the dissipation. This is actually the case, as we have seen in Equation 7.27d, which indicates

that the numerical flux of the Lax–Wendroff scheme F
ðkÞ;LW
j is a modified version of that of the

one-sided scheme F
ðkÞ;One-sided
j , where a second-order correction term is added. We can

then rewrite the Lax–Wendroff scheme Equation 7.27b to a flux-difference form:

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � lðFðkÞ;LW

j �F
ðkÞ;LW
j� 1 Þ

¼ p
ðkÞ
j � lðFðkÞ;One-sided

j �F
ðkÞ;One-sided
j� 1 Þ� 1

2
ðjlaj � l2a2ÞðDpðkÞ

jþ 1

2

�DpðkÞ
j� 1

2

Þ ð7:62Þ

where DpðkÞ
jþ 1

2

¼ p
ðkÞ
jþ 1 � p

ðkÞ
j , DpðkÞ

j� 1
2

¼ p
ðkÞ
j � p

ðkÞ
j� 1 can be regarded as the difference of numeri-

cal flux (divided by a). Here, it is clearly seen that a second-order correction term is imposed

on the one-sided scheme to construct the Lax–Wendroff scheme. It is this correction term

that greatly reduces the dissipation but simultaneously makes the dispersion obvious.We need

to modify this term such that in the vicinity of discontinuity this term almost does not work

while in the smooth part this termworkswell. Thismeans that themodification should be based

on the data of the solution.

The most intuitive approach to balance between the one-sided and the Lax–Wendroff

scheme is to construct a hybrid scheme with the numerical flux as combination of numerical

flux of the Lax–Wendroff scheme F
ðkÞ;LW
j and that of the one-sided scheme F

ðkÞ;One-sided
j ;

namely, for 0� 1�b:

F
ðkÞ;Hybrid
j ¼ ð1�bÞFðkÞ;One-sided

j þbF
ðkÞ;LW
j ¼ F

ðkÞ;One-sided
j þb

1

2
ðjlaj � l2a2ÞDpðkÞ

jþ 1
2

ð7:63aÞ

where F
ðkÞ;LW
j is defined in Equation 7.27d.

If b is a constant (that is, not dependent on the data of the numerical solution), then

Equation 7.63a is a one-step linear scheme in the form of Equations 7.19 and 7.39. As pointed

out above, a linear, monotonicity-preserving scheme is at most first-order accurate; the scheme

constructed above cannot be a second-order accurate scheme.

To retain second-order accuracy,bmust be a nonlinear factor dependent on the data, denoted

by cjþ 1
2
; thus Equation 7.63a is rewritten as

F
ðkÞ;Hybrid
j ¼ F

ðkÞ;One-sided
j þ 1

2
ðjlaj � l2a2Þcjþ 1

2
DpðkÞ

jþ 1
2

ð7:63bÞ

Because cjþ 1
2
is a factor less than unity, imposed on and modifying the numerical flux

according to the data of the numerical solution, it is called the flux limiter. Equation 7.62 is now
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modified to

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � lðFðkÞ;Hybrid

j �F
ðkÞ;Hybrid
j� 1 Þ

¼ p
ðkÞ
j � lðFðkÞ;One-sided

j �F
ðkÞ;One-sided
j� 1 Þ� 1

2
ðjlaj � l2a2Þðc

jþ 1
2

DpðkÞ
jþ 1

2

�c
j� 1

2

DpðkÞ
j� 1

2

Þ

ð7:64Þ

or in a complete form when introducing F
ðkÞ;One-sided
j from Equation 7.22:

p
ðkþ 1Þ
j ¼ p

ðkÞ
j � 1

2
ðla� jlajÞDpðkÞ

jþ 1
2

� 1

2
ðlaþ jlajÞDpðkÞ

j� 1
2

� 1

2
ðjlaj � l2a2Þðcjþ 1

2
DpðkÞ

jþ 1
2

�cj� 1
2
DpðkÞ

j� 1
2

Þ ð7:65Þ

Note that in the case where the flux limiters cjþ 1
2
� cj� 1

2
� 0, Equations 7.64 and 7.65

reduce to the one-sided scheme, whereas in the case where cjþ 1
2
� cj� 1

2
� 1 they become the

Lax–Wendroff scheme. Therefore, we require

0 � cjþ 1
2
� 1 0 � cj� 1

2
� 1 ð7:66Þ

As analyzed, the modification should adapt to the data by judging if the change of the curve

is abrupt. This can be measured by the ratios of a sequent difference; that is:

rþ
jþ 1

2

¼
DpðkÞ

jþ 3
2

DpðkÞ
jþ 1

2

¼
p
ðkÞ
jþ 2 � p

ðkÞ
jþ 1

p
ðkÞ
jþ 1 � p

ðkÞ
j

r�
jþ 1

2
¼

DpðkÞ
j� 1

2

DpðkÞ
jþ 1

2

¼
p
ðkÞ
j � p

ðkÞ
j� 1

p
ðkÞ
jþ 1 � p

ðkÞ
j

ð7:67a; bÞ

For instance, if rþ
jþ 1

2

¼ 1, then the (j þ 2)th, the (j þ 1)th and the jth points are on a straight

line and the curve is smooth; that is, the change of the curve is not abrupt. The same

thing happens for r�
jþ 1

2

¼ 1. But, if rþ
jþ 1

2

			 			 is very large, then the (j þ 2)th point is very far

from the line determined by the (j þ 1)th and the jth points and, thus, there is an abrupt change

in the curve.

If we assume a > 0, then imposing the TVD condition on the scheme in Equations 7.64

and 7.65will give the conditions that the flux limiterc should satisfy (Sweby, 1984;Roe, 1986).

According to computational experiences, the following flux limiter is recommended:

c0ðrÞ ¼ maxð0;minð2r; 1Þ;minðr; 2ÞÞ ð7:68Þ

Further, in a unified way for both a > 0 and a < 0, we use

cjþ 1
2
ðrþ

jþ 1
2

; r�
jþ 1

2
Þ ¼ uð� aÞc0ðrþjþ 1

2

Þþ uðaÞc0ðr�jþ 1
2
Þ ð7:69Þ

where u(�) is the Heaviside�s unit step function (see Appendix A). Replacing the subscript

by j� 1
2
gives cj� 1

2
.

Investigations have proved that away from the extreme value the scheme in Equations 7.64

and 7.65 is second-order accurate, whereas near the extreme value it is first-order accurate

(LeVeque, 1992).

The TVD scheme does work well in the probability density evolution analysis of most

problems.
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Example 7.1. Comparison between Lax–Wendroff and TVD Schemes Again, we study

the SDOF system with uncertain natural frequency in Example 6.2. The PDF of the displace-

ment is solved both by the Lax–Wendroff scheme and the TVD scheme. Figures 7.7a and 7.7b

shows the PDFs at 1.00 s computed by the two schemes and Figures 7.7c and 7.7d shows the

PDFs evolving against time in the period 0.9–1.1 s. These figures show that the Lax–Wendroff

scheme can capture the exact results inmost places but that it does notworkwell in thevicinity of

discontinuity because of dispersion,whereas in theTVDscheme the accuracy is high even in the

vicinity of discontinuity and the high-frequency oscillation disappears.

Computational experiences demonstrate that the accuracy of the TVD scheme in

Equation 7.65 sometimes deteriorates severely compared with the Lax–Wendroff scheme,

particularly in the time interval near the initial time. This might require reducing the time

step to increase the accuracy. The selection of the time step usually depends on the frequency of

the time history of the velocity a(t), and should be carefully calibrated, say, through comparing

the mean and the standard deviation with those obtained by the Lax–Wendroff scheme.

Figure 7.7 Numerical solution computed by Lax–Wendroff scheme and TVD scheme.
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When the smaller time steps are used, an interpolation between two sample time instants of a(t)

is usually needed (Chen and Li, 2005a). &

7.2 Representative Point Sets and Assigned Probabilities

As we have discussed in the solution flow of the probability density evolution method in

Section 6.6.2, to solve the generalized density evolution equation numerically, a set of values

of the parameters u¼ (u1, u2,. . ., us) should first be specified. In other words, a set of points

scattered in the s-dimensional regionWQ 
 Rs needs to be chosen. HereRs is the s-dimensonal

real Euclidian space. To select these points in a smart way, it is required to understand

the configuration of s-dimensional space. To this end, we first revisit the sphere packings

and covering problems and then come to the strategies of determining the representative

points.

7.2.1 Sphere Packings, Covering and Partition of Space

7.2.1.1 Sphere Packings

The celebrated Kepler conjecture asserts that the highest dense sphere packing in three-

dimensional space isp=
ffiffiffiffiffi
18

p
¼ 0:740 480 � � �, which is closely related to the problemof largest

kissing number (coordination number or contact number) of equal spheres. Essentially, this

problem deals with how to pack a given space with equal spheres in an efficient way. More

significantly, research on this problem in the past hundreds of years provides deep insight into

the understanding of multidimensional spaces (Conway and Sloane, 1999; Zong, 1999;

Martinet, 2003).

We consider the sphere packing problem in an s-dimensional space; that is, to pack the space

by a set of nonoverlapping, equal spheres. The case for s¼ 2 is shown in Figure 7.8, where the

nonoverlapping equal circles are placed in different ways. Clearly, there is always some room

not being occupied by the circles. Visually, the packing in pattern (b) is more efficient than

that in pattern (a); that is, the unoccupied room in pattern (b) is less than that in pattern (a).

More rigorously, the efficiency of the packing can be measured by the density of packing

defined as the proportion of the space that is occupied by the spheres. Note that a particular

polyhedron is related to and covering each sphere; for example, in Figure 7.8a it is a square

contact to the circle and in Figure 7.8b it is a regular hexagon contact to the circle. We call the

volume of this polyhedron the fundamental region (or representative region) of the sphere.

Figure 7.8 Patterns of sphere packings.
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Therefore, in an infinite space, the density of packing is equivalent to

r ¼ Volume of all the spheres

Volume of the space
¼ Vðone sphereÞ

Vðfundamental regionÞ ð7:70Þ

where Vð � Þ is the volume. Certainly, there is always r < 1 and the packing with higher density
is more efficient.

It is easy to obtain the density of packing for the patterns in Figure 7.8a and b as

r ¼ pr2

ð2rÞ2
¼ p

4
¼ 0:785 398 � � � and r ¼ pr2

2
ffiffiffi
3

p
r2

¼ pffiffiffiffiffi
12

p ¼ 0:906 899 � � �

respectively. They are obviously distinct. Actually, the pattern in Figure 7.8b is the densest

packing in two-dimensional space.

The definition in Equation 7.70 also applies in higher dimension. The volume of an

s-dimensional sphere Bðr; sÞ ¼ fx ¼ ðx1; x2; . . . ; xsÞ : jjxjj2 ¼ x21 þ x22 þ � � � þ x2s � r2g is

given by

VðBðr; sÞÞ ¼
ð
x2Bðr;sÞ

dx1 dx2 � � � dxs ¼
ps=2rs

Gð1þ s
2
Þ ¼

pmrs

m!
for s ¼ 2m

2ð2pÞmrsQm
j¼0ð2jþ 1Þ for s ¼ 2mþ 1

8>>><
>>>:

ð7:71Þ
where G(�) is the Gamma function and

Vðfundamental regionÞ ¼
ð
x2fundamental region

dx1 dx2 � � � dxs ð7:72Þ

In dimension s¼ 3, it has been proved recently that the Kepler conjecture holds; that is, the

highest density is p=
ffiffiffiffiffi
18

p
¼ 0:740 480 � � � (Hsiang, 2002; Hales, 2006; Hales and Ferguson,

2006). For dimensions s > 3, the densest packings have not been found, except for the lattice

packings.7 However, the densest possible lattice packings are available now in dimensions

s� 8. For example, face-centered cubic (fcc) packing is one of only two structures that

maximize a local density in dimension 3 (Figure 7.9).

By theway, a problem closely related to the sphere packings is the kissing number problem,

which asks how many balls can be arranged so that they all just touch, or ‘kiss,’ another ball of

the same size. The kissing number is sometimes also called the Newton number, contact

number, coordination number or ligancy number (Conway and Sloane, 1999). It is well known

that the maximum kissing numbers --l in dimensions 2 and 3 are respectively --l2 ¼ 6 and
--l3 ¼ 12. We see that the fcc packings in Figures 7.8b and 7.9 reach the maximum kissing

number, but this is not the case in Figure 7.8a. Again, the maximum kissing number in high

dimensions is far from easy to obtain. We only know that the maximum kissing number in

dimension 4might be 24 or 25, and in dimension 8 it is 240. No further information is available

in other dimensions (Conway and Sloane, 1999).

7 The lattice is defined in Section 7.3.2.
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The centers of these nonoverlapping spheres form a point set, of course uniformly scattered

over the space in a sense, with the attributes measured by the density of packing.

7.2.1.2 Covering

We now come to the dual problem of sphere packings. If the spheres overlap, then we

encounter the problem of covering a space W by the overlapping equivalent spheres. For

example, Figure 7.10 shows two patterns of sphere covering. Visually, the covering in

pattern (b) is more efficient than that in the pattern (a) because the overlapping area is less.

In other words, to cover a given space the number of spheres in pattern (b) is less than that

in pattern (a). It is seen that, because the spheres are overlapping, in contrast to the sphere

packings, the fundamental region related to each sphere is smaller than the sphere itself. We

now call the ratio of the total volume of the spheres to the volume of the space the thickness

of the covering, which is equivalent to

J ¼ Vðone sphereÞ
Vðfundamental regionÞ ð7:73Þ

Certainly, there is always J > 1 and the covering by the pattern with a smaller thickness is

more efficient.

Figure 7.10 Equal spheres covering space.

Figure 7.9 Patterns of sphere packings.
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For patterns (a) and (b) in Figure 7.10, the thicknesses are

J ¼ pr2

ð
ffiffiffi
2

p
rÞ2

¼ p

2
¼ 1:570 796 � � � and J ¼ pr2

3
ffiffi
3

p

2
r2

¼ 2p

3
ffiffiffi
3

p ¼ 1:209 199 � � � : ð7:74Þ

respectively. This means that the covering by pattern (b), whose thickness is smaller, is more

efficient. In fact, in the two-dimensional space (plane), pattern (b) is the thinnest (Conway and

Sloane, 1999).

Analogous to the packing problem, the thinnest covering is only known in dimensions 1 and

2. For lattice covering, the thinnest patterns are known in dimensions 1–5.

Like the packing problem, the centers of the covering spheres form a point set, possibly

different from the packing point, but also uniformly scattered over the space in a sense.

7.2.1.3 Partition of Space

We now come to something like the inverse problem of the packing and covering. If there is a

point set P ¼ fuq ¼ ðu1;q; u2;q; . . . ; us;qÞ; q ¼ 1; 2; . . . ; nptg in an s-dimensional space W,

where npt is the number of points (cardinal number of the set), we consider the problem of

using equal spheres (balls) with radius r located at these points, denoted by Bqðr; sÞ, to pack or
cover the space. Here:

Bqðr; sÞ ¼ x ¼ ðx1; x2; . . . ; xsÞ 2 Rs : jjx� uqjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

ðxj � uj;qÞ2
vuut � r

8<
:

9=
; ð7:75Þ

where ||�|| is the 2-norm and Rs is the s-dimensional real Euclidean space.

There exists a maximum value such that the packing of space by the nonoverlapping,

equal spheres with this value as radius centered at the prescribed points reaches a highest

density. In other words, if the radius is larger than this value, then the spheres cannot be

nonoverlapping. This value is called the packing radius, denoted by rpk; clearly:

rpk ¼
1

2
inf

ui ;uj2P
ðjjui � ujjjÞ ð7:76Þ

Figure 7.11a schematically shows the packing radius for a given point set in a plane. It is seen

that, for a given point set, equivalent spheres with packing radius located at the given points are

usually not mutually tangent. Actually, it can only be ensured that at least two spheres are

tangent. It is the distance between these two points that determines the packing radius via

Equation 7.76.

On the other hand, there exists a value such that the covering of space by spheres with this

value of radius centered at the prescribed points reaches a minimum thickness; namely, if the

radius is less than this value, then the space cannot be completely covered (occupied) by the

spheres centered at the prescribed points. This value is called the covering radius, denoted by

rcv, and is given by

rcv ¼ sup
x2Rs

inf
uq2P

ðjjx� uqjjÞ ð7:77Þ
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Figure 7.11b shows schematically the covering radius for the same set of points as in

Figure 7.11a.

For example, if we regard the centers of the circles in Figures 7.8a and 7.8b and 7.10a and

7.10b as the specified points, then we have for the point sets (a) and (b)

rcv ¼
ffiffiffi
2

p
rpk ¼ 1:4142rpk and rcv ¼

2ffiffiffi
3

p rpk ¼ 1:1547rpk ð7:78Þ

respectively. Again, the problems in dimensions s� 3 are much more complicated.

The covering related to point setP, as visualized in Figure 7.11b in the case s¼ 2, determines

a representative region for each point towhich belong all the points in the spacewith minimum

distance to this point. The representative region so determined is the Voronoi cell of the point,

denoted by V(uq) or simply Vq, and is given by

VðuqÞ ¼ Vq , fx 2 Rs : jjx� uqjj � jjx� uj jj for all j; j 6¼ qg ð7:79Þ

Other terms are nearest-neighbor region, Dirichlet region, Brillouuin zone and Wigner–

Seitz cell (Barndorff-Nielsen et al., 1999; Conway and Sloane, 1999; Zong, 1999).

Schematically shown in Figure 7.11c are the Voronoi cells of the points. Comparing

Figure 7.11b and Figure 7.11c will immediately find the relationship between the sphere

covering and the Voronoi cells. It is not difficult to understand that the packing radius and

covering radius are essentially the minimum inradius and maximum circumradius of the

Voronoi cells respectively.

Because all the Voronoi cells are mutually exclusive except in a zero-measure set related to

the boundary surfaces, they form a complete but nonoverlapping partition of the space W;

namely: [npt

q¼1
Vq ¼ W and V Vi

\
Vj

� �
¼ 0 for any different i; j ð7:80Þ

where Vð � Þ is the volume measure in the s-dimensional space. If VðWÞ is finite, then from

Equation 7.80 we have

V
[npt

q¼1
Vq

� �
¼
Xnpt
q¼1

VðVqÞ ¼ VðWÞ and V Vi

\
Vj

� �
¼ 0 for any different i; j ð7:81Þ

Figure 7.11 The point set and the corresponding Voronoi cells in a plane.
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7.2.2 Representative Point Sets and Assigned Probabilities

7.2.2.1 Representative Points and Their Assigned Probabilities

We now come back to the solution flow of the probability density evolution method as

discussed in Section 6.6.2. The point sets

Psel ¼ fuq ¼ ðu1;q; u2;q; . . . ; us;qÞ; q ¼ 1; 2; . . . ; nselg ð7:82Þ

should be first determined in the space WQ. The chosen point set is termed the representative

point set, of which each point is called a representative point. Here, nsel is the cardinal number

of the selected representative point set.

Because the representative points are scattered in a space where a probability measure is

assigned, to each representative point the probability over its Voronoi cell should be assigned

Pq ¼ PrfQ 2 Vqg ¼
ð
Vq

pQðuÞdu q ¼ 1; 2; . . . ; nsel ð7:83Þ

which is called the assigned probability of uq. Here, pQ(u) is the joint density of the random

parameters Q¼ (Q1, Q2,. . ., Qs). By doing this, the joint density pQ(u) has in fact been

discretized through replacing it by (see Appendix A)

~pQðuÞ ¼
Xnsel
q¼1

½Pqdðu� uqÞ� ¼
Xnsel
q¼1

Pq

Ys
j¼1

dðu� uj;qÞ
" #

ð7:84Þ

Clearly, we have

lim
rcv ! 0

~pQðuÞ ¼ pQðuÞ ð7:85Þ

where rcv is the covering radius of the point set Psel and is also the maximum circumradius of

the Voronoi cells. In addition, in consideration of Equation 7.81, it follows thatð
WQ

pQðuÞdu ¼
ð
WQ

~pQðuÞdu ¼
Xnsel
q¼1

Pq ¼
Xnsel
q¼1

ð
Vq

pQðuÞdu ¼
ð
[nsel
q¼1

Vq

pQðuÞdu ¼ 1 ð7:86Þ

For visual convenience, we illustrate the assigned probabilities when only one random

parameter is involved with the PDF pQ(u) shown in Figure 7.12a. Denote the representative

point set Psel ¼ fu1; u1; . . . ; unselg. If the Voronoi cell of the point uq is the interval

Vq ¼ ½_uq; �uq� (noting that the interval may be different for different q), then the assigned

probability of the point uq is given by

Pq ¼
ð�uq
_uq

pQðuÞdu ð7:87aÞ

Thus, the original PDF pQ(u) is discretized to

~pQðuÞ ¼
Xnsel
q¼1

Pqdðu� uqÞ ð7:87bÞ

as shown in Figure 7.12b.
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7.2.2.2 Discrepancy and F-Discrepancy of Point Sets

In the solution procedure of the probability density evolution equation, determination of

the representative point set Psel is undoubtedly of paramount importance. Recalling

Equation 6.100, we see that in the mathematical form the right-hand side is a multidimensional

integral with respect to u in which the joint PDF pZQ(z, u, t) is the integrand. If the information

of the integrand is well or partly known, then a variety of approaches have been developed

to reduce the dimensionality (He, 2001) or to select reasonable point sets, for example,

in the numerical multiple integral (Engels, 1980; Genz, 1986; Sobolev and Vaskevich, 1997;

Xu, 1998). However, in many cases little is known about the information of the integrand,

which is the case in most problems of practical interest, because the closed form or even the

qualitative features of the integrand may depend on closed-form solutions of the complex

nonlinear systemwhich are usually unfeasible. In this case, intuitively, the representative point

is better scattered uniformly in a sense. For instance, choose the point set with a fixed cardinal

number nsel that makes

(a) the packing radius maximized; or

(b) the covering radius minimized; or

(c) some other indices minimized.

Investigations show that these criteria are usually not equivalent and will result in different

point sets. Some of the point sets will be generated by these criteria in the following sections.

In order to do so, we introduce an additional family of indices here, named discrepancies,

which are also usually employed in measuring the uniformity of a point set.

Without loss of generality, we consider the point sets over a unit hypercube

Cs ¼ ½0; 1�s ¼ fx ¼ ðx1; x2; . . . ; xsÞ : xj 2 ½0; 1� for all j ¼ 1; 2; . . . ; sg

in an s-dimensional space. Denote a point set P ¼ fxk ¼ ðx1;k; x2;k; . . . ;xs;kÞ
k ¼ 1; 2; . . . ; ng. If P 
 Cs, then the discrepancy of P is defined by (Hua and Wang, 1981)

Dðn;PÞ ¼ sup
n2Cs

Nðn;PÞ
n

�Vð 0; n½ �Þ
				

				 ð7:88Þ

Figure 7.12 Assigned probabilities.
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where n ¼ ðn1; n2; . . . ; nsÞ 2 Cs, 0� ni� 1, i¼ 1, 2, . . ., s, Nðn;PÞ is the number of the points

satisfying xk � n and Vð½0; n�Þ is the volume of the hyper-rectangle ½0; n� ¼
Qs

j¼1 ½0; nj�
and given by Vð½0; n�Þ ¼ n1n2 � � � ns.

It is seen from Figure 7.13 in dimension s¼ 2 that the discrepancy defined above is the

maximum error when replacing the ratio of the areas by the ratio of the number of points

contained in the areas. Visually, if the points are scattered uniformly, the discrepancy will be

small. An important theorem related to this discrepancy makes it quite valuable (Hua and

Wang, 1981): if f(x) is a function of bounded variation in the sense of Hardy and Krause,8thenð
Cs
f ðxÞdx� 1

n

Xn
k¼1

f ðxkÞ
					

					 � TVðf ÞDðn;PÞ ð7:89Þ

where TV(f) is the total variation of the function f. TV(f) in dimension 1 is the same as defined

in Equation 7.59. This means that the discrepancy Dðn;PÞ bounds the error of the multi-

integral.

According to the definition in Equation 7.88, the discrepancy of the uniform grid point

(UGP) set (Figure 7.14a)

PUGP ¼ 2‘1 � 1

m
;
2‘2 � 1

m
; . . . ;

2‘s � 1

m

� �
; 1 � ‘j � m; j ¼ 1; 2; . . . ; s

� 

ð7:90Þ

satisfies

c1ðsÞn� 1=s � Dðn;PUGPÞ � c2ðsÞn� 1=s or Dðn;PUGPÞ ¼ Oðn� 1=sÞ ð7:91Þ

Here, c1 and c2 are two constants dependent on s but not on n.

While for the Monte Carlo-sampled (MCS) points PMCS (Figure 7.14b), the discrepancy

Dðn;PMCSÞ ¼ Oðn� 1=2ðloglognÞ1=2Þ ð7:92Þ

with unity probability.

1

1ν

2ν
1

Figure 7.13 Discrepancy of a point set.

8 The variation of a function in the sense of Hardy and Krause is to measure the irregularity and smoothness of a

function. If the function is too irregular, then the variation in the sense ofHardy andKrause is usually large. For its exact

definition, refer to Hua and Wang (1981) and Niederreiter (1992) for example.
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It is seen that Dðn;PMCSÞ <Dðn;PUGPÞ in dimensions s� 3 with unity probability. This

accounts for why theMCS set is more efficient than the UGP set for numerical multi-integrals.

However, in Dðn;PÞ, the probability density assigned to the space over which the point

setP scatters is not considered. To take into account this information, an F-discrepancy can be

defined by (Fang and Wang, 1994)

DFðn;PÞ ¼ sup
x2Rs

jF nðxÞ�FðxÞj ð7:93Þ

where FðxÞ is the CDF and F nðxÞ is the empirical distribution function given by

F nðxÞ ¼
1

n

Xn
q¼1

Ifxq � xg ð7:94Þ

where I{�} is the indicator function whose value is one if the event is true and zero otherwise.
The F-discrepancy is essentially the Kolmogorov–Smirnov statistic for the goodness-of-fit

(Robinstein, 1981); see Figure 7.15 for s¼ 1.

It is easy to see that DFðn;PÞ defined by Equation 7.93 becomes Dðn;PÞ defined by

Equation 7.88 if the probability distribution is a uniform distribution over Cs.

xo

F(x)
1

F

Fn(x)

Figure 7.15 Schematic picture of F-discrepancy.

1

1

1

1

(b)(a)

Figure 7.14 Two typical point sets.
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Equation 7.94 essentially possesses an acquiescence that all of the sampled points

have the same weights. This is not the case, because each point xq is associated with an

assigned probability Pq as given by Equation 7.83; therefore, it is reasonable to modify

Equation 7.94 to

F nðxÞ ¼
Xn
q¼1

Pq � Ifxq � xg ð7:95Þ

The F-discrepancy so obtained is called the modified F-discrepancy or true F-discrepancy.

Clearly, the discrepancyDðn;PÞ, F-discrepancy DFðn;PÞ and the modified F-discrepancy

can also be used as the indices to be minimized in the above-mentioned criterion (c).

7.2.3 First- and Second-Order Discrepancies of Point Sets

From Section 6.6.2, the PDF pZ(z, t) obtained by Equation 6.100 is approximated by Equation

6.159 (note that the latter is the case in dimension 1). The error in approximating the PDF,

ignoring that in the finite-difference method, reads

eðz; tÞ ¼
ð
W
pZQðz; u; tÞpQðuÞdu�

Xnsel
q¼1

½pZQðz; uq; tÞPq�
					

					 ð7:96Þ

It should be noted here that, to make Equations 6.100 and 6.159 consistent, pZQ(z, u, t) here
is not the same as that in Equation 6.159 but equivalent to pZQ(z, u, t)/pQ(u).

9

It follows from Equations 7.83 and 7.86 that

eðz; tÞ ¼
Xnsel
q¼1

ð
Vq

pZQðz; u; tÞpQðuÞdu�
Xnsel
q¼1

pZQðz; uq; tÞ
ð
Vq

pQðuÞdu
" #					

					
¼
Xnsel
q¼1

ð
Vq

½pZQðz; u; tÞ� pZQðz; uq; tÞ�pQðuÞdu
					

					
ð7:97Þ

Using the Taylor expansion and retaining the second-order terms, we have

pZQðz;u; tÞ�pZQðz;uq; tÞ ffi
Xs
i¼1

ci;qðpZQÞðui� ûi;qÞþ
1

2

Xs
j¼1

Xs
i¼1

Cij;qðpZQÞðui� ûi;qÞðuj� ûj;qÞ

ð7:98Þ

where

ci;qðpZQÞ ¼
qpZQðz;u; tÞ

qui

				
u¼uq

Cij;qðpZQÞ ¼
q2pZQðz;u; tÞ

quiquj

				
u¼uq

ð7:99Þ

9 It is noted that the generalized density evolution Equation 6.109 is invariant if the initial condition (Equation

6.121a) is changed to pZQðz; u; t0Þ ¼ dðz � z0Þ and simultaneously Equation 6.100 is changed to

pZðz; tÞ ¼
Ð
WQ

pZQðz; u; tÞpQðuÞdu. The expression in Equation 7.96 adopts the present treatment.
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are respectively the first- and second-order sensitivities of the function pZQ(z, u, t) in terms of u
and ûi;q are the coordinates of the representative point set, where the hat is added to avoid

notational confusion.

Taking Equation 7.98 into Equation 7.97 yields

eðz;tÞffi
Xnsel
q¼1

ð
Vq

Xs

i¼1
ci;qðpZQÞðui�ûi;qÞþ

1

2

Xs
j¼1

Xs
i¼1

Cij;qðpZQÞðui�ûi;qÞðuj�ûj;qÞ
" #

pQðuÞdu
					

					
ð7:100Þ

Further:

eðZ; tÞ � ðmax
i;q

jci;qðpZQÞjÞ
Xnsel
q¼1

ð
Vq

Xs
i¼1

jui � ûi;qjpQðuÞdu
					

					
þ 1

2
ðmax
i;j;q

jCij;qðpZQÞjÞ
Xnsel
q¼1

ð
Vq

Xs
j¼1

Xs
i¼1

jðui � ûi;qÞðuj � ûj;qÞjpQðuÞdu

¼ f1ðpZQÞD1ðPselÞþf2ðpZQÞD2ðPselÞ ð7:101Þ

wheref1(pZQ) andf2(pZQ) are the functionals as themaxima of absolute value of the first- and

second-order sensitivities of the function pZQ(�):

f1ðpZQÞ ¼ max
i;q

jci;qðpZQÞj f2ðpZQÞ ¼
1

2
max
i;j;q

jCij;qðpZQÞj ð7:102Þ

and D1ðPselÞ and D2ðPselÞ are the measures of discrepancy of the point set Psel defined by

D1ðPselÞ ¼
Xnsel
q¼1

ð
Vq

Xs
i¼1

jui � ûi;qjpQðuÞdu ð7:103Þ

and

D2ðPselÞ ¼
Xnsel
q¼1

ð
Vq

Xs
j¼1

Xs
i¼1

ðui � ûi;qÞðuj � ûj;qÞ
		 		pQðuÞdu ð7:104Þ

which might as well be called the first- and the second-order discrepancy respectively.

Equation 7.101means that the error of the numerical algorithm depends on the configuration

of the point set (measured by D1ðPselÞ and D2ðPselÞ) and the sensitivities with respect to the

parameters (measured by f1(pZQ) and f2(pZQ)). Therefore, a good algorithm should, in

principle, consider these two factors.

7.2.4 Two-Step Procedure of Constructing Representative Points

According to the above analysis, to improve the accuracy in approximating the PDF, a point set

Psel should make the modified F-discrepancy DFðn;PÞ and the first- and second-order

discrepancies D1 and D2 as small as possible. Simultaneously, the sensitivities f1(pZQ) and

f2(pZQ) of pZQ(z, u, t) should be taken into account.
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Generally, in the region where the sensitivities of pZQ(z, u, t) in terms of u are larger, the

points should be denser. Unfortunately, because pZQ(z, u, t) is an unknown function to be

obtained through the generalized density evolution equation, it is usually hard to get

information on its sensitivities in terms of u, particularly for nonlinear systems. This makes

it reasonable to have the points scattered uniformly; namely, to make the discrepancyDðn;PÞ
as small as possible for the given n. Point sets so obtained, however, cannot guarantee the

minimization of the modified F-discrepancy DFðn;PÞ and the first- and second-order

discrepancies D1ðPÞ and D2ðPÞ. Actually, the point set with small Dðn;PÞ may have a very

large modified F-discrepancyDFðn;PÞ if the joint probability density of the parameters is not

uniform, as will be seen in Section 7.4. To make DFðn;PÞ, D1ðPÞ and D2ðPÞ as small as

possible, a density-related transformation on the uniformly scattered point sets obtained can be

imposed, to adjust the density of points partly according to the density of the parameters.

According to these considerations, we may employ a two-step procedure of constructing

representative point sets (Chen et al., 2009):

i. construct a uniformly scattered point set as a basic point set, denoted by PBasic;

ii. perform the density-related transformation on PBasic to yield the representative point

set Psel.

In the next two sections we will elaborate the approaches in these two steps.

7.3 Strategy for Generating Basic Point Sets

To determine point sets uniformly scattered over a given space has long received the attention

of mathematicians, physicists and chemists. As mentioned, the sphere packings and covering

will lead to uniform point sets in a space (Conway and Sloane, 1999). In addition, the number

theoretical method can also generate uniform point sets (Hua andWang, 1978, 1981). All these

are deterministic point sets. The MCS points (including their improvement, the Latin

hypercube sampled points), on the other hand, will generate random point sets uniformly,

usually with higher discrepancy (Robinstein, 1981; Fang and Wang, 1994). This section will

discuss deterministic point sets by tangent spheres, lattices and the number theoretical method.

7.3.1 From Sphere Packings: Tangent Sphere Method

7.3.1.1 Construction of Point Sets by Tangent Sphere Method

The sphere packings problem provides a possible way to construct uniformly scattered point

sets as the basic or representative points. Considering first the case for s¼ 2. In a plane, it is

well known that the kissing number of a circle is six. In this case, the centers of the kissing

circles form the vertices of a regular hexagon (shown in Figure 7.16a) and a total of seven

circles forms a fixed-shape substructure. Therefore, the pattern of packing generated by using

this substructure as the basis structureswill have a tight packingwith the highest density. This is

essentially the pattern in Figure 7.8b. However, using the generating process as shown in

Figure 7.16a will make it easy to locate and number the centers in computer programs.

Actually, we see that the circles form different loops (layers) outward, and in each loop we

numerate the circles anticlockwise. By doing this, we can get the polar coordinates (ri,wi) of the
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center of the ith circle:

i ¼ ð3‘2 � 3‘þ 1Þþ ‘jþ k j ¼ 0; 1; . . . ; 5; k ¼ 0; 1; . . . ; ‘� 1 ð7:105aÞ

ri ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘� kÞ2 þð

ffiffiffi
3

p
kÞ2

q
j ¼ 0; 1; . . . ; 5; k ¼ 0; 1; . . . ; ‘� 1 ð7:105bÞ

wi ¼ j
p

3
þ tan� 1

ffiffiffi
3

p
k

2‘� k

� �
j ¼ 0; 1; . . . ; 5; k ¼ 0; 1; . . . ; ‘� 1; ð7:105cÞ

where ‘ ¼ 0; 1; . . . ; L is the order number of the loops with the origin being labeled 0 and r

is the radius of the tangent spheres.

It follows from Equation 7.105a that the total number of circles is

ntotal ¼ 3ðLþ 1Þ2 � 3ðLþ 1Þþ 1 ¼ 3L2 þ 3Lþ 1 ð7:106Þ

It is noted, however, that the numbers of projections of centers to the x and y coordinate

axes are different; thus, the information reflected by the points is not equivalent in different

coordinates. This is because the projections of the regular hexagon, on which the centers of the

circles in the same loop are located, to the x and y coordinate axes, ax¼ 2a and ay ¼
ffiffiffi
3

p
a

(where a is the edge length), are not equal. Rotating the hexagon by an appropriate angle c to

make the modified projections a0x and a0y equal gives c¼p/12 (Figure 7.16b).

Equation 7.105c, therefore, should be modified to

wi ¼
p

3
j� 1

4

� �
þ tan� 1

ffiffiffi
3

p
k

2‘� k

� �
j ¼ 0; 1; . . . ; 5; k ¼ 0; 1; . . . ; ‘� 1: ð7:107Þ

No modification is needed in Equation 7.105b.

The Cartesian coordinates of the points are then given by

xi ¼ ricoswi

yi ¼ risinwi

�
i ¼ 0; 1; 2; . . . ð7:108Þ

x

y

0
1

23
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5 6

7 19
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o
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xa

ψ

(b)(a)

Figure 7.16 Tangent circles in a plane.
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As mentioned above, in the three-dimensional space (s¼ 3), the highest kissing number of

the sphere is 12. The pattern of packing with kissing number 12 can be constructed using the

pattern in the two-dimensional space discussed above as the pattern in one layer (Figure 7.17a;

also see Figure 7.9). It is seen that the spheres in one layer (see the white solid circles as

projections of the spheres in the same layer to the plane) can be regarded as a translation of the

spheres (see the dashed, shaded circles) in the adjacent layers, the translation being Dx ¼ 0,

Dy ¼ 2
ffiffiffi
3

p
r=3 before rotation in Equation 7.107. After rotation, we have

Dx ¼ 2
ffiffiffi
3

p
r

3
sinc Dy ¼ 2

ffiffiffi
3

p
r

3
cosc ð7:109Þ

Simultaneously, the centers of one sphere in the upper layer and the three kissing spheres in

the lower layer will form the vertices of a regular tetrahedron with edge length 2r

(Figure 7.17b); thus, the distance between the two layers is the height Dz of the regular

tetrahedron and given by

Dz ¼ 2
ffiffiffi
6

p
r

3
ð7:110Þ

For convenience, we get the coordinate in the z-direction of different layers in a symmetric

way

~zk ¼ kDz k ¼ 0;�1;�2; . . . ð7:111Þ

Denoting the coordinates of the centers located in the kth layer z ¼ ~zk as ð~xi;k;~yi;k;~zkÞ, then
we can get

~xi;k ¼ xi;0 þ
1

2
1�ð� 1Þk
h i

Dx

~yi;k ¼ yi;0 þ
1

2
1�ð� 1Þk
h i

Dy

8>><
>>: ðk ¼ 0;�1; . . . ;�NzÞ ð7:112Þ

where xi,0, yi,0 are the Cartesian coordinates of the centers located in the plane z¼ 0 and given

by Equation 7.108 and Nz is the total number of layers.

32
3 r=

Δ z

2r

(a) (b) 

Figure 7.17 Pattern of tangent spheres in three-dimensional space.
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Renumber the points and change the subscript indices (i, k) to a single index j and denote the

coordinates of the points by ð�xj;�yj;�zjÞ. Similar to the situation for s¼ 2, it is necessary to

perform a rotation here with x as the rotational axis and finally the points are given by

xj ¼ �xj

yj ¼ �yjcoscx þ�zjsincx

zj ¼ �zjcoscx ��yjsincx

8>><
>>: ðj ¼ 1; 2; . . .Þ ð7:113Þ

wherecx are the rotational angles circling the x-axis. Considering the symmetry of x, y and z in

the three-dimensional space, one can reasonably take cx¼c¼p/12.
Likewise, the construction for s¼ 4 can also be made. But it is more direct now to

generate the points in the four-dimensional space by a generator matrix. For details, refer

to Chen and Li (2008).

7.3.1.2 Discrepancy and Projection Ratio of Tangent Sphere Points

Denote the point sets obtained through the tangent sphere method by PTaS.

Investigations show that for s¼ 2 the discrepancy ofPTaS defined by Equation 7.88 is (Chen

and Li, 2008)

Dðn;PTaSÞ ¼ cOðn� 1þ eÞ ð7:114aÞ

where c ¼ ð16
ffiffiffi
3

p
� 3Þ=12 ¼ 2:06 is a constant and e¼ o(1). In dimensions s¼ 3 and 4,

fitting the computational results gives respectively

Dðn;PTaSÞ ¼ cOðn�ð3=4Þþ eÞ and Dðn;PTaSÞ ¼ cOðn�ð2=3Þþ eÞ ð7:114bÞ

The constant c is different for different s. Uniformly, Equations 7.114a and 7.114b can be

rewritten as

Dðn;PTaSÞ ¼ Oðn�ð1=2Þ� f1=½2ðs� 1Þ�gþ eÞ ð7:115Þ

We will compare them later with the number theoretical method.

Another index attached to the point sets which is related to the symmetry in different

coordinate directions is the projection ratio. For a point P ¼ fxk ¼ ðx1;k; x2;k; . . . ;xs;kÞ,
k¼ 1, 2, . . . , n, we define the projection ratio by

hj ¼
NðProjðP; jÞÞ

n
j ¼ 1; 2; . . . ; s ð7:116Þ

Here,NðProjðP; jÞÞ stands for the number of the projections of the point set to the coordinate xj
(Figure 7.18). Clearly, for any arbitrary point set there exists

n� 1 � hj � 1 ð7:117aÞ

The projection ratio reflects the marginal information that is contained in a point set. For

example, for the uniform grid point sets PUGP in Equation 7.90

hj ¼ n� 1=s j ¼ 1; 2; . . . ; s ð7:117bÞ
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while for the MCS point sets PMCS

hj ¼ 1 j ¼ 1; 2; . . . ; s ð7:117cÞ

with unity probability.

For the tangent sphere points before rotation in dimension 2 (see Figure 7.16a), computa-

tions result in (Chen and Li, 2008)

hx ¼
ffiffiffiffiffi
12

4
p

Oðn�ð1=2ÞþeÞ¼ 1:86Oðn�ð1=2ÞþeÞ hy ¼
ffiffiffi
4

3

4

r
Oðn�ð1=2ÞþeÞ¼ 1:07Oðn�ð1=2ÞþeÞ

ð7:118Þ

so that hx ¼
ffiffiffi
3

p
hy. The projection ratios of the points after rotation are given by

hx ¼hy � 4:65Oðn�ð1=2ÞþeÞ ð7:119Þ

This indicates that the rotation can change and improve the projection ratio greatly.

Actually, in dimensions 3 and 4, the projection ratios can be improved from the magnitude

of orderOðn� 1=sÞ to themagnitude of orderOð1=2Þ. That is why the rotation in Section 7.3.1.1
can improve the features of the points.

7.3.2 From Thinnest Covering: Lattices Approach

A lattice PLattice is an infinite set of points in Rs with the following three properties (Sloan,

1985):

(a) if x; x0 2 PLattice, then x� x0 2 PLattice;

(b) PLattice contains s linear independent points; and

(c) there exists a sphere center at the origin O that contains no points of PLattice other than

O itself.

These properties mean that PLattice is invariant to certain translation groups (properties (a)

and (c)) and could be generated by a generator matrix composed of the coordinates of the s

1

1o x1

x2

Figure 7.18 Schematic projection ratio. A total of 18 points are scattered over the square [0, 1]2.

The number of points projected to the x1-axis is 13 because some points have identical x1-coordinate

values. Thus, in this figure, n¼ 18, NðProjðP; 1ÞÞ ¼ 13 and h1 ¼ 13=18.
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linear independent points (property (b)). Obviously, the above-constructed point set PTaS

belongs to the family of lattices. The simplest lattice is the rectangular lattice ðj1
n
; j2
n
; . . . ; js

n
Þ;

�
ji 2 Z; 1 � i � sg. For example the uniform grid point set shown in Figure 7.14a is the subset

of a rectangular lattice.

The dual of a PLattice is defined by

P?
Lattice ¼ fy 2 Rs : y � x 2 Z; 8x 2 PLatticeg ð7:120Þ

where Z is the integer set.

Applications of lattices inmultiple integrals have received attentions for years (Haber, 1970;

Sloan, 1985; Sloan and Kachoyan, 1987). As mentioned above, although little is known

about the densest packings and thinnest covering problem in dimensions s� 3, the information

on the densest lattice packings and the thinnest lattice covering, in contrast, is much richer.

For instance, the pattern of tangent spheres elaborated in the preceding section is one of the

densest lattice packings in dimension 3. In this section, on the other hand, we will introduce

the point sets via a possible thinnest lattice covering.

It can be verified that the set

As ¼ fðx0; x1; . . . ; xsÞ 2 Zsþ 1 : x0 þ x1 þ � � � þ xs ¼ 0g ð7:121Þ

which uses s þ 1 coordinates to define an s-dimensional point set, is a lattice lying on the

hyperplane
Psþ 1

i¼1 xi ¼ 0 in Rsþ 1. The pattern of tangent spheres in the preceding section is

essentially equivalent to this lattice in dimensions 2 and 3. According to the investigations

(Conway and Sloane, 1999), the dual latticesA�
s ofAs have the known best efficient covering for

all s� 23; namely, they have the known smallest thickness for lattices. From Equations 7.120

and 7.121, the generator matrix of the dual lattice A�
s in the s dimension is

S ¼

S1

S2

S..
.
3

Ss� 1

Ss

2
666666664

3
777777775
¼

1 � 1 0 � � � 0 0

1 0 � 1 � � � 0 0

� � � � � � � � � � � � � � � � � �
1 0 0 � � � � 1 0

� s

sþ 1

1

sþ 1

1

sþ 1
� � � 1

sþ 1

1

sþ 1

2
6666666664

3
7777777775

ð7:122Þ

which is an s
 (s þ 1) matrix, Sj (j¼ 1, 2, . . ., s) is the jth (s þ 1)-dimensional row vector.

If z ¼ ðz1; z2; . . . ; zsÞT 2 Zs is an arbitrary s-dimensional integer vector, then the point

�x ¼ ð�x1; . . . ; �xsþ 1Þ determined by

�x ¼
Xs
j¼1

zjSj ¼ zTS ð7:123Þ

is a point of the lattice A�
s .

For example, consider the case s¼ 2. Equation 7.122 becomes

S ¼
S1

S2

" #
¼

1 � 1 0

� 2

3

1

3

1

3

2
4

3
5 ð7:124Þ
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Thus, letting z1¼ (1,1)T, according to Equation 7.123 we get �x1 ¼ ð1
3
; � 2

3
; 1
3
Þ. Likewise,

we have the pairs

z2 ¼ ð1; 0ÞT �x2 ¼ ð1; � 1; 0Þ

z3 ¼ ð0; 1ÞT �x3 ¼ � 2

3
;
1

3
;
1

3

� �
. . .

If we denote �x0 ¼ ð0; 0; 0Þ, then the distances between arbitrary two points are given by

dð�x0; �x1Þ ¼
ffiffiffi
2

3

r
dð�x0; �x2Þ ¼

ffiffiffi
2

p
dð�x0; �x3Þ ¼

ffiffiffi
2

3

r

dð�x1; �x2Þ ¼
ffiffiffi
2

3

r
dð�x1; �x3Þ ¼

ffiffiffi
2

p
dð�x1; �x3Þ ¼

ffiffiffiffiffi
14

3

r
. . .

Actually, it can be found that the minimum distance is
ffiffiffiffiffiffiffiffi
2=3

p
, and thus the packing radius

is
ffiffiffiffiffiffiffiffi
2=3

p
=2.

In addition, it is clear that the points �x0; �x1; �x2; �x3; . . . ; are all located in the plane

�x1 þ �x2 þ �x3 ¼ 0. Thus, we can transform the coordinate system to a new coordinate system

such that in the new system ox1x2x3 the points are located in the plane x3¼ 0. This can be

achieved when we introduce the base vectors e1, e2 and e3 for the new coordinate system

such that

ei � ej ¼ dij i; j ¼ 1; 2; 3 ð7:125Þ

and

e3 ¼
1ffiffiffi
3

p ð1; 1; 1ÞT ð7:126Þ

that is, e3 is normal to the plane �x1 þ �x2 þ �x3 ¼ 0 and, therefore, e1 and e1 are in the plane

�x1 þ �x2 þ �x3 ¼ 0. Satisfying these conditions, we can choose

e1 ¼
1ffiffiffi
2

p ð1; � 1; 0ÞT e2 ¼
1ffiffiffi
6

p ð1; 1; � 2ÞT ð7:127Þ

Thus, the new coordinates of the point (x1, x2, x3) are given by

xj ¼ �x � ej j ¼ 1; 2; 3 ð7:128Þ

Using this transformation, the points �x1; �x2; �x3; . . . ; can be given in the new coordinate

system by

x1 ¼
1ffiffiffi
2

p ; � 1ffiffiffi
6

p ; 0

� �
x2 ¼ ð

ffiffiffi
2

p
; 0; 0Þ x3 ¼ � 1ffiffiffi

2
p ; � 1ffiffiffi

6
p ; 0

� �
. . .
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respectively. It is seen clearly that these points are located in the plane x3¼ 0. Therefore, it is

more convenient just to use the former two coordinates such that the points are essentially in a

two-dimensional space

x1 ¼
1ffiffiffi
2

p ; � 1ffiffiffi
6

p
� �

x2 ¼ ð
ffiffiffi
2

p
; 0Þ x3 ¼ � 1ffiffiffi

2
p ; � 1ffiffiffi

6
p

� �
. . .

The points so generated are shown in Figure 7.19. The configuration of the points is in

essence the same as that in Figure 7.8b. They can be further transformed by a scale factor --l such
that the configuration is the same but the scale of the points can be varied. By this,

Equation 7.128 can be changed to

xj ¼ --l �x � ej j ¼ 1; 2; 3 ð7:129Þ

Or we can achieve the same thing by changing Equation 7.123 to

~x ¼ --l
Xs
j¼1

zjSj ¼ --l zTS ð7:130Þ

The above treatment can be extended to higher dimensions. Actually, the packing radius and

covering radius of the sphere are given respectively by

rpk ¼
1

2

ffiffiffiffiffiffiffiffiffiffi
s

sþ 1

r
and rcv ¼ rpk

ffiffiffiffiffiffiffiffiffiffi
sþ 2

3

r
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þ
12ðsþ 1Þ

s
ð7:131Þ

while the kissing number isk¼ 2s þ 2.Herewe find the kissing number ofA�
s ismuch less than

the knownhighest kissing number in packings. For example, in dimension 8, the highest kissing

number is 240while the kissing number ofA�
s is only 18. In turn, this implies that, by the known

thinnest covering, the number of points can be minimized. This is one of the advantages of

using the lattice covering.

Letting ~xk ¼ ð~x1;k; . . . ; ~xsþ 1;kÞ, the coordinates of the lattice could then be given by

Equation 7.130. Obviously, the points generated by Equation 7.130 satisfy

~x1;k þ � � � þ ~xsþ 1;k ¼ 0 ð7:132Þ

1x

2x

o

11
62
),−(

11
62
),−(−

2,0)(

Figure 7.19 The dual point set in two-dimensional space.

Probability Density Evolution Analysis: Numerical Methods 269



That is, these points are located on the (s þ 1)-dimensional hyperplane

x1 þ � � � þ xsþ 1 ¼ 0 ð7:133Þ

Thus, Equation 7.130 gives the lattices on a hyperplane in dimension (s þ 1).

We now proceed to extract the s independent coordinates and give the explicit expressions.

In order to do so, we introduce a new coordinate system with the base vectors e1, e2, . . . , esþ 1

such that

ei � ej ¼ dij ð7:134Þ

where dij is the Kronecker delta. For convenience, let

esþ 1 ¼
1ffiffiffiffiffiffiffiffiffiffi
sþ 1

p ð1; 1; . . . ; 1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
totally ðsþ 1Þ of �1�

ð7:135Þ

Clearly, ||esþ 1||¼ esþ 1�esþ 1¼ 1. Then the other base vectors can be chosen according to

Equation 7.134. The typical base vectors for s¼ 4, 5, . . . , 23 are shown in Appendix D.

Using the new base vectors, the new coordinates of the points can then be computed by

xj;k ¼ ~xk � ej j ¼ 1; 2; . . . ; s ð7:136Þ

FromEquations 7.133 and 7.130 it follows thatxsþ 1,k¼ 0. Therefore, the coordinate xsþ 1 is

trivial and the nontrivial coordinates are the former s components.

Likewise, a rotational transformation can then be performed on the points by Equation 7.136

such that the features of the projection ratio (discussed in Section 7.3.1.2) can be improved.

The volume of the Voronoi cells of the point set A�
s reads

VðVÞ ¼
2srspkðsþ 1Þðs� 1Þ=2

ss=2
ð7:137Þ

and the thickness of the lattice is

J ¼ VðBðrcv; sÞÞ
VðVÞ ¼ VðBð1; sÞÞ

ffiffiffiffiffiffiffiffiffiffi
sþ 1

p sðsþ 2Þ
12ðsþ 1Þ

� �s=2
ð7:138Þ

While the covering ratios of the Voronoi cell to the contact covering hypercube is

g ¼ VðVÞ
ð2rcvÞs

¼ 2sðsþ 1Þðs� 1Þ=2

2sss=2rscv
rspk ¼

ðsþ 1Þðs� 1Þ=2

ss=2
rpk

rcv

� �s

¼ ðsþ 1Þðs� 1Þ=2

ss=2
3

sþ 2

� �s=2

ð7:139Þ

The quantities in Equations 7.138 and 7.139 can be used to check the accuracy when

employing lattices to compute the assigned probabilities.

7.3.3 Number Theoretical Method

Another family of uniform point sets is the number theoretical net (NT-net) (Hua and Wang,

1981). Since the 1950s, NT-nets with low discrepancy have been studied extensively and

270 Stochastic Dynamics of Structures



applied widely in science and engineering (Niederreiter, 1992; Fang and Wang, 1994; Sobol�
1998; Nie and Ellingwood, 2004; Li and Chen, 2007a).

The basic idea of the method is to employ an integer generator vector (n, Q1, Q2, . . . ,Qs)

to generate a point set PNTM ¼ fxk ¼ ðx1;k; x2;k; . . . ; xs;kÞ : k ¼ 1; 2; . . . ; ng by

x̂j;k ¼ ð2kQj � 1Þmodð2nÞ j ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ; n

xj;k ¼ x̂j;k

2n

ð7:140aÞ

where the meaning of the modulo is identical to Equations 4.70a–4.70c. Equation 7.140a is

equivalent to

xj;k ¼
2kQj � 1

2n
� int

2kQj � 1

2n

� �
j ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ; n ð7:140bÞ

Here, int (�) takes the integer part of the value and n is the cardinal number of the point

set PNTM.

Equations 7.140a and 7.140b mean that the coordinates of the point set take decimal

fractions of the value (2kQj� 1)/2n; thus

0 < xj;k < 1 j ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ; n ð7:141Þ

This is of course related closely to congruence and the Diophantine equations and is one

of the central topics in algebraic number theory (Manin and Panchishkin, 2005). Through

units of the cyclotomic field, we can get different sets of integer vector (n,Q1,Q2,. . .,Qs) so that

the point set generated by Equations 7.140a and 7.140b is a point set uniformly scattered over

the unit hypercube Cs. Hua andWang (1981) proved that the discrepancy of such a constructed

point set, referred to as a Hua–Wang point set and denoted by PH-W, is

Dðn;PH-WÞ ¼ Oðn�ð1=2Þ� f1=½2ðs� 1Þ�gþ eÞ ð7:142Þ

Generally, we can set Q1¼ 1. The generator vectors with low discrepancy for s¼ 2–18

for different n can be found in, say, Hua and Wang (1981) and Fang and Wang (1994) and are

given inAppendixG. In dimension s¼ 1, fromEquations 7.140a and 7.140b it is seen thatPH-W

is identical to the uniform grid point set PUGP (given by Equation 7.90). In dimension s¼ 2,

the Fibonacci sequence F‘, ‘ ¼ 0; 1; 2; . . . , can be used:

F‘ ¼ F‘� 1 þF‘� 2; ‘ ¼ 2; 3; . . . ; F0 ¼ 1; F1 ¼ 1 ð7:143Þ

In this case, letting n ¼ F‘, Q1¼ 1 and Q2 ¼ F‘� 1, Equations 7.140a and 7.140b will

generate a uniformly scattered point set in the square C2 ¼ ½0; 1� 
 ½0; 1�.
Comparing Equation 7.142 with Equation 7.115, it is seen that the discrepancy of the

Hua–Wang point setsPH-W is in the same order as that of the tangent sphere pointsPTaS, at least

for s¼ 2–4. Actually, this similarity can also be seen from the scattered configuration, as

shown in Figure 7.20 in dimension 2 for similar n. However, we should note that they are not

always so similar for different n. In fact, the possible n forPH-W andPTaS might differ greatly:

we cannot always generate aPH-W with n close to a givenPTaS, let alone similar configurations.

Figure 7.21 shows the discrepancies of different patterns of point sets, including the tangent

spheres point set PTaS, the Hua–Wang point set PH-W, the uniform grid point set PUGP and the

point sets obtained by Latin hypercube sampling PLHS. Because PLHS is a random point set,
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ðC1: ~DðnÞ ¼ n�1=2;C2: ~DðnÞ ¼ 2:06n�1;C3: ~DðnÞ ¼ 1:2n�1=3;C4: ~DðnÞ ¼ 206n�3=4Þ

we plotted six samples of the point set (McKay et al., 1979). This indicates clearly that the

discrepancy inPTaS is of the sameorder ofmagnitude asPH-W,whereas the discrepancy inPLHS

is almost surely larger than that in PTaS and PH-W. Thus, employing PH-W is usually preferred.

The above-generated tangent sphere point sets PTaS, the lattices PLattice and the Hua–Wang

point set PH-W and the like can be applied sometimes directly as the representative points.

But more reasonably, they can be used as basic point sets as dicussed in Section 7.2.4. For

notational convenience, we denote all these points by PBasic.

7.4 Density-Related Transformation

7.4.1 Affine Transformation

The point sets generated in the preceding sections, including the tangent spheres points, the

lattices and the Hua–Wang points, denoted uniformly by P ¼ fxk ¼ ðx1;k; x2;k; . . . ; xs;kÞ;

Figure 7.20 Configuration of different uniform scattered point sets.
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Figure 7.21 Discrepancies of different patterns of point sets.
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k ¼ 1; 2; . . . ; nptg, are all point sets in a sense uniformly scattered over the unit hypercube Cs.
Here, npt is the cardinal number of P. The distribution domain of the basic random variables

WQ, however, is usually not Cs.We need to perform an affine transformation tomap the point set

P over Cs to the point set ~P over WQ.

Without loss of generality, we assume the distribution domain

WQ ¼ fu ¼ ðu1; u2; . . . ; usÞ : bj;L � uj � bj;R; j ¼ 1; 2; . . . ; sg ¼
Ys

j¼1
½bj;L; bj;R� ð7:144Þ

where bj,L and bj,R are respectively the left-hand side and right-hand side boundaries. We can

then construct the point set ~P ¼ f~uk ¼ ð~u1;k; ~u2;k; . . . ; ~us;kÞ; k ¼ 1; 2; . . . ; nptg over WQ by

employing an affine transformation:

~uj;k ¼ bj;L þ xj;kðbj;R � bj;LÞ j ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ; npt ð7:145Þ

In the case the distribution domain WQ is an infinite domain (for example, when the basic

random variables are normal or lognormal variables), the domain should be truncated to a

bounded domain. How to select the truncation boundary is somewhat an open problem

(Fang and Wang, 1994). We will come back to this issue again later.

The point set ~P generated by Equation 7.145 can be used as the representative point setPsel;

for example, in dimensions s� 4 (Chen and Li, 2008). Otherwise, it can be used as the basic

point set as discussed in Section 7.2.4 and denoted in a unified way by

PBasic ¼ f~uk ¼ ð~u1;k; ~u2;k; . . . ; ~us;kÞ; k ¼ 1; 2; . . . ; nptg ð7:146Þ

7.4.2 Density-Related Transformation

The point set PBasic generated in the preceding section is essentially based on the uniform

distribution of basic random variables. If the density pQ(u) is nonuniform, then the assigned

probabilities of the points in PBasic might differ so severely that the representative of different

points varies too severely. In this case, further transformation imposed on the basic point set is

needed; namely:

Psel ¼ T ðPBasicÞ ð7:147Þ

This transformation, of course, should change the density of the points and simultaneously

change the assigned probabilities to make them more uniform than before. In other words,

Equation 7.147 should reduce themodifiedF-discrepancyDFðn;PÞ defined byEquations 7.93
and 7.95; that is:

DFðn;PselÞ � DFðn;PBasicÞ ð7:148Þ

Because of this, we call this the density-related transformation.

Besides Equation 7.148, the density-related transformation in Equation 7.147 should also try

to minimize the first- and the second-order discrepancies D1 and D2, as discussed in

Section 7.2.3.

Probability Density Evolution Analysis: Numerical Methods 273



7.4.3 Radial Decay Distribution: Spherical Sieving and
Expansion–Contraction Transformation

In many problems of practical interest, the density of the basic random variables exhibits the

property of radial decay. For example, the multidimensional normal distribution exhibits a

more fascinating property of spherical symmetric decay. In this case, a spherical sieving

operator can greatly reduce the number of points finally selected. In addition, an isotropic

expansion–contraction transformation can be adopted as the density-related transformation.

7.4.3.1 Spherical Sieving

For radial decay densities, the assigned probabilities of the points around the corners of the

domainWQ are very small comparedwith those of the inner points and, thus, can be eliminated.

This could be achieved by sieving the points in the point set P, which is uniformly scattered

over Cs, through the inner contact sphere:

x1;k �
1

2

� �2

þ x2;k �
1

2

� �2

þ � � � þ xs;k �
1

2

� �2

� 1

2
r0

� �2

ð7:149Þ

where r0� 1.

Figure 7.22 schematically illustrates Equation 7.149. Clearly, for r0 �
ffiffi
s

p
, the condition

Equation 7.149 does not work, while the number of the points satisfying Equation 7.149will be

smaller than npt in the case 1 � r0 <
ffiffi
s

p
. In particular, in the case r0¼ 1, the ratio of the number

of remaining points nsel to the total number npt is given by

g sv ¼
nsel

npt
!

VðBðr; sÞÞjr¼1=2

VðCsÞ npt !? ð7:150Þ

Figure 7.22 Sphere sieving (s¼ 2).
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where VðBðr; sÞÞ is the volume of an s-dimensional ball given by Equation 7.71. Therefore, the

sieving ratio gsv satisfies

lim
npt !?

g sv ¼ lim
n!?

nsel

npt
¼ ps=2

2sGð1þ s
2
Þ ¼

pm

22mm!
for s ¼ 2m

ð2pÞm

22m
Qm

j¼0ð2jþ 1Þ
for s ¼ 2mþ 1

8>><
>>: ð7:151Þ

The nominal sieving ratio limnpt !? g sv, shown in Figure 7.23, decreases very quickly

(in fact, faster than exponentially) as s increases. For instance, limnpt !? g sv ¼ 0:785, 0.524,
�1/400 and <10�6 in dimensions 2, 3, 10 and 18 respectively.

The number of the uniformly scattered points over Cs usually increases in degree as the

dimension s increases; spherical sieving will compensate for this increase and can make the

number of points finally selected almost invariant against s for acceptable accuracy.

Figure 7.24 illustrates an example of spherical sieving in dimension 2. The original

points come from the tangent spheres, as shown in Figure 7.20b. These points are sieved

by a circle and then transformed byEquation 7.145 from the square [0,1]2 to the square [�4,4]2.

Also plotted in Figure 7.24 are the contours of the joint normal distribution, each concentric

circle being equi-PDF. This intuitively justifies sphere sieving.

7.4.3.2 Expansion–Contraction Transformation

For the radial decay parametric density, transformation T in Equation 7.147 can take the

isotropic expansion–contraction transformation (Chen et al., 2009); namely:

uj;q ¼ gðjj~uqjjÞ~uj;q q ¼ 1; 2; . . . ; nsel; j ¼ 1; 2; . . . ; s ð7:152Þ
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Figure 7.23 The nominal sieving ratio versus the dimension s.
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where ~uq ¼ ð~u1;q; ~u2;q; . . . ; ~us;qÞ and g(�) is an operator with respect to the norm of the point.

Through the transformation in Equation 7.152, all the points will move toward or outward from

the origin in an isotropic radial manner.

Actually, g(�) is the ratio of expansion or contraction. It is reasonable to make points on the

edge of the distribution domain invariant, whereas points near the origin (peak density) should

contract at an appropriate ratio b; namely:

gðrÞjr! 0 ¼ b gðrÞjr¼r ¼ 1 ð7:153Þ

A simple one might take the form

gðrÞ ¼ arm þ b ðm � 0; m 2 ZÞ ð7:154Þ

Combining Equations 7.153 and 7.154 gives

a ¼ 1�b

rm
b ¼ b ð7:155Þ

The isotropic expansion–contraction transformation in a normal density field in dimension 2

is shown in Figure 7.25. It is seen that more points are scattered in the area of larger probability

density after the isotropic expansion–contraction transformation.

In the present case, the F-discrepancy defined by Equation 7.93 may be transformed to the

radial F-discrepancy

DRðPÞ ¼ max
0�r�rb

jFPðrÞ�FðrÞj ð7:156Þ

where rb is the radius of the hyperball which covers W and

FPðrÞ ¼
Xnsel
q¼1

Pq � Ifjjuqjj � rg ¼
X

jjuqjj�r
Pq ¼

X
jjuqjj�r

ð
Vq

pQðuÞdu ð7:157Þ

Figure 7.24 Spherical sieving.
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and

FðrÞ ¼
ð
W
ðpQðuÞ � Ifjjujj � rgÞdu ¼

ð
jjujj�r

pQðuÞdu ð7:158Þ

are respectively the sum of the assigned probabilities and the probability contained in the

hyperball Bðr; sÞ of radius r in dimension s. In contrast to Equation 7.93, only one variable is

involved in the distribution functions in Equation 7.156, which makes it much more tractable.

The closed-form expression of Equation 7.158 for a standard normal distribution is

elaborated in Appendix E. The probability contained for different r and s is illustrated in

Figure 7.26. What is particularly important and shown in the figure is that, as the dimension s

increases, the probability in the area near the origin decreases greatly while the probability

Figure 7.25 The point sets after expansion–contraction transformation (n¼ 199, m¼ 1, b¼ 0.5).

Figure 7.26 The probability contained in a hyperball, F(r, s).
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distributed over the outer area increases correspondingly. For instance, for r¼ 2, in dimen-

sion 1 more than 0.7 is contained, whereas in dimension 10 the probability is less than 0.05. In

addition, to have a probability ofmore than 0.99, for example, r¼ 3.5 is enough in dimension 1,

whereas r should be around 5.0 in dimension 10. This implies that, whenwe truncate an infinite

distribution, we should be very careful and should have sufficient understanding of the

distribution over the space.

Through appropriate isotropic expansion–contraction transformations, the radial F-discrep-

ancy can usually be greatly reduced. For instance, in dimensions s¼ 2 and s¼ 8, Figure 7.27

shows the distributions given respectively by Equations 7.157 and 7.158. This demonstrates

that the isotropic expansion–contraction transformation can greatly reduce the F-discrepancy.

The effect is particularly obvious in larger dimension s. Correspondingly, the computational

results when employing such selected point sets are usually satisfactory (Chen et al., 2009).

7.5 Stochastic Response Analysis of Nonlinear MDOF Structures

7.5.1 Responses of Nonlinear Stochastic Structures

Consider a 10-story shear frame as shown in Figure 7.28 subjected to earthquake. Randomness

is involved in the mass parameters, stiffness parameters, the parameters of the nonlinear

restoring force model and the peak parameters of the ground acceleration.

The means of the lumped masses m1,m2, . . . ,m10 are listed in Table 7.1. From the bottom

to the top, the first four stories are grouped into a subset that these four masses are completely

correlated and the randomness can be characterized by a single random variable. The other six

stories are grouped into the other subset. Thus, two random parameters are involved in the

masses. In a similar way, another two random parameters are involved in the initial elastic

modulus. The geometric size of the section of the columns is 500mm
 400mm. The

Bouc–Wen model discussed in Section 5.5.2 is employed to characterize the interstory

restoring force versus the interstory drift. Here, the model parameters b, g , dv, dh are

taken as random parameters of which the probabilistic information is given in Table 7.2.

The other model parameters take deterministic values: a¼ 0.01, A¼ 1, n¼ 1, q¼ 0, p¼ 600,
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Figure 7.27 The CDF before and after expansion–contraction transformation (NTM). (a) s¼ 2,Nsel¼ 68;

point set 1:m¼ 1, b¼ 1; point set 2:m¼ 2, b¼ 0.5. (b) s¼ 8, Nsel¼ 360; point set 1:m¼ 1, b¼ 1; point set 2:m¼ 6,

b¼ 0. 6.
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dc¼ 0, l¼ 0.5, zs¼ 0.95, c¼ 0.2. For simplicity, Rayleigh damping is assumed such that

C¼ aM þ bK, where K is the initial stiffness matrix, a¼ 0.01 and b¼ 0.005. The ground

acceleration is assumed to be the random combination of the El Centro accelerograms in the

N–S and E–W directions with random combination coefficientsQPGA,1 andQPGA,2. Regarding

Figure 7.28 Structural model.

Table 7.1 Probabilistic information of the mass and stiffness parameters.

Story number Mean value Coefficient of variation

Lumped mass

(
10 000 kg)

Initial elastic

modulus

(
100 000MPa) Lumped mass

Initial elastic

modulus

10 0.5 2.8 0.2 0.2

9 1.1 2.8

8 1.1 3.0

7 1.0 3.0

6 1.1 3.0

5 1.1 3.0

4 1.3 3.25 0.2 0.2

3 1.2 3.25

2 1.2 3.25

1 1.2 3.25

Table 7.2 Probabilistic information of parameters in the Bouc–Wen model and excitation.

Parameters b g dn dh QPGA,1 QPGA,2

Mean value 60 10 200 200 2.0m/s2 2.0m/s2

Coefficient of variation 0.2 0.2 0.2 0.2 0.2 0.2
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all the randomness, a total of 10 random variables are involved. The partition of probability-

assigned space using the NT-nets as the basic point sets is employed to generate representative

points and then the generalized density evolution equation is solved to obtain the probabilistic

information of the stochastic response of the nonlinear structure.

Figures 7.29–7.31 illustrate some of the results. Figure 7.29 shows that both themean and the

standard deviation of the response accord well with the MCS. In the computation, only 570

representative points are selected in the PDEM, but 16 000 reanalyses are carried out in the

MCS. One of the most important advantages of the PDEM is that the instantaneous PDF of the
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Figure 7.30 Typical PDF of stochastic responses at different time instants.

Figure 7.29 Mean and standard deviation of stochastic responses.
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response can be captured. This can be seen in Figure 7.30a, where the PDFs at three different

instants of time are illustrated. Figure 7.30b shows the comparisons between the CDF by the

PDEM and the empirical CDF by theMCS. Clearly, it is seen that the PDFs at different instants

of time are irregular and quite different. This can be seen further in Figure 7.31a, where the

PDFs evolving against time construct a PDF surface. Simultaneously plotted in Figure 7.31b is

the contour, where it is seen that the probability transits against time just likewater flowing in a

river with many whirls.

Figure 7.31 PDF evolution surface and the contour.
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Figure 7.32 Restoring force versus interstory drift.
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7.5.2 Stochastic Seismic Response of Nonlinear Structures

Now a nonlinear structure subjected to stochastic ground motions is considered. In the present

context, the structural properties are regarded as deterministic, taking the same values as those

in Section 7.5.1, except that the geometric size of the columns is 400mm
 400mmand that the

parameters regarded as random variables in Section 7.5.1 take values identical to the mean

Figure 7.33 Mean and standard deviation of stochastic responses.
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Figure 7.34 Typical PDF at different time instants.
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values. The physical stochastic model of ground motion elaborated in Section 3.2.3 is

employed here to represent a stochastic ground acceleration. In total, 221 representative

points generated by the strategy of tangent spheres are employed here to generate 221

representative time histories of the ground acceleration. Then the PDEM is performed to

obtain the probabilistic information of the stochastic response.

Figure 7.32 shows a typical curve of the restoring force versus interstory drift in one of the

representative time histories. Figure 7.33 shows the mean and standard deviation of the

stochastic response. It is noted that the amplitude of the mean process has amagnitude of small

order. The PDF of the response is illustrated in Figures 7.34–7.36.We can see that the shape of

the PDF is quite different at different instants of time.

Figure 7.36 Contours of stochastic response.

Figure 7.35 PDF surface and contours of stochastic responses.

Probability Density Evolution Analysis: Numerical Methods 283



8

Dynamic Reliability of Structures

8.1 Fundamentals of Structural Reliability Analysis

8.1.1 Structural Reliability

One of the important purposes of stochastic response analysis of structures is to provide a

quantitative basis to enable the designed structure to satisfy the requirements for safety or

serviceability in the expected service life. Structural safety and serviceability may be

comprehensively called structural reliability. Herein, reliability means the probability of

success. In this chapter the concern is only dynamic reliability that is related to dynamic

responses of stable structures.

If a structure does not meet a certain prescribed requirement (that is, the whole structure or

part of it exceeds a certain specified state), then this certain state is called the limit state.

Accordingly, limit states are boundaries that distinguish whether the working state of the

structure is reliable or not. The limit states of engineering structures can usually be classified

into two basic categories: ultimate states and serviceable states. The ultimate states correspond

to cases in which the structure or members of the structure reach the ultimate bearing capacity

or deformation states that are not suitable to continue to carry loads. The serviceability limit

states refer to those states where the structure or members of the structure reach the prescribed

limit values for serviceability or durability.

According to the background, the main target of structural reliability analysis is to evaluate

the probability of the structural response not exceeding the limit states. This target can be

accomplished equivalently by calculating the probability of the structural response exceeding

the limit states (namely, failure).

In general, the limit states of the structure can be defined by limit state functions. Assume that

j1; j2; . . . ; jn are the n random variables influencing the structural response, then the random

function

Z ¼ gðj1; j2; . . . ; jnÞ ð8:1Þ

Stochastic Dynamics of Structures      Jie Li and Jianbing Chen
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is called the limit state function if it satisfies

when Z > 0, the structure retains the prescribed function – that is, the structure is reliable;

when Z < 0, the structure loses the prescribed function – that is, the structure is in failure;

when Z¼ 0, the structure is in a critical state – namely, the structure reaches the limit state.

Assume the limit state function is prescribed by Equation 8.1. The reliability Pr¼ Pr{Z > 0}

can be given by the integral of the joint density function of the set of basic random variables

p
j1j2 ...jn

ðx1; x2; . . . ; xnÞ; that is:

Pr ¼
ð
. . .

ð
z¼gðx1;x2;...;xnÞ > 0

p
j1j2 ...jn

ðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxn ð8:2Þ

Similarly, the probability that the limit state function is less than zero is called the failure

probability in terms of the certain functions. Obviously, the failure probability Pf¼ Pr{Z< 0}
can be expressed by

Pf ¼
ð
. . .

ð
z¼gðx1;x2;...;xnÞ < 0

p
j1j2 ...jn

ðx1; x2; . . . ; xnÞ dx1 dx2 . . . dxn ð8:3Þ

Then, there exists

Pf ¼ 1�Pr ð8:4Þ
Therefore, computation of the structural failure probability is equivalent to computation of

the structural reliability.

It should be pointed out that, in structural reliability evaluation, the probability that a

catastrophic load occurs in the service life of the structures is not taken into account. If it is

considered, then the aforementioned results should be properly revised. Taking an earthquake

as an example, if the probability that the peak of the ground motion Y exceeds the prescribed

value is Pr{Y > y}, then the PDF pY(y) in terms of parameter Y can be determined. The failure

probability in the service life of the structures can thus be expressed by

Pf ¼ PrðZ < 0Þ ¼
ð¥
0

PrfZ < 0jY ¼ ygp
Y
ðyÞ dy ð8:5Þ

in which the conditional probability Pr{Z < 0 | Y¼ y} can be computed by employing Equa-

tion 8.3 according to the prescribed y.

8.1.2 Dynamic Reliability Analysis of Structures

Structural dynamic reliability still complies with the definition for the general structural

reliability problem. The new particularity only lies in the problem that dynamic action and

dynamic response are time-varying processes. For a dynamic system, the probability of

exceeding a limit state can be described as the first-passage probability or a fatigue failure

probability (Lin, 1967). In this chapter, only the first-passage problem is of concern.
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Suppose X(t) is the response of a stochastic dynamical system. The general definition of the

first-passage problem can be described as

Fs ¼ PrfXðtÞ 2 Ws; t 2 ð0; T �g ð8:6Þ
whereWs is the safe domain. Thismeans that the responsewill never exceed the boundary of the

safety domain during the time duration (0, T]. In other words, once the response exceeds the

boundary, the structure will fail.

Depending on the specific background, the boundary of Ws may be a one-sided boundary, a

double-sided boundary, circle boundary and so on. For a simple double-sided boundary

problem, the structural dynamic reliability in time T is defined as

Fsð� a1; a2; TÞ ¼ PrfðXðtÞ > � a1Þ \ ðXðtÞ < a2Þj0 � t � Tg ð8:7Þ
in which �a1 and a2ða1 > 0; a2 > 0Þ are the permissive lower limit and upper limit of the

stochastic structural responses respectively.

For convenience, we define the dynamic reliability functionRa(T) as the probability that Y(t)

does not exceed the limit value in the time interval [0, T ]; namely:

RaðTÞ ¼ PrfXðtÞ < a j0 � t � Tg ð8:8Þ
which is of course the reliability of a one-sided boundary problem.

8.1.3 Global Reliability of Structures

Generally speaking, the above-defined reliability is that when only one limit state function is

involved; in other words, it is only defined when one element (or member) of the structure fails

or when one specified failure mode is considered. For the reliability evaluation of a structure,

we usually need to take into account more than one index or more than one failure mode. For

instance, when we consider the serviceability of a multistory frame structure, not only might it

be required that the interstory drift between the first floor and the second floor not exceed a

threshold, but also require that all the other interstory drifts not exceed the corresponding

threshold. In this case, a family of limit state functions should be considered:

Z1 ¼ g1ðj1; j2; . . . ; jnÞ
Z2 ¼ g2ðj1; j2; . . . ; jnÞ
. . .
Zm ¼ gmðj1; j2; . . . ; jnÞ

ð8:9Þ

The failure event might be a combination of these limit state functions in different logical

relationships; that is:

Pf ¼ Prf@m
j¼1ðZj < 0Þg ð8:10Þ

Here, we use @ to denote different logical combination operators. For instance, when it is a

series system, Equation 8.10 becomes

Pf ¼ Pr
n[m
j¼1

ðZj < 0Þ
o

ð8:11Þ
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whereas if it is a parallel system, Equation 8.10 becomes

Pf ¼ Pr
n\m
j¼1

ðZj < 0Þ
o

ð8:12Þ

In addition, it can also be a combined system; say:

Pf ¼ Pr
\m1

j¼1

ðZj < 0Þ
" #

[
\m

j¼m1 þ 1

ðZj < 0Þ
" #( )

ð8:13Þ

or in any other type of combination.

Of course, the reliability is given by

Pr ¼ 1�Pf ð8:14Þ

The reliability problem (Equation 8.10) is generally known as the structural system

reliability. Because of correlation and combinatorial explosion problems, this is one of the

most difficult topics in reliability theory. Actually, for most of the so-called system reliability

problems encountered in engineering practice, it might be more reasonable to call it the global

reliability of structures. We will come to this problem in detail later.

8.2 Dynamic Reliability Analysis: First-Passage Probability
Based on Excursion Assumption

8.2.1 Excursion Rates

As pointed out in Equation 8.6, the first-passage failure problem requires that in the time

duration of interest the response of the system will never exceed the boundary of the safety

domain. One of the treatments to tackle this problem is that we can first set a virtual boundary, if

we can evaluate the times of excursion in the time duration, then we can capture the probability

that the times of excursion is zero. This, of course, is the reliability of the system. To this end,we

first consider the excursion rate of a response exceeding the virtual boundary. This is also

known as the level-crossing problem.

Figure 8.1 illustrates a sample function of the stochastic process and the situations that

the sample time process X(t) passes the level x(t)¼ a (a > 0) with a positive and negative

rate of slope (passage upward and downward respectively). Obviously, for the stochastic

process, the time of passing the level in a time interval is a random variable. The

probability distribution density of this random variable at any time is called the rate of

passage (it is also sometimes called the expected rate of threshold crossing), which can be

designated as l(t).
The condition that the stochastic process passes the threshold with positive rate of slope in

the time interval (t, t þ dt) can be expressed by

xðtÞ < a
xðtþ dtÞ > a

�
ð8:15Þ
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Considering that xðtþ dtÞ ¼ xðtÞþ _xðtÞ dt, the condition can be rewritten as

xðtÞ < a
_xðtÞ dt > a� xðtÞ

�
ð8:16Þ

which denotes the shaded area shown in Figure 8.2.

Assume the joint PDF of X(t) and _XðtÞ is pX _Xðx; _x; tÞ, then the probability that passages

happen in the time interval (t, t þ dt) is the integral of pX _Xðx; _x; tÞ in the shaded area;

that is:

laðtÞ dt ¼ dt

ð¥
0

ða
a� _xdt

pX _Xðx; _x; tÞ dx d _x ð8:17Þ

According to the intermediate value theorem, the above integral is equal to

laðtÞ dt ¼ dt

ð¥
0

_xpX _Xða; _x; tÞ d _x ð8:18Þ

a

x (t)

t

up-crossing down-crossing

o

Figure 8.1 Excursion of a sample process.

x (t)

x (t)

x (t)

a − x(t)
dt=

0

Equation 8.16

Figure 8.2 The area determined by Equation 8.16.
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Namely:

laðtÞ ¼
ð¥
0

_xpX _Xða; _x; tÞ d _x ð8:19Þ

This result is known as Rice�s formula (Rice, 1944), which is the rate of crossing threshold at

time instant t with positive rate of slope.

Similarly, the rate of passing x(t)¼�a at time instant t with negative rate of slope can be

deduced as

l� aðtÞ ¼
ð0
�¥

_xpX _Xð� a; _x; tÞ d _x ð8:20Þ

Equations 8.19 and 8.20 demonstrate that, for any stochastic process, the rate of passage can

be evaluated as long as the joint probability density of the process and its derivative process are

known. In particular, for the zero-mean stationary Gaussian stochastic process, we have

la ¼ l� a ¼ 1

2p
s _X

sX

exp � a2

2s2
X

� �
ð8:21Þ

In the case a¼ 0, this becomes

l0 ¼ 1

2p
s _X

sX

ð8:22Þ

Usually, l0 is called the expected rate of crossing zero with positive (or negative) rate of slope.
Here, sX and s _X are the standard deviations of X(t) and _XðtÞ respectively.

For a general nonstationary Gaussian stochastic process there exists (Zhu, 1992)

laðtÞ ¼ s _X

2psX

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
exp � 1

1� r2
a�2

2s2
X

� �
þ

ffiffiffiffiffiffi
2p

p ra�

sX

exp � a�2

2s2
X

� �
F

r

1� r2
a�

2sX

� �� �
ð8:23Þ

in which a� ¼ a� e½XðtÞ�, r¼ r(t) is the correlation coefficient of X and _X and F(�) is the
standard normal distribution function.

8.2.2 Excursion Assumption and First-Passage Probability

Consider first the simplest situation of the one-sided boundary problem. In some cases, this can

also be a basis formore complicated problems. Although it seemsmuch easier than other cases,

even for the simplest stationary response process the accurate solution of dynamic reliability

function unfortunately remains to be found. Therefore, most studies have been limited to

obtaining approximate solutions. In these solutions, those based on the Poisson crossing

assumption (Coleman, 1959) and the Markovian crossing assumption (Crandall et al., 1966)

are two representative methods.

The Poisson crossing assumption assumes that:

(a) in a tiny time interval, the positive (negative) crossing occurs at most once;

(b) the times of crossing happening in different time intervals are independent.
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The above assumption is essentially to regard the excursion process as a Poisson process.

Consequently, the probability that the response process X(t) passes the threshold with positive

rate of slope for k times in a time interval (t, t þ dt) is

Paðk; tþ dtÞ ¼ Paðk; tÞPað0; dtÞþPaðk� 1; tÞPað1; dtÞ
¼ Paðk; tÞ½1� laðtÞ dt� þPaðk� 1; tÞlaðtÞ dt ð8:24Þ

Rewriting the equation as

Paðk; tþ dtÞ�Paðk; tÞ
dt

¼ � laðtÞPaðk; tÞþ laðtÞPaðk� 1; tÞ

that is:

dPaðk; tÞ
dt

þ laðtÞPaðk; tÞ ¼ laðtÞPaðk� 1; tÞ ð8:25Þ

The general solution of this difference-differential equation is

Paðk; tÞexp
ðt
0

laðtÞ dt
� �

¼ Ck þ
ðt
0

Paðk� 1; tÞlaðtÞexp
ðt
0

laðuÞ du
� �

dt ð8:26Þ

In the case k¼ 0, the equation becomes

Pað0; tÞexp
ðt
0

laðtÞ dt
� �

¼ C0 þ
ðt
0

Pað� 1; tÞlaðtÞexp
ðt
0

laðuÞ du
� �

dt ð8:27Þ

Because k takes only positive numbers, Pa(�1, t)¼ 0, and at time t¼ 0 the event passing

y¼ a is impossible (namely, Pa(0, 0)¼ 1); accordingly, C0¼ 1 and consequently

Pað0; tÞ ¼ exp �
ðt
0

laðtÞ dt
� �

ð8:28Þ

According to the definition of the dynamic reliability function, there exists

RaðTÞ ¼ Pað0; TÞ ¼ exp �
ðT
0

laðtÞ dt
� �

ð8:29Þ

Note that, in the present assumption, crossing events are independent; thus, the expected

excursion rate of the double-sided boundary problem is the sum of the expected excursion rate

of two one-sided boundary problems. Therefore, the structural dynamic reliability in the time

interval (0, T) for the double-sided boundary problem can be obtained as follows:

Fsð� a1; a2; TÞ ¼ exp �
ðT
0

½l� a1ðtÞþ la2ðtÞ� dt
� �

ð8:30Þ

When the threshold values a1¼ a2¼ a (the situation with a symmetric threshold value), the

above equation becomes

Fsð� a1; a2; TÞ ¼ exp �
ðT
0

½l� aðtÞþ laðtÞ� dt
� �

ð8:31Þ
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Therefore, if the stochastic structural response is a nonstationary normal process, then the

structural dynamic reliability under a specified threshold can be obtained by substituting

Equation 8.23 in the above two equations. If the stochastic structural response is a zero-mean

stationary Gaussian process, then the structural dynamic reliability can be evaluated by

substituting Equation 8.21 in the above two equations.

Related studies demonstrate that, for stationary normal structural responses, when the

threshold approaches an infinitely high value, the above method may give an accurate solution

of the dynamic reliability (Cramer, 1966). However, when the threshold is not so high, there are

some errors in the results. For narrow-band processes the results deviate to conservation (the

computed reliability deviates to a lower value). In fact, for narrow-band processes, if the

threshold is not very high, then crossing events are not independent but occur in clusters

(Cramer, 1966; Vanmarcke, 1972, 1975).

In theMarkovian crossing assumption, it is assumed that the next crossing event is related to

the present crossing event whereas it is independent of the past events. Therefore, the crossing

process is a Markov process. The structural dynamic reliability (for the symmetry limit

situation) under a general nonstationary normal process can be obtained by

Fsð� a; a; TÞ ¼ exp �
ðT
0

aðtÞ dt
� �

ð8:32Þ

in which

aðtÞ ¼ g2ðtÞ
p

exp � r2ðtÞ
2

� �
1� exp � ffiffiffiffiffiffiffiffiffiffiffiffiðp=2Þp

q1þ bðtÞrðtÞ	 

1� exp �ðr2ðtÞÞ=2½ � ð8:33Þ

where g2(t) and q(t) are the spectral parameters as defined byEquations F.7 and F.8 respectively

in Appendix F, b is an empirical parameter, usually b¼ 0.2, and

r ¼ a

sXðtÞ ð8:34Þ

For stationary response processes, the structural dynamic reliability is given by

Fsð� a; a; TÞ ¼ exp
g2
p
Texp � r2

2

� �
1� exp½ � ffiffiffiffiffiffiffiffiffiffiffiffiðp=2Þp

q1þ br�
1� expð� r2=2Þ

( )
ð8:35Þ

in which g2 and q are the spectral parameters as defined by Equations F.3 and F.4 in Appendix F

respectively and

r ¼ a

sX

ð8:36Þ

8.2.3 First-Passage Probability Considering Random Thresholds

In the above analysis, the values of the thresholds a1 and a2 are regarded as deterministic

variables. However, in most practical problems the thresholds might be random variables.

Therefore, structural reliability analysis with random thresholds should be discussed.

292 Stochastic Dynamics of Structures



First consider the situation with asymmetric failure thresholds (namely, a1 „ a2). Assume

that the joint PDF of the two-sided thresholds is fa1a2ðu1; u2Þ; thus, the reliability that a1 takes
the value varying in the range (u1, u1 þ du1) and a2 in the range (u2, u2 þ du2) is

dF0
s ð� a1; a2; TÞ ¼ Fsð� u1; u2; TÞfa1a2ðu1; u2Þ du1 du2 ð8:37Þ

in which Fs(�u1, u2, T) and F
0
sð� a1; a2; TÞ are the reliabilities with deterministic thresholds

and thresholds limits respectively.

According to above equation, we have

F0
s ð� a1; a2; TÞ ¼

ð¥
0

ð¥
0

Fsð� u1; u2; TÞfa1a2ðu1; u2Þ du1 du2 ð8:38Þ

Usually, the lower threshold a1 and the upper threshold a2 can be treated as independent

random variables with probability density fa1ðu1Þ and fa2ðu2Þ respectively; therefore, combin-

ing Equations 8.30 and 8.38 gives

F0
s ð�a1;a2;TÞ¼

ð¥
0

exp �
ðT
0

l�u1ðtÞdt
� �

fa1ðu1Þdu1
� � ð¥

0

exp �
ðT
0

lu2ðtÞdt
� �

fa2ðu2Þdu2
� �

ð8:39Þ
For the situation with symmetric failure thresholds (a1¼ a2¼ a), this is equivalent to the

situation that a1 and a2 have identical probability distributions and are completely correlated.

Assume the PDF of the threshold a is fa(u); accordingly, the structural dynamic reliability is

given by

F0
s ð� a; a; TÞ ¼

ð¥
0

Fsð� u; u; TÞfaðuÞ du

¼
ð¥
0

exp �
ðT
0

½l� uðtÞþ luðtÞ� dt
� �

faðuÞ du ð8:40Þ

The basic characteristic of dynamic reliability evaluation based on the crossing assumptions

is to estimate the reliability by the crossing characteristic of the response process for specified

thresholds. In the procedures, the structural analysis does not intervene in the structural

reliability evaluation. Accordingly, this family of methods in essence belongs to the separated

algorithms. The stochastic response analysis, which is the basis of the dynamic reliability

evaluation, can employ the methods described in Chapters 4 and 5.

As noted, although solutions based on Poisson or Markovian assumptions might have

acceptable accuracy in some cases, the accuracy usually cannot be guaranteed because these

assumptions are mainly based on empirical intuitiveness rather than rigorous mathematical

approximation. The underlying reason is that, to obtain an accurate solution of first-passage

reliability, all the finite-dimensional correlation information is needed, rather than only two-

dimensional information. This will be clear in Section 8.4.4.

8.2.4 Pseudo-Static Analysis Method

The essence of the pseudo-static analysis method is to convert the time process response of

the structures to some indices of them and compute the structural dynamic reliability by the

probability distribution or statistic moments of the indices.
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Usually, structural failure in a time interval [0, T ] may be simplified as

D � Dc ð8:41Þ
in whichD is the extreme value of the response in the time interval [0, T ] corresponding to the

failure criteria of the strength and/or deformations andDc is the structural failure threshold and

is related to a certain criterion.

If the joint probability density of D and Dc, denoted by fDDc
ðu1; u2Þ, is known, then the

structural dynamic reliability can be computed by

FsðTÞ ¼ PrfD <Dc j 0 � t � Tg

¼
ðð

D <Dc

fDDc
ðu1; u2Þ du1 du2 ð8:42Þ

If D and Dc are mutually independent, then

fDDc
ðu1; u2Þ ¼ fDðu1ÞfDc

ðu2Þ ð8:43Þ
where fDðu1Þ and fDc

ðu2Þ are the PDFs of D and Dc respectively.

Consequently, the structural dynamic reliability can be computed by

FsðTÞ ¼
ðð

D <Dc

fDðu1ÞfDc
ðu2Þ du1 du2

¼
ð¥
0

ðu1
0

fDðu1Þ du1
� �

fDc
ðu2Þ du2

¼
ð¥
0

FDðu1ÞfDc
ðu2Þ du2

ð8:44Þ

in which

FDðu1Þ ¼
ðu1
0

fDðu1Þ du1 ð8:45Þ

is the CDF of D.

Obviously, for the strength and deformation failure criteria, the essence of Equation 8.44 and

the first equality of Equation 8.42 are identical. In particular, in the case the threshold valueDc

is a deterministic variable, the structural dynamic reliability becomes

FsðTÞ ¼
ðDc

0

fDðu1Þ du1 ð8:46Þ

Equations 8.42, 8.44 and 8.46 are accurate expressions for structural dynamic reliability

evaluation. If the PDFs required in the equations are available, then the structural dynamic

reliability can be evaluated directly by the corresponding equationswith the analyticmethod or

numerical integral method. Unfortunately, the PDFs are difficult to obtain, especially for

nonlinear structural systems. This difficulty had to be approached based on the probability

density evolution method.
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8.3 Dynamic Reliability Analysis: Generalized Density Evolution
Equation-Based Approach

From the point of view of the GDEE, the dynamic reliability assessment can be performed in

two different ways. One is to view the first-passage problem from the transition and absorbing

of probability, resulting in the absorbing boundary condition method (Chen and Li, 2005a);

the other is to view the problem by transforming it to an issue related to the corresponding

extreme value (Chen and Li, 2007a). Clearly, these two ways can be viewed as counterpart

ideas, having once been employed in Sections 8.2.2 and 8.2.4 respectively.

8.3.1 Absorbing Boundary Condition Method

Let us examine the reliability of the first-passage problem defined in Equation 8.6:

Fs ¼ PrfXðtÞ 2 Ws; t 2 ð0; T�g ð8:6Þ

As is pointed out, thismeans that the structural failure happens once the response exceeds the

safety boundary. The generalized density evolution equation in terms of the probability-

preserved system (X(t), Q) is given by (see Section 6.5 and Equations 6.123a and 6.123b)

qpXQðx; u; tÞ
qt

þ hXðu; tÞ qpXQðx; u; tÞqx
¼ 0 ð8:47Þ

Here,Q is the basic randomvariable vector involved, pXQ(x, u, t) is the joint PDF and hX(u, t) is
the formal solution of the velocity.

We now recall the random event description of the evolution of probability as elaborated in

Section 6.2. Equation 8.6 requires that all the samples must satisfy the criterion to ensure the

safety of the structure, otherwise the structurewill fail. Of course, if a sample (a realized event)

violates the criterion, then this sample will contribute to the failure probability, but not

contribute to the reliability.1 Thus, equivalently, we can impose an absorbing boundary

condition on Equation 8.47:

pXQðx; u; tÞ ¼ 0 for x 2 Wf ð8:48Þ
where Wf is the failure domain, which is the complementary set of the safety domain Ws in

Equation 8.6.

Combining Equations 8.48 and 8.47 will give the basic equations to obtain the PDFs

�pXQðx; u; tÞ. We see that physical meaning of the absorbing boundary condition says that, once

a sample (a realized event) violates the safety criterion, the associated (adherent) probability

will never return to the safety domain. In this sense,we call such an obtained probability density

the remaining probability density and denoted by �pXðx; tÞ (or �pXQðx; u; tÞ for the joint PDF):

�pXðx; tÞ ¼
ð
WQ

�pXQðx; u; tÞ du ð8:49Þ

1 Rigorously speaking, the analysis here has to exclude the so-called zero-measure set. But this will not lead to any

essential difference for the present problem.
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The reliability is then given by

Fs ¼
ð
Ws

�p
X
ðx; tÞ dx ¼

ð¥
�¥

�p
X
ðx; tÞ dx ð8:50Þ

The second equality holds because of Equation 8.48.

For instance, for the symmetric double-boundary problemofwhich the reliability is defined by

Fs ¼ Prf XðtÞj � xb; t 2 ð0; T �gj ð8:51Þ
where xb is the threshold. The absorbing boundary condition (Equation 8.48) becomes

p
XQ
ðx; u; tÞ ¼ 0 for jxj >xb ð8:52Þ

Thus, the reliability is given by

Fs ¼
ðxb
�xb

�pXðx; tÞ dx ¼
ð¥
�¥

�pXðx; tÞ dx ð8:53Þ

Except for the absorbing boundary condition, all the solving procedures for Equations 8.47

and 8.48 is the same as that elaborated in Section 6.6 and Chapter 7.

Figure 8.3 illustrates the effect of the absorbing boundary condition on the remaining PDFs.

They are the contours of the probability density surface against time (probability density

evolution surface) of the displacement response of a nonlinear structure subjected to earth-

quake groundmotions. From the contours it is seen that, because part of the probability (related

to the failure events) is absorbed, the remaining probability density is quite different from the

original probability density. Figure 8.4 illustrates the dynamic reliability of the nonlinear

system evaluated through the approach elaborated in this section.

8.3.2 Extreme-Value Distribution of the Stochastic Dynamical Response

In general, the extreme value of a stochastic process is a random variable. As discussed in the

section above, how to get the extreme-value distribution (EVD) of a general stochastic process

Figure 8.3 Contour of the PDF surface: (a) without absorbing boundary condition; (b) with absorbing

boundary condition.
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is a difficult problem. Only some special results were achieved for some particular stochastic

processes (Newland, 1993; Finkenst€adt and Rootz�en, 2004). In contrast, based on the GDEE

described in Chapter 6, the EVD can be evaluated through constructing a virtual stochastic

process.

Denote the extreme value of the response X(t) of a stochastic system as

Xext ¼ ext
t2½0;T �

XðQ; tÞ ð8:54Þ

For instance, if one considers the maximum absolute value of XðtÞ, t 2 ½0; T �, then

Equation 8.54 essentially stands for

jXjmax ¼ max
t2½0;T �

jXðQ; tÞj ð8:55Þ

From Equation 8.54, it is seen that the extreme value of XðtÞ, t 2 ½0; T�, depends on Q. For

convenience, it can be assumed to take the form

Xext ¼ WðQ; TÞ ð8:56Þ
whichmeans that the extreme value ofXðtÞ, t 2 ½0; T�, is existent, unique and is a function ofQ
and T.

Introducing a virtual stochastic process:

YðtÞ ¼ ~w½WðQ; TÞ; t� ¼ wðQ; tÞ ð8:57Þ
where t is somewhat like the time and is termed the ‘virtual time.’ Y(t) is a ‘virtual stochastic
process’ whose randomness comes from the random vector Q. Usually, we require that the

virtual stochastic process satisfies the conditions

YðtÞjt¼0 ¼ 0 YðtÞjt¼tc ¼ WðQ; TÞ ð8:58Þ
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For instance, if we let

YðtÞ ¼ WðQ; TÞ � t ð8:59Þ

and t0¼ 1, then this process satisfies the conditions in Equation 8.58.

Differentiating Equation 8.57 on both sides with regard to t will yield

_YðtÞ ¼ qwðQ; tÞ
qt

¼ _wðQ; tÞ ð8:60Þ

It is easy to find that Equation 8.60 is in a form similar to Equation 6.96b. Therefore, a

generalized density evolution equation, described in Chapter 6, could be employed here to

obtain the PDF of Y(t). After similar deductions like that in Chapter 6, we can obtain the

following equation (Chen and Li, 2007a):

qp
YQ
ðy; u; tÞ
qt

þ _wðu; tÞ qpYQ
ðy; u; tÞ
qy

¼ 0 ð8:61Þ

with the initial condition (from Equation 8.58)

p
YQ
ðy; u; tÞjt¼0 ¼ dðyÞp

Q
ðuÞ ð8:62Þ

where pYQðy; u; tÞ is the joint PDF of (Y(t),Q).

Once the initial-value problem (Equations 8.61 and 8.62) is solved, the PDF of Y(t) will be
given by

pYðy; tÞ ¼
ð
WQ

pYQðy; u; tÞ du ð8:63Þ

From Equation 8.58 it can be seen that the extreme value Xext equals the value of the virtual

stochastic process Y(t) at the instant of time t¼ tc; that is:

Xext ¼ YðtÞjt¼tc ð8:64Þ

According to Equations 8.63 and 8.64, the PDF of Xext can be obtained immediately:

pXext
ðxÞ ¼ pYðy ¼ x; tÞjt¼tc ð8:65Þ

Example 8.1. The EVD of a Set of Random Variables Consider a set of mutually

independent random variables (X1;X2; . . . ;Xr) with identical PDF pX(x). Let

Xmax ¼ maxðX1;X2; . . . ;XrÞ ð8:66Þ

Then the closed form of the PDF of Xmax is available (Ang and Tang, 1984):

pXmax
ðxÞ ¼ r½PXðxÞ�r� 1

pXðxÞ
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where

PXðxÞ ¼
ðx
�¥

pXðxÞ dx

is the CDF of pX(x).

If we note that Equation 8.66 can be viewed as a special case of Equation 8.56, then

the approach elaborated above can be employed to obtain the PDFofXmax. Figure 8.5 shows the

comparison between the analytical solution and the EVD obtained by the PDEM when the

original distribution is uniform distribution over [1, 2] and normal distributionwithmean being

4 and unity variance respectively. It is seen that, for r¼ 2 and 3, the EVDs obtained by the

PDEM are almost identical to the analytical solution except in the vicinity of discontinuity.

By theway, we point out that the approach elaborated here can also be extended to obtain the

PDF of an arbitrary function of some basic random variables. &

8.3.3 Extreme-Value Distribution-based Dynamical Reliability
Evaluation of Stochastic Systems

Dynamic reliability of stochastic systems could be evaluated in a straightforward way through

integration of the above EVD. For example, for the symmetric double boundary problem, the

dynamic reliability of the structure in time T can be described as

Fsð� a; a; TÞ ¼ PrfjXðtÞj � a; t 2 ½0;T �g ð8:67Þ
where a is the value of the symmetric boundary. Viewed from the EVD, the above equation can

be rewritten as

Fsð� a; a; TÞ ¼ PrfjXðtÞjmax � ag ð8:68Þ
Since the EVD pXext

ðxÞ can be captured in the preceding section, it is quite easy to evaluate
the reliability in Equation 8.68 through a simple integration:

Fsð� a; a; TÞ ¼
ða
� a

pXext
ðxÞ dx ð8:69Þ
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If the boundary a is a random variable with the PDF pA(a), then the dynamic reliability

will be

R ¼
ð
WA

ða
� a

pXext
ðxÞ dx

� �
pAðaÞ da ð8:70Þ

where WA is the distribution domain of a.

The above analysis indicates that, viewed from the EVD, the problem of dynamic reliability

evaluationis transformedtoasimple integrationproblem.Incontrast toreliability theorybasedon

the level-crossing process, the above two methods based on the GDEE require neither the joint

PDFoftheresponseanditsvelocity,northeassumptionsonpropertiesofthelevel-crossingevents.

Figure 8.6 shows the PDF andCDFof the absolutemaximumdisplacement at the top of a 10-

story frame structures. Figure 8.6a shows that the EVD obtained is obviously different from the

widely used regular distributionwith the samemean and standard deviation. Figure 8.6b shows

the comparison between the CDF of the EVD obtained and that obtained by the Monte Carlo

simulation. Clearly, if the abscissa of Figure 8.6b is understood as the threshold, then the

ordinate gives the reliability, and thus the complementary to one gives the failure probability.

8.4 Structural System Reliability

8.4.1 Equivalent Extreme-Value Event

As discussed in Section 8.1.3, onmany occasions the structural failure events are combinations

of some different random events, leading to the so-called system reliability; for instance, the

reliability of a structure might be defined by

Pr ¼ PrfðG1ðQÞ > 0Þ \ ðG2ðQÞ > 0Þg ð8:71Þ
where G1(�) and G2(�) are two different limit state functions corresponding to different failure

modes of a structure.

When the random events are combinations of more than one inequality, it is found

that the probability could generally be evaluated through an equivalent extreme-value event
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(Li et al., 2007). In order to give insight to the idea, we will start with the simplest occasions

involving two random variables.

Lemma 8.1. Suppose X and Y are correlated random variables, Wmin being the minimum

value of X and Y and, therefore, also being a random variable, then there exists

PrfðX > aÞ \ ðY > aÞg ¼ PrfWmin > ag ð8:72Þ
Although Equation 8.72 evidently holds from the point of view of a logical relationship, it is

worth giving a rigorous proof because this will help to understand the idea of inherent

correlation, as will be discussed later.

Proof: Denote the joint PDF of (X, Y) by pXY(x, y), then the probability of the random event

fðX > aÞ \ ðY > aÞg is

PrfðX > aÞ \ ðY > aÞg ¼
ðð

x > a;y > a
pXYðx; yÞ dx dy

¼
ð¥
a

ð¥
a

pXYðx; yÞ dx
� �

dy

ð8:73Þ

Because

Wmin ¼ minðX; YÞ ¼ X if X � Y

Y otherwise

�
ð8:74Þ

it follows that

PrfWmin > ag ¼
ð¥
a

pWmin
ðzÞ dz

¼ PrfminðX; YÞ > ag

¼
ðð

x< y;x > a
pXYðx; yÞ dx dyþ

ðð
y< x;y > a

pXYðx; yÞ dx dy

¼
ð¥
a

ð¥
x

pXYðx; yÞ dy
� �

dxþ
ð¥
a

ð¥
y

pXYðx; yÞ dx
� �

dy

¼
ð¥
a

ðy
a

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ð¥
y

pXYðx; yÞ dx
� �

dy

¼
ð¥
a

ð¥
a

pXYðx; yÞ dx
� �

dy

ð8:75Þ

Comparing Equation 8.73 with Equation 8.75 will immediately yield Equation 8.72. &

Lemma 8.2. Suppose X, Y are correlated random variables, Wmax being the maximum value

of X and Y and therefore also a random variable, then there exists

PrfðX > aÞ [ ðY > aÞg ¼ PrfWmax > ag ð8:76Þ

Dynamic Reliability of Structures 301



Proof: The probability of the random event fðX > aÞ [ ðY > aÞg is

PrfðX > aÞ [ ðY > aÞg ¼
ðð

x > a
pXYðx; yÞ dx dyþ

ðð
y> a;x< a

pXYðx; yÞ dx dy

¼
ð¥
�¥

ð¥
a

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ða
�¥

pXYðx; yÞ dx
� �

dy

ð8:77Þ

Bearing in mind that

Wmax ¼ maxðX; YÞ ¼ Y if X � Y

X otherwise

�
ð8:78Þ

we can get

PrfWmax > ag ¼
ð¥
a

pWmax
ðzÞ dz ¼ PrfmaxðX; YÞ > ag

¼
ðð

x< y;y > a
pXYðx; yÞ dx dyþ

ðð
y< x;x > a

pXYðx; yÞ dx dy

¼
ð¥
a

ðy
�¥

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ðx
�¥

pXYðx; yÞ dy
� �

dx

¼
ð¥
a

ða
�¥

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ðy
a

pXYðx; yÞ dx
� �

dy

� �

þ
ð¥
a

ða
�¥

pXYðx; yÞ dy
� �

dxþ
ð¥
a

ðx
a

pXYðx; yÞ dy
� �

dx

� �

ð8:79Þ

Exchanging the order of integration with respect to x and y in the last two terms will yield

PrfWmax > ag ¼
ð¥
a

ða
�¥

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ðy
a

pXYðx; yÞ dx
� �

dy

� �

þ
ða
�¥

ð¥
a

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ð¥
y

pXYðx; yÞ dx
� �

dy

� �

¼
ð¥
a

ða
�¥

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ðy
a

pXYðx; yÞ dx
� �

dy

�

þ
ða
�¥

ð¥
a

pXYðx; yÞ dx
� �

dyþ
ð¥
a

ð¥
y

pXYðx; yÞ dx
� �

dy

�

¼
ð¥
a

ða
�¥

pXYðx; yÞ dx
� �

dyþ
ð¥
�¥

ð¥
a

pXYðx; yÞ dx
� �

dy ð8:80Þ

Comparing Equation 8.77 with Equation 8.80, we find that the first term on the right-hand side

of Equation 8.80 is identical to the second term on the right-hand side of Equation 8.77 while

the second term on the right-hand side of Equation 8.80 is identical to the first term on the right-

hand side of Equation 8.77. This means that Equation 8.76 holds true. &
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According to Lemmas 8.1 and 8.2, this indicates that if onewants to evaluate the probability

of a compound random event as a combination of two random events represented by

inequalities, one just needs to evaluate the probability of an event related to an extreme value

which is defined according to the logical relationship between the original two inequalities.

In this sense, say in the case of Lemma 8.1, the randomevent {Wmin > a} could be referred to as

the equivalent extreme-value event of fðX > aÞ \ ðY > aÞg andWmin as the equivalent extreme-

value random variable. Likewise, the random event {Wmax > a} is the equivalent extreme-

value event of fðX > aÞ [ ðY > aÞg and Wmax is the corresponding equivalent extreme-value

random variable.

Evidently, the rules holds true when the compound random event is a combination of more

than two component random events. This idea leads to the following theorems.

Theorem 8.1. Suppose X1;X2; . . . ;Xm are m random variables. Let Wmin ¼ min1�j�mðXjÞ,
then it goes that

Pr
\m
j¼1

ðXj > aÞ
( )

¼ PrfWmin > ag ð8:81Þ

Proof: Denote the minimum value of X1;X2; . . . ;Xj (2 � j � m) as W
ðjÞ
min; namely:

W
ðjÞ
min ¼ minðX1;X2; . . . ;XjÞ ð8:82Þ

DefineW
ð1Þ
min ¼ X1 andW

ðmÞ
min ¼ Wmin. There is a recursive relation thatW

ðjÞ
min ¼ minðW ðj� 1Þ

min ;XjÞ,
2 � j � m. Using Lemma 8.1 recursively we obtain

Pr
\m
j¼1

ðXj > aÞ
( )

¼ Prf½ðX1 > aÞ \ ðX2 > aÞ�
\m
j¼3

ðXj > aÞg

¼ Prf½ðW ð2Þ
min > aÞ \ ðX3 > aÞ�

\m
j¼4

ðXj > aÞg
¼ . . .

¼ PrfðW ðm� 1Þ
min > aÞ \ ðXm > aÞg

¼ PrfðW ðmÞ
min > aÞg

¼ PrfðWmin > aÞg

ð8:83Þ

&

Theorem 8.2. Suppose X1;X2; . . . ;Xm are m random variables. Let Wmax ¼ max1�j�mðXjÞ;
then it goes that

Pr
[m
j¼1

ðXj > aÞ
( )

¼ PrfWmax > ag ð8:84Þ

The proof is similar to Theorem 8.1 and will not be detailed. Likewise, for any arbitrary

types of combination of random events, we can always construct the according equivalent

extreme-value events; for instance, the following theorem holds.
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Theorem 8.3. Suppose Xij, i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m, are m	 n random variables.

Let Wext ¼ max1�i�nðmin1�j�mðXijÞ; then it goes that

Pr
[n
i¼1

\m
j¼1

ðXij > aÞ
" #( )

¼ PrfWext > ag ð8:85Þ

For the sake of clarity, in the lemmas and theorems, the thresholds for different random

variables take the same value a. It appears at first glance that this will lead to loss of generality;

but this is not true, because the inequality can be equivalently transformed with a linear

transformation. For instance, consider a random event fð~X < bÞ \ ð~Y > cÞg where ~X and ~Y are

random variables with joint PDF p~X~Yð~x;~yÞ. If we introduce a couple of new random variables

X ¼ � ~Xþ bþ a ð8:86aÞ

Y ¼ ~Y � cþ a ð8:86bÞ
of which the joint PDF is

pXYðx; yÞ ¼ p~X~Yð� xþ bþ a; yþ c� aÞ ð8:87Þ

then the random event fð~X < bÞ \ ð~Y > cÞg is equivalently transformed to fðX > aÞ \ ðY > aÞg,
which is the case discussed in Lemma 8.1.

8.4.2 Inherent Correlation Property of Equivalent Extreme-Value Event

In constructing the equivalent extreme-value event, the random variables can be either

mutually dependent or independent. In other words, this indicates that although in the

equivalent extreme-value event only one equivalent random variable is employed explicitly

instead of the original multiple random variables, the correlation information in the original

random variables, together with the effects on the computed probability, is retained in the

equivalent extreme-value event.

In practical situations, the random variables involved in the probability computation of

random events, say as shown in Equation 8.72 or 8.76, are usually not basic random variables.

Instead, theymay be functions of the same set of basic random variables where the randomness

comes from. For instance, when different response indices of a structure involving randomness

characterized byQ are considered, these response indices, if denoted by X and Y, are evidently

functions of Q; that is:

X ¼ HXðQÞ Y ¼ HYðQÞ ð8:88Þ
where Q ¼ ðQ1;Q2; . . . ;QsÞ are the basic random variables with joint PDF pQðuÞ. In this

situation, the random variables X and Y are unlikely mutually independent in general,

except in some pretty special cases.2 The joint PDF pXY(x, y) could be computed in

2 There are indeed somevery special caseswhere two randomvariables as functions of the same set of randomvariables

are independent or uncorrelated. For example, refer to Wang (1976). However, in practical engineering, the chance of

encountering these cases is very rare.
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principle by

pXYðx; yÞ ¼ q2

qxqy

ð
HXðQÞ < x;HY ðQÞ < y

pQðuÞ du ð8:89Þ

Usually, the computation of Equation 8.89 is practically far from easy.

According to Equations 8.73 and 8.89, we can get

PrfðX > aÞ \ ðY > aÞg ¼
ðð

x > a;y > a
pXYðx; yÞ dx dy

¼
ð
HXðQÞ > a;HY ðQÞ > a

pQðuÞ du
ð8:90Þ

From Equation 8.90 it is seen that the correlation information between X and Y is involved

in turn in the form of integration with regard to u in the domain determined by Equation 8.88.

In other words, in Equation 8.90, the correlation information is involved.

On the other hand, according to Equations 8.74, 8.75 and 8.54, if we define

Wmin ¼ minðX; YÞ ¼ minðHXðQÞ;HYðQÞÞ ¼ HWðQÞ ð8:91Þ
then Equation 8.75 becomes

PrfWmin > ag ¼
ð¥
a

pWmin
ðwÞ dw

¼ PrfminðX; YÞ > ag
¼

ð
HW ðQÞ > a

pQðuÞ du
ð8:92Þ

Noting Equations 8.73 and 8.91, it is seen that although using the equivalent extreme-value

event {Wmin > a} in place of fðX > aÞ \ ðY > aÞg in computation of the probabilitywith the first

equality in Equation 8.92 appears not to involve the correlation information between X and Y

explicitly, the correlation information is indeed retained.

The above discussions on the inherent correlation property in the equivalent extreme-value

event are obviously true in the case thatmore than two randomvariables are involved.Using the

equivalent extreme-value event in place of the original random events as combinations of more

than one randomeventmakes it possible to reduce themultidimensional probability integration

to a one-dimensional probability integration, provided the PDFof the equivalent extreme-value

randomvariable is available. The correlation information is inherent in the equivalent extreme-

value event; therefore, in this process, no correlation information disappears.

8.4.3 Differences between the Equivalent Extreme-Value Event
and the Weakest Link Assumption

In structural reliability evaluation, the weakest link assumption is often employed. Consider a

structural system whose probability of failure is

Pf ¼ Pr ðX > aÞ [ ðY > aÞf g ð8:93Þ

Dynamic Reliability of Structures 305



Denote Pf1 ¼ PrfX > ag, Pf2 ¼ PrfY > ag. When the weakest link assumption is adopted,

we may use

Pf ¼ maxðPf1;Pf2Þ ð8:94Þ
in place of Equation 8.93 (Madsen et al., 1986; Melchers, 1999).

According to Lemma 8.2 in Section 8.4.1, the probability in Equation 8.93 is equal to

Pf ¼ PrfWmax > ag ð8:95Þ
It is easy to see that, in the weakest link assumption, the failure probability of the system is

replaced by the maximum of the failure probabilities of the basic failure events; that is, the

following equality is assumed:

Pf ¼ maxðPrfX > ag; PrfY > agÞ ¼ PrfmaxðX; YÞ > ag ð8:96Þ
However, because the orders of the operator Pr{�} and max{�} cannot be exchanged,

Equation 8.96 does not hold true in general.

In fact, Equation 8.93 could be computed by

Pf ¼
ð
ðX > aÞ[ðY > aÞ

pXYðx; yÞ dx dy

¼
ð¥
a

ð¥
�¥

pXYðx; yÞ dy
� �

dxþ
ða
�¥

ð¥
a

pXYðx; yÞ dy
� �

dx

¼ Pf1 þDP1

ð8:97Þ

where

DP1 ¼
ða
�¥

ð¥
a

pXYðx; yÞ dy
� �

dx ¼
ðð

A1

pXYðx; yÞ dx dy ð8:98Þ

in which A1 is the area indicated in Figure 8.7.

Figure 8.7 Partition of the integral domain.
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Likewise, we can get

Pf ¼ Pf2 þDP2 ð8:99Þ

where DP2 ¼
Ð Ð

A2
pXYðx; yÞ dx dy and A2 is the area shown in Figure 8.7.

Because pXY(x, y)� 0, there are DP1� 0 and DP2� 0; consequently:

Pf � maxðPf1;Pf2Þ ð8:100Þ

This shows that Equation 8.94 does not hold in general cases.

If X and Y are completely positively correlated random variables, that is, Y ¼ kXþ bðk > 0Þ
and the joint PDF is thus

pXYðx; yÞ ¼ pXðxÞdðy� kx� bÞ ð8:101Þ

where d(�) is the Dirac delta function. According to Equation 8.98 there is

DP1 ¼
ða
�¥

ð¥
a

pXYðx; yÞ dy
� �

dx

¼
ða
�¥

ð¥
a

pXðxÞdðy� kx� bÞ dy
� �

dx

¼
ða
�¥

pXðxÞuðx�ða� bÞ=kÞ dx

ð8:102Þ

in which u(�) is the Heaviside step function (see Appendix A).

Likewise, we can obtain

DP2 ¼
ða
�¥

pYðyÞuðy� ka� bÞ dy ð8:103Þ

It is easy to prove that either

a� b

k
< a < kaþ b ð8:104Þ

or

kaþ b < a <
a� b

k
ð8:105Þ

holds true provided k > 0.

Therefore, from Equations 8.102 and 8.103 we can see that eitherDP1¼ 0 orDP2¼ 0 holds.

Therefore, either Pf¼Pf1 or Pf¼Pf2 holds according to Equations 8.97 and 8.99. That means

only in this case the weakest link assumption holds true.

In summary, the equivalent extreme-value event is different from the weakest link

assumption in essence. Only in the case that the basic failure events are completely

positively correlated the weakest link assumption is identical to the equivalent extreme-

value event.
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8.4.4 Evaluation of Structural System Reliability

For the first-passage problem, the reliability against the response index X(t) can be generally

described as

R ¼ PrfXðQ; tÞ 2 Ws; t 2 ½0; T�g ð8:106Þ

where Ws is the safe domain.

For most practical problems, Equation 8.106 can be rewritten as

R ¼ PrfGðQ; tÞ > 0; t 2 ½0; T�g ð8:107Þ

where G(�) is a time-dependent limit state function. For instance, if Equation 8.106 takes the

form (as a double boundary condition)

R ¼ PrfjXðQ; tÞj <xb; t 2 ½0; T �g ð8:108Þ

where xb is the threshold, then we can get

GðQ; tÞ ¼ xb � jXðQ; tÞj ð8:109Þ

Equation 8.107 could also be written equivalently in a different form as

R ¼ Pr
\

t2½0;T �
ðGðQ; tÞ > 0Þ

8<
:

9=
; ð8:110Þ

According to the situation similar to Theorem 8.1 in Section 8.4.1, if we define an extreme

value as

Wmin ¼ min
t2½0;T �

ðGðQ; tÞÞ ð8:111Þ

of which the PDF can be captured according to Section 8.3, then the reliability in

Equation 8.110 equals

R ¼ PrfWmin > 0g ð8:112Þ

It is worth pointing out that if wewant to evaluate the reliability in Equation 8.110 directly

with the probability integration analogous to Equation 8.73, then the infinite-dimensional

joint PDF of the stochastic process G(Q,t) is needed; that is, the correlation information

among any different time instants is required. Noting that in the widely used out-crossing-

process theory on the first-passage reliability problem, either with the Poisson assumption

or with the Markovian assumption (see Section 8.2.2), usually only the correlation

information between two different time instants is considered. Consequently, in general

situations, the out-crossing-process theory on the first-passage reliability problem unlikely

yields the exact solution. Whereas using the equivalent extreme-value event, as is discussed

in the preceding sections, total information of the correlation is inherent and an exact

solution can be derived easily.
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For system reliability (that is, if there ismore than one limit state function combined together

to be considered), say, consider

R ¼ Pr
\m
j¼1

ðGjðQ; tÞ > 0; t 2 ½0; Tj�Þ
( )

ð8:113Þ

where Tj is the time duration corresponding to Gj(�). Combining Equation 8.110 and Theo-

rem 8.1 in Section 8.4.1, we can define the equivalent extreme value as

Wext ¼ min
1�j�m

min
t2½0;Tj �

ðGjðQ; tÞÞ
� �

ð8:114Þ

Therefore, the reliability in Equation 8.113 can be computed directly by

R ¼ PrfWext > 0g ð8:115Þ

Example 8.2. System Reliability of Nonlinear Structures under Earthquake The

reliability evaluation of a 10-story nonlinear structure subjected to random seismic ground

motions is illustrated (Li et al., 2007). Denote the interstory drifts from the floor to the top by

X1ðtÞ;X2ðtÞ; . . . ;X10ðtÞ and the heights of the stories by h1; h2; . . . ; h10. The system reliability

of the structure can be defined by

R ¼ Pr
\10
j¼1

XjðtÞ
hj

j <wb; t 2 0; T½ �
����

�� �(
ð8:116Þ

wherewb¼ 1/50 is the threshold of the interstory angle. For clarity, we define the dimensionless

interstory drift as

�XjðtÞ ¼ XjðtÞ
hjwb

���� j ¼ 1; 2; . . . ; 10

���� ð8:117Þ

Thus, Equation 8.116 becomes

R ¼ Pr
\10
j¼1

f�XjðtÞ < 1; t 2 ½0; T�g
( )

¼ Pr
\10
j¼1

f�Xj;max < 1g
( ) ð8:118Þ

where �Xj;max ¼ maxt2½0;T � f�XjðtÞg. The PDFs of the �Xj;max obtained by the approach in

Section 8.3.2 are pictured in Figure 8.8. Further, we define an equivalent extreme value by

�Xmax ¼ max
1�j�10

ð�Xj;maxÞ ð8:119Þ

The PDF of the equivalent extreme value �Xmax is also shown in Figure 8.8.
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Figure 8.8 EVD and the distribution of the equivalent extreme value.
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Figure 8.9 System reliability.

Table 8.1 The failure probability of the structure against inters-

tory drifts.

Story number Probability of failure

10 3.360 183e-008

9 0.000 000

8 0.000 000

7 0.022 199

6 0.086 191

5 0.179 421

4 0.194 678

3 0.303 173

2 0.449 662

1 0.279 903

Failure probability of the structure 0.491 547
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The integral of the PDF of this equivalent extreme value random variable will then give the

system reliability and the probability of failure (Figure 8.9); that is:

R ¼ Prf�Xmax < 1g ¼
ð1
0

p�Xmax
ðxÞ dx Pf ¼ 1�R ð8:120Þ

The reliability and the probability of failure of each story can be defined by

Rj ¼ Prf�Xj;max < 1g ¼
ð1
0

p�Xj;max
ðxÞ dx Pf;j ¼ 1�Rj j ¼ 1; 2; . . . ; 10 ð8:121Þ

Table 8.1 lists the probability of failure of each story (Equation 8.121) and the probability of

failure of the structure (Equation 8.120). It is seen that the probability of failure of the structure

is larger than that of each story. In addition, in the present case, it is noted that the largest

probability of failure of the stories occurs in the second floor, not in the first. &
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9

Optimal Control of Stochastic
Systems

9.1 Introduction

In a general sense, structural control can be understood as designing a structure which will

behave in a desired way. This is actually what structural engineers have been doing from the

past to modern times, although only part of the aim has been achieved so far. In a narrower and

more special sense, structural control is to attach some additional substructure or device

appropriately on a structure to regulate structural behavior; for instance, to mitigate vibrations

of structures (Housner et al., 1997).

Since Yao’s pioneering work (Yao, 1972), structural controls have been developed exten-

sively; for instance, in earthquake- and wind-induced structural vibration mitigation. When

considering if and how much energy input is needed by the control device, they are in general

classified into passive control, active control, hybrid control and semi-active control (Soong,

1990). When consideration is based on the control aim and the corresponding algorithm, they

include common control, optimal control, intelligent control and so on.

Considering the aim of this book, this chapter will only deal with the theory of active

structural control when uncertainties are involved. Stochastic optimal control and reliability-

based stochastic control will be stressed in this chapter.

Without loss of generality, the equation of motion of a nonlinear deterministic MDOF

structural system can be rewritten as a state-space equation (see Equation 5.178)

_x ¼ f½xðtÞ; t� ð9:1Þ
where x(t)¼ [x1(t), x2(t), . . .,xn(t)]

T is the n-dimensional state vector, usually consisting of the

displacement and velocity vectors of the structural system, and f(�)¼ [f1(�), f2(�), . . ., fn(�)]T is an
n-dimensional operator vector. We note that the deterministic excitations can be incorporated

in f(�).
If there are control devices incorporated in the structural system, then a control vector

u(t)¼ [u1(t), u2(t), . . ., um(t)]
Twill have effects on the system response and, thus, Equation 9.1

becomes a state-control equation:
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_x ¼ f½xðtÞ; uðtÞ; t� ð9:2Þ
where m is the dimension of the control vector.

The task of optimal control is to seek a control process vector u(t), t0� t� tf, which

minimizes a givenperformance index. This index is usually a functional of the state and control

vector over a given time interval [t0, tf], for instance, taking the form (Stengel, 1994)

J ¼ f½xðtfÞ; tf � þ
ðtf
t0

L½xðtÞ;uðtÞ; t� dt ð9:3Þ

where t0 is the initial time, tf is the terminal time,f½ � � is the portion with respect to the terminal

constraint and L½ � � is called the Lagrangian. Generally, we require f½ � � � 0 and L½ � � � 0 to

hold for all possible values of the arguments. The performance index is also referred to as the

cost function, or cost functional, and so on. Incidentally, without considering the effect off½ � �,
the cost function is in a form similar to the action integral in Lagrangian analytical dynamics,

that is why there is an analogy between optimal control theory and analytical dynamics and we

called L½ � � the Lagrangian.
The first- and second-order variations of the performance index are given respectively by

dJ ¼ qf
qx

����
t¼tf

dxðtfÞþ
ðtf
t0

qL
qx

dxþ qL
qu

du

� �
dt ð9:4Þ

and

d2J ¼ dxTðtfÞq
2f

qx2

����
t¼tf

dxðtfÞþ
ðtf
t0

dxT
q2L
qx2

dxþ duT
q2L
qu2

duþ 2dxT
q2L
qxqu

du

� �
dt ð9:5Þ

For notational simplicity, denote the Hessian matrices by

Sf ¼ q2f½xðtfÞ; tf �
qx2

Q ¼ q2L
qx2

R ¼ q2L
qu2

and M0 ¼ q2L
quqx

ð9:6Þ

Clearly, in the case Sf andQ are symmetric, positive semi-definite,R is symmetric, positive

definite and M0 ¼ 0, it follows from Equation 9.5 that the second-order variation of the

performance index

d2J > 0 ð9:7Þ
In applications, one of the simplest cases is that Sf,Q andR are independent of x(tf), x(�) and

u(�), but Q and R can be time varying, then the performance index (Equation 9.3) is in a

quadratic form:

J ¼ 1

2
xTðtfÞSfxðtfÞþ 1

2

ðtf
t0

½xTðtÞQðtÞxðtÞþ uTðtÞRðtÞuðtÞ� dt ð9:8Þ

If randomness is involved in the system parameters and excitations, usually, the

system randomness can bemodeled as a random function z(v), while the stochastic excitations
can be modeled by a stochastic process vector j(v, t). The system in Equation 9.2 can then be
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extended to

_X ¼ f½XðtÞ;UðtÞ; zðvÞ; jðv; tÞ; t� ð9:9Þ
As discussed in Chapters 2 and 3, through discretization or decomposition of the random

field and stochastic process, a set of basic random variablesQ¼ (Q1,Q2, . . .,Qs) can be used to

represent the randomness involved in the system in Equation 9.9, where s is the number of the

random variables. By doing this, the system in Equation 9.9 becomes a random state-control

equation:

_X ¼ f½XðtÞ;UðtÞ; t;QðvÞ� ð9:10Þ
Here, we note that, because randomness is involved, the control vector U(�) and the state

vector X(�) are both stochastic processes. Meanwhile, when x and u are replaced respectively

by X and U, the performance index in Equation 9.3 is usually a random variable rather than a

deterministic value.

9.2 Optimal Control of Deterministic Systems

9.2.1 Optimal Control of Structural Systems

Before we come to the control of stochastic systems, let us first explore the optimal control of

deterministic structural systems. For simplicity, we will consider the sytems with perfect

observation and complete control. Without loss of generality, we consider the system in

Equation 9.2, which is repeated here as Equation 9.11 for convenience:

_x ¼ f½xðtÞ; uðtÞ; t� xðt0Þ ¼ x0 ð9:11Þ
The goal of optimal control is to find a control process u(�) that minimizes the performance

index in Equation 9.3:

J ½uð�Þ� ¼ f½xðtfÞ; tf � þ
ðtf
t0

L½xðtÞ; uðtÞ; t� dt ð9:12Þ

Here, we note that although the state process x(t) is involved in the Lagrangian L½ � �, the
performance index J is essentially only a functional of the control process u(�), because once
the process u(�) is specified, x(t) can be determined by solving Equation 9.11; in other words,

x(t) is a functional, not independent, of u(�).
Thus, the problem we encounter here is an optimal problem of minimizing the performance

indexJ in Equation 9.12 with the state-control Equation 9.11 serving as a dynamic constraint.

This can be resolved by the variational approach (Lanczos, 1970; Yong and Zhou, 1999; Naidu,

2003).

When introducing a Lagrange multiplier vector lðtÞ ¼ ½l1ðtÞ; l2ðtÞ; . . . ; lnðtÞ�T, the neces-
sary condition of minimizing J subject to the dynamic constraint in Equation 9.11 is that the

control u(�) makes the augmented performance index

J A , f½xðtfÞ; tf � þ
ðtf
t0

ðL½xðtÞ; uðtÞ; t� þ lTðtÞff½xðtÞ; uðtÞ; t� � _xðtÞgÞ dt ð9:13Þ
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stationary; that is:

dJ A ¼ 0 ð9:14Þ
In fact, it is seen that if the state-control Equation 9.11 as a constraint is strictly satisfied, then

the augmented performance index J A in Equation 9.13 is equal to the original performance

index J in Equation 9.12.

Before computing thevariationdJ A, integrating by partswith regard to _xðtÞ inEquation 9.13
yields

J A ¼ f½xðtfÞ; tf � þ lTðt0Þxðt0Þ� lTðtfÞxðtfÞ
þ Ð tf

t0
fL½xðtÞ; uðtÞ; t� þ lTðtÞf½xðtÞ; uðtÞ; t� þ _l

TðtÞxðtÞg dt ð9:15Þ

For notational convenience, denote

H ½xðtÞ; uðtÞ;lðtÞ; t� ¼ L½xðtÞ; uðtÞ; t� þ lTðtÞf½xðtÞ; uðtÞ; t� ð9:16Þ
Then, Equation 9.15 becomes

J A ¼ f½xðtfÞ; tf � þ lTðt0Þxðt0Þ� lTðtfÞxðtfÞþ
ðtf
t0

fH ½xðtÞ; uðtÞ; lðtÞ; t� þ _l
TðtÞxðtÞg dt

ð9:17Þ
Later, we will find that H ½ � � in Equation 9.16 plays a role similar to that of the Hamiltonian

function in analytical dynamics and is thus called the Hamiltonian.

Now we consider the first order variation of J A. Note that dx and du are the variations of x

and u themselves, and dx(t0)¼ 0 because x(t0) is prescribed in Equation 9.11. The variation of

the first three terms in Equation 9.17 gives

d f xðtfÞ; tf½ � þ lTðt0Þxðt0Þ� lTðtfÞxðtfÞ
� � ¼ qf

qx

����
t¼tf

dxðtfÞ� lTðtfÞdxðtfÞ ð9:18aÞ

while the variation of the last term in the right-hand side of Equation 9.17 gives

d

ðtf
t0

fH ½xðtÞ;uðtÞ;lðtÞ; t�þ _l
TðtÞxðtÞg dt

� �
¼
ðtf
t0

q H
qx

dxðtÞþ q H
qu

duðtÞþ _l
TðtÞdxðtÞ

� �
dt

ð9:18bÞ
Therefore, combining Equations 9.18a and 9.18b, we have

dJ A ¼ qf
qx

����
t¼tf

� lTðtfÞ
" #

dxðtfÞþ
ðtf
t0

q H
qx

þ _l
TðtÞ

� �
dxðtÞþ q H

qu
duðtÞ

� �
dt ð9:19Þ

To satisfy Equation 9.14 (that is, dJ A ¼ 0), it is required that all the coefficients of dx(tf),
dx(t) and du(t) be zero because of the arbitrariness of these variations; that is:

qf
qx

����
t¼tf

� lTðtfÞ ¼ 0 ð9:20aÞ
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q H
qx

þ _l
TðtÞ ¼ 0 ð9:21aÞ

and

q H ½xðtÞ; uðtÞ; lðtÞ; t�
qu

¼ 0 ð9:22Þ

Equations 9.20a and 9.21a can be rewritten respectively in an alternative form

lðtfÞ ¼ qf½xðtfÞ; tf �
qx

	 
T

ð9:20bÞ

_lðtÞ ¼ � q H ½xðtÞ; uðtÞ; lðtÞ; t�
qx

	 
T

ð9:21bÞ

Equations 9.20a–9.22 compose the Euler–Lagrange equations for optimal control, where

Equation 9.20b serves as the terminal condition for Equation 9.21b. It is seen here that, to solve

the optimal control problem, the differential Equations 9.21a and 9.21b with respect to

the Lagrange multiplier vector l(t) must be solved simultaneously with the state-control

Equation 9.11. (Thus, l(t) can be called an adjoint vector and Equations 9.21a and 9.21b

adjoint equations.)

Combining Equations 9.14 and 9.11, we find that

q H
qlT

¼ f xðtÞ; uðtÞ; t½ � ¼ _x ð9:23aÞ

That is:

_x ¼ q H
qlT

ð9:23bÞ

On the other hand, Equations 9.21a and 9.21b give

_l
TðtÞ ¼ � q H

qx
ð9:24Þ

Clearly, these two equations compose a dual equation set which is analogous to the

Hamiltonian equation in analytical dynamics and thus also called the Hamilton canonical

equation. Thus, the methodology employed here is also referred to as theHamiltonian system

formula (Yong and Zhou, 1999).

Solving simultaneously the Hamilton Equations 9.23b and 9.24 and the stationary value

Equation 9.22, the control law and the state vector that optimize the performance index can be

obtained. To be clear, the solution flow can be stated as:

(a) solve the stationary value Equation 9.22 to establish an expression of u(t) in terms of x(t)

and l(t); that is, uðtÞ ¼ K½xðtÞ; lðtÞ; t�;
(b) substitute this relation in Equations 9.23b and 9.24 to eliminate u(�) in their right-hand

sides;
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(c) solve the simultaneousEquations 9.23b and 9.24with only x(t) andl(t) as unknowns under
the initial and terminal conditions specified respectively by Equations 9.11 and 9.20b to

obtain the state vector x(t) and the adjoint vector l(t);
(d) substitute l(t) in uðtÞ ¼ K½xðtÞ; lðtÞ; t� to obtain the control process uðtÞ ¼ G½xðtÞ; t�.

It is noted that in the step (c) a two-point boundary-value problem is encountered. In

particular, the adjoint equation, Equation 9.24, should be solved backward in time with

terminal conditions as specified in Equation 9.20b. As is well known in common dynamical

systems governed by state equations with given initial conditions, the future information is not

needed in solving the state equation physically. However, in the optimal control of dynamical

systems, certain future informationmust be available to guide the evolution of the state-control

process along the optimal trajectory. The reason why is that, in optimal control, an expected

result at the terminal time is prescribed in advance.

9.2.2 Linear Quadratic Control

Optimal control of linear systems is much more tractable. Now we consider the case

Equation 9.11 describes a linear system in the form

_x ¼ AxðtÞþBuðtÞþLjðtÞ ð9:25Þ
where A¼ [Aij]n�n is the system matrix, B¼ [Bij]n�m is the control influence matrix,

L¼ [Lij]n�r is the force influence matrix and j(t)¼ [j1(t), j2(t), . . ., jr(t)]
T is the r-

dimensional deterministic excitation vector. In this case, the operator f[�] in Equation 9.11

is given as

f½xðtÞ;uðtÞ; t� ¼ AxðtÞþBuðtÞþLjðtÞ ð9:26Þ
whereA,B andLmay be functions of time. For notational simplicity, twill not occur explicitly,

but A, B and L can be understood as A(t), B(t) and L(t) respectively. In the present stage we

assume the control u(t) is unbounded.

We consider the performance index Equation 9.12 in a quadratic form as in Equation 9.8:

J ¼ 1

2
xTðtfÞSfxðtfÞþ 1

2

ðtf
t0

½xTðtÞQxðtÞþ uTðtÞRuðtÞ� dt ð9:27Þ

where Sf¼ [Sf,ij]n�n and Q¼ [Qij]n�n are symmetric, positive semi-definite matrices and

R¼ [Rij]m�m is a symmetric, positive definite matrix. Again, Q and R can be understood as

Q(t) and R(t) respectively if necessary. Thus, the terminal function and the Lagrangian in

Equation 9.12 are given respectively by

f xðtfÞ; tf½ � ¼ 1

2
xTðtfÞSfxðtfÞ ð9:28Þ

and

L xðtÞ; uðtÞ; t½ � ¼ 1

2
xTðtÞQxðtÞþ uTðtÞRuðtÞ� � ð9:29Þ
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Because in the present problem the state-control equation is linear and the performance

index is quadratic, the corresponding optimal control is referred to as the linear quadratic (LQ)

control problem (Stengel, 1994; Williams and Lawrence, 2007).

Using the Euler–Lagrange equations, introducing Equations 9.29 and 9.26 into Equations

9.16 and 9.22 yields

RuðtÞþ lTðtÞB ¼ 0 ð9:30Þ
or

uðtÞ ¼ �R� 1BTlðtÞ ð9:31Þ
In addition, introducing the terminal function Equation 9.28 into Equations 9.20a and 9.20b

gives the terminal condition for the adjoint vector:

lðtfÞ ¼ SfxðtfÞ ð9:32Þ
while the adjoint equations, Equations 9.21a and 9.21b, become

_lðtÞ ¼ �ATlðtÞ�QxðtÞ ð9:33Þ
The physical meaning indicated above is clearer. In fact, the adjoint vector l(t) in

Equation 9.31 contains the information over the future interval [t, tf], because the terminal

condition is specified. Therefore, Equation 9.31 guides the evolution of the control effortswhile

Equation 9.33 indicates that the adjoint vector is fed back to itself; simultaneously, the state

vector is fed back.

Note that the adjoint equation (Equation 9.33) and the state-control equation (Equation 9.25)

compose a linear simultaneous equation set. The linear relationship exhibited in the terminal

condition in Equation 9.32 implies that the linear relationship should also hold for all t; thus, we

can assume

lðtÞ ¼ SðtÞxðtÞ ð9:34Þ
where S(t)¼ [Sij(t)]n�n is to be determined.

Combining Equations 9.34 and 9.31 gives

uðtÞ ¼ �R� 1BTSðtÞxðtÞ ¼ �GconðtÞxðtÞ ð9:35Þ
This is the control law for LQ control, where Gcon(t)¼ [Gcon,ij(t)]m�n is the control gain

matrix and given by

GconðtÞ ¼ R� 1BTSðtÞ ð9:36Þ
Equation 9.35 means that the LQ control employs the linear state feedback control law. To

determine S(t), introducing Equation 9.34 into Equation 9.33, we have

_SðtÞxðtÞþ SðtÞ _xðtÞ ¼ �ATSðtÞxðtÞ�QxðtÞ ð9:37Þ
Substituting Equation 9.25, the state-control equation, this equation becomes

_SðtÞxðtÞþ SðtÞ½AxðtÞþBuðtÞþLjðtÞ� ¼ �ATSðtÞxðtÞ�QxðtÞ ð9:38Þ
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Introducing the control law (Equation 9.35) into it and letting the input j(t)� 0,1 eliminating

x(t) on both sides, we have

_SðtÞ ¼ �ATSðtÞ� SðtÞAþ SðtÞBR� 1BTSðtÞ�Q ð9:39Þ
with the terminal condition given by combining Equation 9.34 with Equation 9.32:

SðtfÞ ¼ Sf ð9:40Þ
Equation 9.39 is thematrix Riccati equation. Note that Sf is a symmetric matrix, and that the

right-hand side of Equation 9.39 is also symmetric, S(t) must also be a symmetric matrix.

Solution of the matrix Riccati equation is usually not easy. A variety of approaches have

been investigated (Petkov et al., 1991; Stengel, 1994; Adeli and Saleh, 1999). The precise

integration method proposed by Zhong (2004) deserves recommendation for its high accuracy

and acceptable efficiency.

9.2.3 The Minimum Principle and Hamilton–Jacobi-Bellman Equation

9.2.3.1 The Minimum Principle

Denote the optimal control and the corresponding state vector respectively by u
	
(t) and x

	
(t).

Because u*(�) should minimize the performance index in the admissible domain Wu

J ½u*ð�Þ� ¼ min
u2Wu

J ½uð�Þ� ð9:41Þ

there must be

J ½u	ð � Þ þ du� �J ½u	ð � Þ� � 0 ð9:42Þ
Here, we note that the notation J ½uð � Þ� is equivalent to J ðuÞ, where u(�) denotes a time

history over time interval [t0, tf]; that is, uð � Þ, fuðtÞ 2 Rm : t 2 ½t0; tf �g.
It follows from Equation 9.16 that

J ðu	 þ duÞ�J ðu	Þ ¼ J A½u	ð � Þþ du� �J A½u	ð � Þ�
¼ Ð tf

t0
f H ½x	ðtÞ; u	ðtÞþ du; l	ðtÞ; t� � H ½x	ðtÞ; u	ðtÞ; l	ðtÞ; t�g dt

¼ Ð tf
t0

q H	

qu
duþ duT

q2 H	

qu2
duþ terms of higher order

� �
dt

ð9:43Þ

where the first term in the integrand will disappear according to Equation 9.22, which requires

qH=qu ¼ 0. Thus, when the terms of higher order are ignored, to satisfy Equation 9.42 it is

required that

1In the case jðtÞ „ 0, the situation will be much more involved. The control law (Equation 9.35) needs to be modified

with an additional term of input feedforward. The interested reader can refer to, say, Yang et al. (1987) and Soong

(1990). We will also consider this case later in Section 9.3.3.2.
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q2 H
qu2

� 0 ð9:44Þ

This gives the sufficient condition for optimality, whereas Equation 9.22 is only the

necessary condition.

Combining Equations 9.42 and 9.43 also gives

H 	 ¼ H ½x	ðtÞ; u	ðtÞ; l	ðtÞ; t� � H ½x	ðtÞ; uðtÞ; H 	ðtÞ; t� ð9:45Þ
where u(t)2Wu is any admissible, neighboring (nonoptimal) control history. This equation

states thePontryaginminimumprinciple, which asserts thatminimizing theHamiltonian along

the optimal state trajectory is equivalent to minimizing the performance index. The minimum

principle was called the maximum principle in their original context, proposed first by

Pontryagin and his co-workers (Pontryagin et al., 1964; Gamkrelidze, 1999; Yong and Zhou,

1999; Naidu, 2003).

The procedures developed in the preceding sections are essentially based on the minimum

principle via calculus of variations. However, the minimum principle contains simultaneously

the necessary and sufficient conditions, and it holds in a range wider than the Euler–Lagrange

equations do because of the looser requirement on the differentiability and the boundary

conditions.

9.2.3.2 Hamilton–Jacobi–Bellman Equation

Another approach to finding the optimal control history is through dynamic programming via

solution of the Hamilton–Jacobi–Bellman (HJB) equation. In this approach, we need to

introduce a value function, which is closely related to the performance index.

For clarity, we rewrite the performance index in a form with the initial condition as the

explicit arguments

J ½xðt0Þ; t0; uð � Þ� ¼ f½xðtfÞ; tf � þ
ðtf
t0

L½xðtÞ; uðtÞ; t� dt ð9:46aÞ

or in an alternative form, when replacing t0 by any t2 [t0, tf]:

J ½xðtÞ; t; uð � Þ� ¼ f½xðtfÞ; tf � þ
Ð tf
t
L½xðtÞ; uðtÞ; t� dt

¼ f½xðtfÞ; tf � �
Ð t
tf
L½xðtÞ; uðtÞ; t� dt ð9:46bÞ

Note here that we also replace the dummy variable t in the integral by t to avoid confusion.

The value function is defined as the minimum ofJ ½x*ðtÞ; t; uð � Þ�when the state history x(t)
is on the optimal trajectory x

	
(�); that is:

V½x	ðtÞ; t� ¼ min
u
fJ ½x	ðtÞ; t; uð � Þ�g

¼ f½x	ðtfÞ; tf � �
Ð t
tf
L½x	ðtÞ; u	ðtÞ; t� dt

¼ min
u
ff½x	ðtfÞ; tf � �

Ð t
tf
L½x	ðtÞ; uðtÞ; t� dtg

ð9:47Þ

Compared with the performance index (Equation 9.3), we find that the value function is the

performance indexwhen the lower limit t0 is changed to an intermediate value t, t0� t� tf, and

we have the initial and terminal values given, according to Equation 9.47, by
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V½x	ðt0Þ; t0� ¼ min
u
fJ ½xðt0Þ; t0; uð � Þ�g ¼ J ½xðt0Þ; t0; u	ð � Þ� ð9:48aÞ

and

V½x	ðtfÞ; tf � ¼ f½x	ðtfÞ; tf � ð9:48bÞ
respectively. The principle of optimality asserts that a trajectory of global optimality must also

be of local optimality. That is, for any t1, t� t1� tf, we have

V½x	ðtÞ; t� ¼ � Ð t
t1
L½x	ðtÞ; u	ðtÞ; t� dtþV½x	ðt1; x	ðtÞ; u	ð � ÞÞ; t1�

¼ min
u

V½xðt1; x	ðtÞ; uð � ÞÞ; t1� �
Ð t
t1
L½xðt; x	ðtÞ; uð � ÞÞ; uðtÞ; t� dt

n o ð9:49Þ

Here, we use x(t1; x(t), u(�)) to represent that x(t1), which is used as the initial condition for the
time interval [t1, tf], is the value on the trajectory of the control pair (x(�), u(�)) which starts with
the initial value of x(t).

Intuitively, this can be understood as shown schematically in Figure 9.1.

(x*[t1, t f] ,u [t1, t f])

(x*[t1, t f] ,u*[t1, t f])

(x*[t , t1] ,u*[t , t1])

(x*(t f),u*(t f))

(x*(t1),u*(t1))

(x*(t),u*(t))

Figure 9.1 Schematical demonstration of the principle of optimality.

Suppose the solid curve is a trajectory of optimality denoted by (x
	
[t, tf], u

	
[t, tf]), where the

three points denote the initial point (x
	
(t), u

	
(t)), an intermediate point (x

	
(t1), u

	
(t1)) and the

terminal point (x
	
(tf), u

	
(tf)). Then, the principle of optimality asserts that if we consider the

problem of finding the optimal trajectory with the initial condition x
	
(t1), then the trajectory

(x
	
[t1, tf], u

	
[t1, tf]) is the solution. Otherwise, if we suppose a trajectory different from (x

	
[t1,

tf],u
	
[t1, tf]) – for instance, (x

	
[t1, tf],u[t1, tf]) is the optimal trajectorywith the initial condition

x
	
(t1) – then the performance index of the trajectory (x

	
[t1, tf], u[t1, tf]) must be smaller than

that of (x
	
[t1, tf], u

	
[t1, tf]); thus, the performance index of the combined trajectory (x

	
[t, t1],

u
	
[t, t1]) þ (x

	
[t1, tf], u[t1, tf]) will be smaller than that of (x

	
[t, t1], u

	
[t, t1]) þ (x

	
[t1, tf], u[t1,

tf]). The latter combined curve is the trajectory (x
	
[t, tf], u

	
[t, tf]). This implies that (x

	
[t, tf],

u
	
[t, tf]) is not the optimal trajectory, which leads to a confliction. Rigorous proof of the

principle of optimality can be found in, say, Yong and Zhou (1999). Actually, it is easy to see,

from the definition in Equation 9.47, that

V½x	ðtÞ; t� � J ½x	ðtÞ; t; uð � Þ� ¼ J ½xðt1; x	ðtÞ; uð � ÞÞ; t1; uð � Þ� �
Ð t
t1
L½xðtÞ; uðtÞ; t� dt

� min
u

V½xðt1; x	ðtÞ; uð � ÞÞ; t1�f
�

ðt
t1

L½xðt; x	ðtÞ; uð � ÞÞ; uðtÞ; t� dtg ð9:50aÞ
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On the other hand, for any e > 0, there exists a control history ue(�) such that

V½x	ðtÞ; t� þ e � J ½x	ðtÞ; t; ueð � Þ�
¼ J ½xðt1; x	ðtÞ; ueð � ÞÞ; t1; uð � Þ� �

Ð t
t1
L½xðtÞ; ueðtÞ; t� dt�

� V½xðt1; x	ðtÞ; ueð � ÞÞ; t1� �
Ð t
t1
L½xðt; x*ðtÞ; ueð � ÞÞ; ueðtÞ; t� dt

� min
u

V½xðt1; x	ðtÞ; uð � ÞÞ; t1� �
Ð t
t1
L½xðt; x*ðtÞ; uð � ÞÞ; uðtÞ; t� dt

n o
ð9:50bÞ

Combining Equations 9.50a and 9.50b immediately leads to Equation 9.49.

By Equation 9.49 (or Equation 9.50a), we have

V½x	ðtÞ; t� �V½x	ðt1Þ; t1�
t� t1

� � 1

t� t1

ðt
t1

L½x	ðtÞ; uðtÞ; t� dt ð9:51aÞ

Let t1 # t, whichmeans t1 tends to t from the right-hand side, we get the total derivative of the

value function along the optimal control history:

dV½x	ðtÞ; t�
dt

� �L x	ðtÞ; u	ðtÞ; t½ � ð9:51bÞ

Being a function of x and t, the total derivative of V is given by

dV½x*ðtÞ; t�
dt

¼ qV½x*ðtÞ; t�
qt

þ qV½x*ðtÞ; t�
qx

_xðtÞ ð9:52aÞ

When the state-control equation, Equation 9.11, is substituted, it becomes

dV½x	ðtÞ; t�
dt

¼ qV½x	ðtÞ; t�
qt

þ qV½x	ðtÞ; t�
qx

f x	ðtÞ; u	ðtÞ; t½ � ð9:52bÞ

Combining Equations 9.51b and 9.52b, we have

qV½x	ðtÞ; t�
qt

� �L x	ðtÞ; u	ðtÞ; t½ � � qV½x	ðtÞ; t�
qx

f x	ðtÞ; u	ðtÞ; t½ � ð9:53Þ

If we define the Hamiltonian by

H xðtÞ; uðtÞ; qV½xðtÞ; t�
qx

; t

� �
¼ L xðtÞ; uðtÞ; t½ � þ qV½xðtÞ; t�

qx
f xðtÞ; uðtÞ; t½ � ð9:54Þ

then Equation 9.53 becomes

qV½x	ðtÞ; t�
qt

� � H x	ðtÞ; u	ðtÞ; qV½x
	ðtÞ; t�
qx

; t

� �

� � min
u

H x	ðtÞ; uðtÞ; qV½x
	ðtÞ; t�
qx

; t

� �� � ð9:55Þ

On the other hand, when using Equation 9.50b and employing the likewise derivation,

we have
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dV½x	ðtÞ; t�
dt

þ e � �L x	ðtÞ; ueðtÞ; t½ � ð9:56Þ

Thus, when introducing Equations 9.52b and 9.54, there is

qV½x	ðtÞ; t�
qt

þ e � � H ½x	ðtÞ; ueðtÞ; t�
� � min

u
H ½x	ðtÞ; uðtÞ; t�f g

ð9:57Þ

Combining Equations 9.55 and 9.57, we finally reach

qV½x	ðtÞ; t�
qt

¼ � min
u

H x	ðtÞ; uðtÞ; t½ �f g ð9:58Þ

This is the celebrated HJB equation, which is due to Bellman’s work on dynamic

programming (Bellman, 1957; Naidu, 2003). Note that theHJB equation is a partial differential

equation. The initial and terminal values of the value function are given respectively by

Equations 9.48a and 9.48b. However, the initial value given in Equation 9.48a is unknown until

the solution is obtained, whereas the terminal value condition given by Equation 9.48b, which

is repeated here as Equation 9.59

V½x	ðtfÞ; tf � ¼ f½x	ðtfÞ; tf � ð9:59Þ
is available beforehand because f[�] is a known function. Thus, the HJB equation, Equa-

tion 9.58, should be solved backward in time with the above terminal condition.

Actually, we note that the Hamiltonian used in Equation 9.54 is essentially consistent with

what is used in Equation 9.16, if we note that the partial derivative vector qV=qx here is

identical to the adjoint vector lT(t) which is determined by Equations 9.21a and 9.21b.

In addition to the variational principle, dynamic programming provides an alternative

approach to finding the optimal control. For instance, in terms of LQ control, with the terminal

function and the Lagrangian given respectively by Equations 9.28 and 9.29, the terminal

condition (Equation 9.59) becomes

V xðtfÞ; tf½ � ¼ 1

2
xTðtfÞSfxðtfÞ ð9:60Þ

Note that now the HJB equation, Equation 9.58, is linear, it is reasonable to assume that the

value function takes a form similar to Equation 9.60 (Naidu, 2003):

V xðtÞ; t½ � ¼ 1

2
xTðtÞSðtÞxðtÞ ð9:61Þ

where S(t)¼ [Sij(t)]n�n is a symmetric, positive definite matrix to be determined.

Thus, minimizing the Hamiltonian in Equation 9.54 requires

q H
qu

¼ 0; where H ¼ 1

2
xTQxþ uTRu
� �þ xTS AxþBu½ � ð9:62Þ
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This gives the control law

uðtÞ ¼ R� 1BTSðtÞxðtÞ ð9:63Þ
which is exactly the same as Equation 9.35.

Introducing the control law (Equation 9.63) into the HJB equation (Equation 9.58) and

eliminating the factors xT(t) and x(t) on both sides will yield the matrix Riccati equation

identical to Equation 9.39.

The HJB equation and the minimum principle are, of course, equivalent in a sense. Actually,

as mentioned before, the Euler–Lagrange equations (Equations 9.23a, 9.23b and 9.24) via the

variational principle based on the minimum principle are the counterparts of the Hamilton

equations in mechanics. Likewise, the HJB equation via the principle of optimality is the

counterpart of the Hamilton–Jacobi equation in mechanics (Lanczos, 1970). Thus, the

Euler–Lagrange equations (Equations 9.23a, 9.23b and 9.24), which are ordinary differential

equations, are the characteristics equations of the partial differential equation – HJB equation

(on the characteristics equation, see Section 6.6.1). However, in the sense of conventional

differentiation, the smoothness of the value function is required in the HJB equation, while in

the sense of super- and sub-differentials and the viscocity solution, this requirement can be

loosened and the connection between the HJB equation and the minimum principle can be

established (Zhou, 1990; Vinter, 2000).

9.3 Stochastic Optimal Control

If randomness is involved in the system parameters and excitations, then we encounter the

problem of stochastic optimal control. Almost simultaneously with modern control theory

and stochastic process theory, stochastic control attracts the attention of researchers

(A


str€om, 1970). A variety of stochastic control approaches based on different criteria have

been initiated by investigators in a wide range of science and engineering disciplines, such

as neighboring optimal control (Stengel, 1994), LQ Gaussian (LQG) control (Yong and

Zhou, 1999), covariance control (Yang, 1975; Hotz and Skelton, 1987), PDF tracing control

(Sun, 2006), optimal control based on the Hamilton formula (Zhu, 2006) and the thought for

reliability-based control (Scruggs, et al., 2006), and so on. In this section we will first

consider the optimal control of white-noise-excited stochastic systems (Stengel, 1994; Yong

and Zhou, 1999) and then come to the theoretical frame of GDEE-based control.

9.3.1 Stochastic Optimal Control of Nonlinear Systems: Classical Theory

Consider a nonlinear structural system excited by the white noise processes

_X ¼ f½XðtÞ;UðtÞ; t� þLjðtÞ ð9:64Þ

where j(t)¼ [j1(t), j2(t), . . ., jr(t)]
T is an r-dimensional stochastic process vector with the

mean vector and the covariance matrix given by

E½jðtÞ� ¼ 0 and E½jðtÞjTðtÞ� ¼ DðtÞdðt� tÞ ð9:65Þ
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respectively, where D(t)¼ [Dij(t)]r�r is a symmetric, positive semi-definite matrix. Equa-

tion 9.64 can be rewritten as an Itô stochastic differential equation:2

dX ¼ f½XðtÞ;UðtÞ; t� dtþL dWðtÞ ð9:66Þ

where W(t) is a Wiener process vector, of which the statistics of increments are given by

E½dWðtÞ� ¼ 0 and E½dWðtÞ dWTðtÞ� ¼ DðtÞ dt ð9:67Þ

The performance index (Equation 9.3) is now a random variable. Therefore, the expected

value can be used instead:

J ¼ E f½XðtfÞ; tf � þ
ðtf
t0

L½XðtÞ;UðtÞ; t� dt
� �

ð9:68Þ

In the case of stochastic control, although the variational principle can still be applied to

develop a set of stochastic differential equation as the Euler–Lagrange equations (Yong and

Zhou, 1999), the HJB equation is simpler and will be developed here.

Like the performance index, the value function defined in Equation 9.47 is now also a

random variable. Thus, here it is reasonable to define the value function as the expected

value:

V½X	ðtÞ; t� ¼ minfJ ½XðtÞ; t�g ¼ J ½X	ðtÞ; t�
¼ E f½X	ðtfÞ; tf � �

Ð t
tf
L½X	ðtÞ;U	ðtÞ; t�dt

n o
¼ min

U
E f½X	ðtfÞ; tf � �

Ð t1
t
L½X	ðtÞ;UðtÞ; t�dt� � ð9:69Þ

As a mean-square integral, the differentiation and the expectation operator are interchange-

able; thus, the differentiation of the value function is given by

dV½X	ðtÞ; t� ¼ �EfL½X	ðtÞ;U	ðtÞ; t�g dt ð9:70Þ

Because the value of X*(t) and U*(t) at time t can be measured and become known exactly

when the measured noise is ignored, from Equation 9.70 we have

dV½X	ðtÞ; t� ¼ �L½X	ðtÞ;U	ðtÞ; t� dt ð9:71Þ
On the other hand, being a function of X and t, as the counterpart of Equations 9.52a

and 9.52b, and noting that the Itô lemma (see Equation 5.196) should be employed

because X(t) is associated with an Itô differential (Equation 9.66), the differentiation of V
is given by

dV X*ðtÞ; t� � ¼ E qV
qt

dtþ qV
qX

dXþ 1

2
dXT q

2V
qX2

dX

� �
ð9:72Þ

2For details of the Itô stochastic differential equation, refer to Section 5.6.1.
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Replacing dX by the Itô differentiation (Equation 9.66), Equation 9.72 becomes

dV½X	ðtÞ;t� ¼ E qV
qt

dtþ qV
qX

f dtþLdWðtÞ½ �þ 1

2
½f dtþLdWðtÞ�T q

2V
qX2

f dtþLdWðtÞ½ �
� �

¼ qV
qt

dtþ qV
qX

fþ 1

2
E ½f dtþLdWðtÞ�T q

2V
qX2

f dtþLdWðtÞ½ �
� �

¼ qV
qt

dtþ qV
qX

fþ 1

2
Tr

q2V
qX2

E f dtþLdWðtÞ½ �½f dtþLdWðtÞ�T
	 


¼ qV
qt

dtþ qV
qX

f dtþ 1

2
Tr

q2V
qX2

LDðtÞLT

	 

dt

ð9:73Þ
Here, use has been made of the matrix identity

xTAx ¼ TrðAxxTÞ ð9:74Þ
where Tr(�) is the trace of a matrix.

Combining Equations 9.73 and 9.71, we have

�L X	ðtÞ;U	ðtÞ; t½ � dt ¼ qV
qt

dtþ qV
qX

f dtþ 1

2
Tr

q2V
qX2

LDðtÞLT

	 

dt ð9:75Þ

and thus

qV
qt

¼ � L X	ðtÞ;U	ðtÞ; t½ � þ qV
qX

fþ 1

2
Tr

q2V
qX2

LDðtÞLT

	 
� �
ð9:76Þ

or

qV
qt

¼ � min
U

L X*ðtÞ;UðtÞ; t� �þ qV
qX

fþ 1

2
Tr

q2V
qX2

LDðtÞLT

	 
� �
ð9:77Þ

Note from Equation 9.77 that the right-hand side part to be minimized in the stochastic

context is always not smaller than the deterministic counterpart (Equation 9.54), because the

effect of the white noise induces a nonnegative correction term; that is, the third term in the

bracket.

When defining a generalized Hamiltonian

HG XðtÞ;UðtÞ; qV
qX

;
q2V
qX2

; t

� �
¼ L XðtÞ;UðtÞ; t½ � þ qV

qX
fþ 1

2
Tr

q2V
qX2

LDðtÞLT

	 

ð9:78Þ

Equation 9.77 becomes

qV
qt

¼ � min
U

HG X	ðtÞ;UðtÞ; qV
qX

;
q2V
qX2

; t

� �� �
ð9:79Þ
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This is the HJB equation in the stochastic context, which is of course the counterpart of

Equation9.58,where theHamiltonian H ð�Þ is replaced by thegeneralizedHamiltonian HGð�Þ.
To solve a stochastic optimal control problem with the approach elaborated above, the

control law, which might be linear or nonlinear feedback control, is first determined by

minimizing the right-hand side of Equations 9.77 and 9.79, then the control law is introduced

into Equations 9.77 and 9.79 and the state-control equation (Equation 9.64) to give the control

gains and simultaneously the state response.

9.3.2 Linear Quadratic Gaussian Control

Consider the case where the system in Equation 9.64 is a linear system with the state-control

equation

_X ¼ AXðtÞþBUðtÞþLjðtÞ ð9:80Þ
whereA¼ [Aij(t)]n�n,B¼ [Bij(t)]n�m andL¼ [Lij(t)]n�r are the same as inEquation 9.25.Now

the operator f[�] in Equation 9.64 is given by

f½XðtÞ;UðtÞ; t� ¼ AXðtÞþBUðtÞ ð9:81Þ
If the terminal function f[�] and the Lagrangian L½ � � take the quadratic forms

f XðtfÞ; tf½ � ¼ 1

2
XTðtfÞSfXðtfÞ ð9:82Þ

and

L XðtÞ;UðtÞ; t½ � ¼ 1

2
XTðtÞQXðtÞþUTðtÞRUðtÞ� � ð9:83Þ

then Equation 9.79 becomes

qV
qt

¼ � min
U

1

2
X	TQX	 þUTRU
� �þ qV

qX
ðAX	 þBUÞþ 1

2
Tr

q2V
qX2

LDðtÞLT

	 
� �
ð9:84Þ

with the terminal condition given by

V X	ðtfÞ; tf½ � ¼ 1

2
X	TðtfÞSfX	ðtfÞ ð9:85Þ

Being a linear system (Equation 9.80) and a linear partial differential equation, then,

comparedwith the deterministic counterpart (Equation 9.58), it is reasonable to assume that the

value function takes the form

V XðtÞ; t½ � ¼ 1

2
XTðtÞSðtÞXðtÞþ vðtÞ ð9:86Þ

where S(t)¼ [Sij(t)]n�n is a symmetric, positive-definitematrix and v(t) is a correction termdue

to the correction term in the HJB equation (Equation 9.84) compared with the deterministic

counterpart. Our task is to determine S(t) and v(t) and then obtain the control law and solution

of the optimal problem.
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Introducing Equation 9.86 into Equation 9.84 and noting that

qV
qX

¼ XTðtÞSðtÞ and
q2V
qX2

¼ SðtÞ ð9:87Þ

we have

qV
qt

¼ � min
U

1

2
XTQXþUTRU
� �þ 2XTSðAXþBUÞþTrðSðtÞLDðtÞLTÞ� � ð9:88Þ

The minimization requires that qHG=qU ¼ 0, which gives the control law

UðtÞ ¼ �R� 1BTSðtÞXðtÞ ð9:89Þ

Thus, substituting Equations 9.89 and 9.86 in Equation 9.88 results in

qV
qt

¼ 1

2
XTðtÞ _SðtÞXðtÞþ _vðtÞ

¼ � 1

2
XTQXþXTSBR� 1BTSXþ 2XTSðA�BR� 1BTSÞX� �� 1

2
TrðSðtÞLDðtÞLTÞ

¼ � 1

2
XTðQþ 2SA� SBR� 1BTSÞX� 1

2
TrðSðtÞLDðtÞLTÞ

ð9:90Þ

Further, comparing the coefficients ofX in the first equality and the third equality and letting

them be equal, we have

_SðtÞ ¼ � 2SAþ SBR� 1BTS�Q ð9:91Þ
and

_vðtÞ ¼ � 1

2
TrðSðtÞLDðtÞLTÞ ð9:92Þ

Note that

2SA ¼ ðSAþATSÞþ ðSA�ATSÞ ð9:93Þ
where the first term on the right-hand side is symmetric and the second term is nonsymmetric.

Because all the terms but the first one in the right-hand side of Equation 9.91 are symmetric, the

first termmust also be symmetric; thus, the second term in the right-hand side of Equation 9.93

must disappear. Consequently, Equation 9.91 becomes3

_SðtÞ ¼ �ATS� SAþ SBR� 1BTS�Q ð9:94Þ

This is the same as the matrix Riccati equation and identical to the deterministic counterpart

in Equation 9.39, of which the terminal condition is given by

3The analysis used here also holds for the deterministic counterpart when the HJB equation is used to treat the LQ

controls at the end of Section 9.2.3.2, where the last step to obtain the matrix Riccati equation is left to the reader.
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SðtfÞ ¼ Sf ð9:95Þ
On the other hand, it follows from Equation 9.92 that

vðtÞ ¼ �
ðt
tf

1

2
TrðSðtÞLDðtÞLTÞ dt ¼ 1

2

ðtf
t

TrðSðtÞLDðtÞLTÞ dt ð9:96Þ

which is due to the correction term in the HJB equation (Equation 9.84); therefore, the value

function in Equation 9.86 is actually given by

V XðtÞ; t½ � ¼ 1

2
XTðtÞSðtÞXðtÞþ 1

2

ðtf
t

TrðSðtÞLDðtÞLTÞ dt ð9:97Þ

Certainly, it is always no less than its deterministic counterpart (Equation 9.61).

In the preceding section, the Itô stochastic differential equation is considered and the

Gaussian assumption on the excitations is used. Such a developed stochastic control is thus

called LQG control.

Here we see that the LQG control gain matrix is identical to the deterministic LQ control.

Thismeans that, for a zero-meanGaussian excited linear system, the control gainmatrix can be

computed offline and then used in practical applications or simulations.

In addition, using a perturbation technique, the optimal control of an additive zero-mean

Gaussian excited nonlinear system can be achievedby combining deterministic optimal control

of a nominal deterministic nonlinear system and LQG control of a quasi-linearized system

perturbed along the nominal optimal control history (Stengel, 1994). However, one should be

careful to appreciate that it applies only for a low degree of variation in the excitations.

In theclassical theoryofstochasticoptimalcontrol, thecontrol-stateequation ismodeledasan

Itô stochastic differential equation. Furthermore, the performance index takes an expectation of

some type of index. Such treatments make it straightforward to extend deterministic optimal

control theory to stochastic optimal control theory without substantial difficulties. On the other

hand, it also implies that such developed stochastic optimal control theory only applies in the

cases of weak disturbance by white-noise excitation, excluding the nonstationary strong

excitations such as earthquakes, strong wind and large sea waves frequently encountered in

civil engineering. Moreover, taking only an expectation as the performance index implies that

such a control obtained is optimal essentially in the sense of variance, not in the sense of

reliability. It is not adequate for precise control of performance of engineering structures.

9.3.3 Probability Density Evolution Analysis of Stochastic Optimal Control
Systems

9.3.3.1 General Principle

As pointed out in Section 9.1.1, when general random fields or stochastic processes are

involved in nonlinear systems, the controlled system is governed by

_X ¼ f½XðtÞ;UðtÞ; zðvÞ; jðv; tÞ; t� ð9:98Þ
where z(v) and j(v, t) are respectively the randomfields and stochastic processes involved and

v represents the embedded random event. By introducing orthogonal decomposition of

random fields and stochastic processes (see Chapter 3), Equation 9.98 becomes
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_X ¼ f½XðtÞ;UðtÞ; t;QðvÞ� ð9:99Þ
where Q(v)¼ (Q1(v), Q2(v), . . ., Qs(v)) is a random vector with known probability density

pQ(u)¼ pQ(u1, u2, . . ., us). Note that, in contrast to classical stochastic control theory, when we
consider the random state-control equation (Equation 9.99), it is no longer the Itô type

stochastic differential equation.

Because of the randomness involved in the system, the control history U(�) and the

corresponding state X(�) are both stochastic processes dependent on Q(v). Thus, the perfor-

mance index

J ½Xðt0Þ;UðQ; � Þ� ¼ f½XðtfÞ; tf � þ
ðtf
t0

L½XðQ; tÞ;UðQ; tÞ; t� dt ð9:100Þ

is a random variable with dependence on Q(v).

In classical stochastic control theory of nonlinear systems, the performance index is defined

as the expected value ofEquation 9.100, as shown in the preceding sections (see Equation 9.68).

However, this is not the only option. In contrast, a direct, sample-based treatment, if possible,

might be more reasonable. This is the case when the GDEE elaborated in Chapters 6 and 7 is

incorporated.

Thevariational principle in the context of the stochastic controlled system inEquation 9.99

will be employed here. The problem to be tackled here is to minimize the stochastic

performance index J ½Xðt0Þ;UðQ; � Þ� in Equation 9.100 in the sense of a sample under the

dynamic constraint imposed by Equation 9.99. In this case, a Lagrange multiplier vector

l(Q, t)¼ [l1(Q, t), l2(Q, t), . . ., ln(Q, t)]T can be introduced.Note here that the adjoint vector

l(Q, t) has a dependence on Q.

Denote the random Hamiltonian by

H ½XðtÞ;UðtÞ; lðtÞ; t;Q� ¼ L½XðQ; tÞ;UðQ; tÞ; t� þ lTðQ; tÞf½XðtÞ;UðtÞ; t;Q� ð9:101Þ
Using the variational principle in a way similar to Section 9.2.1, we obtain

_lðtÞ ¼ � q H ½XðtÞ;UðtÞ; lðtÞ; t;Q�
qX

� �T
ð9:102Þ

lðtfÞ ¼ qf
qX

����
t¼tf

" #T

ð9:103Þ

and

q H ½XðtÞ;UðtÞ; lðtÞ; t;Q�
qU

¼ 0 ð9:104Þ

Equations 9.102–9.104 are the stochastic Euler–Lagrange equations of the controlled

system. Combined with the state-control equation (Equation 9.99), the stochastic optimal

control problem can be resolved.

Without loss of generality, the solution obtained of the state vector and the control process

and their derivative processes can be expressed in the following form:
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X ¼ HXðQ; tÞ ð9:105aÞ

_X ¼ hXðQ; tÞ ð9:105bÞ

U ¼ HUðQ; tÞ ð9:106aÞ

_U ¼ hUðQ; tÞ ð9:106bÞ
With Equations 9.105a–9.106b understood as the Lagrangian description of the controlled

system, according to the probability density evolution theory elaborated in Section 6.5.2, the

GDEEwith respect to any component of the state vectorX(t) and the control historyU(t) can be
obtained. For instance, if we denote the joint probability density of ðX‘ðtÞ;QÞ by pX‘Qðx‘; u; tÞ,
where X‘ðtÞ is the ‘th component of X(t), 1 � ‘ � n, then we have the GDEE

qpX‘Qðx‘; u; tÞ
qt

þ hX;‘ðu; tÞ qpX‘Qðx‘; u; tÞ
qx‘

¼ 0 ð9:107aÞ

where hX;‘ð � Þ is the ‘th component of hX(�).
Likewise, the joint density of the control history component U‘ðtÞ (the ‘th component of

U(t)) and Q satisfies

qpU‘Qðu‘; u; tÞ
qt

þ hU;‘ðu; tÞ qpU‘Qðu‘; u; tÞ
qu‘

¼ 0 ð9:108aÞ

Solving these equations, we can get the density functions of X‘ðtÞ andU‘ðtÞ respectively by

pX‘
ðx‘; tÞ ¼

ð
WQ

pX‘Qðx‘; u; tÞ du ð9:108bÞ

pU‘
ðu‘; tÞ ¼

ð
WQ

pU‘Qðu‘; u; tÞ du ð9:108bÞ

Similar to Section 6.6.2, the probability density evolution analysis of a stochastic optimal

control system includes the following steps:

Step 1: Specify the representative point set Psel ¼ fuq ¼ ðu1;q; u2;q; . . . ; us;qÞ; q ¼
1; 2; . . . ; nselg in the space WQ and the corresponding assigned probabilities Pq,

q ¼ 1; 2; . . . ; nsel, as elaborated in Sections 7.2–7.4.

Step 2: Solve the simultaneous Equations 9.99 and 9.102–9.104 at the representative points to

obtain the quantities of interest; for instance, the state X(uq, t) and its derivative process
_Xðuq; tÞ, the control history U(uq, t) and its derivative process _Uðuq; tÞ.

Step 3: Substitute the quantities obtained, solve the GDEE, say Equations 9.107a and 9.108a,

by the numerical methods elaborated in Section 7.1 and obtain the joint densities

pX‘Qðx‘; uq; tÞ and pU‘Qðu‘; uq; tÞ.
Step 4: Repeat steps 2 and 3 running over all q and sum the results to obtain the desired

probability densities by
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pX‘
ðx‘; tÞ ¼

Xnsel
q¼1

pX‘Qðx‘; uq; tÞ and pU‘
ðu‘; tÞ ¼

Xnsel
q¼1

pU‘Qðu‘; uq; tÞ ð9:109Þ

9.3.3.2 ProbabilityDensityEvolutionAnalysis of LinearQuadraticControl of Stochastic

Systems

For a linear systemwith a quadratic performance index, the control problemwill bemuchmore

tractable. Consider the random state-control equation of a linear system:

_X ¼ AXðtÞþBUðtÞþLjðQ; tÞ ð9:110Þ
which is the stochastic counterpart of Equation 9.25. Here, A¼ [Aij]n�n is the system matrix,

B¼ [Bij]n�m is the control influence matrix, L¼ [Lij]n�r is the force influence matrix and

j(Q, t)¼ [j1(Q, t), j2(Q, t), . . ., jr(Q, t)]T is the r-dimensional excitation vector, which can be

represented by random functions ofQ through themethodology in Chapter 3. For simplicity, in

the present stage we do not consider the randomness involved in the structural parameters.

Consider a quadratic performance index:

J Xðt0Þ;UðQ; � Þ½ � ¼ 1

2
XTðtfÞSfXðtfÞþ 1

2

ðtf
t0

½XTðQ; tÞQXðQ; tÞþUTðQ; tÞRUðQ; tÞ� dt

ð9:111Þ
where Sf¼ [Sf,ij]n�n and Q¼ [Qij]n�n are symmetric, positive semi-definite matrices, R¼
[Rij]m�m is a symmetric, positive definite matrix and U(Q, �) represents a time history

dependent on Q.

In this context, the Hamiltonian defined in Equation 9.101 becomes

H XðtÞ;UðtÞ; lðtÞ; t;Q½ � ¼ 1

2
XTðQ; tÞQXðQ; tÞþUTðQ; tÞRUðQ; tÞ� �

þ lTðQ; tÞ½AXðQ; tÞþBUðQ; tÞþLjðQ; tÞ�
ð9:112Þ

Thus, the Euler–Lagrange equations in Equations 9.102–9.104 become

_lðtÞ ¼ �ATlðtÞ�QXðtÞ ð9:113Þ

lðtfÞ ¼ SfXðtfÞ ð9:114Þ
and

UTRþ lTB ¼ 0 ð9:115Þ
respectively. From Equation 9.115, we get the control law

UðtÞ ¼ �R� 1BTlðtÞ ð9:116Þ
Substituting this in the state-control equations (Equation 9.110) yields

_X ¼ AXðtÞ�BR� 1BTlðtÞþLjðQ; tÞ ð9:117Þ
whose initial condition X(t0)¼X0 is specified.
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Wenote that the two-point boundary value problem consisting of Equations 9.113, 9.114 and

9.117 is a linear equation set, and the terminal condition (Equation 9.114) is also in a linear

relationship; therefore, it is reasonable to suppose that the relationship between the solutions of

l(t) and X(t) takes the linear form

lðtÞ ¼ SðtÞXðtÞþcðtÞ ð9:118Þ
where S(t)¼ [Sij(t)]n�n and c(t)¼ [c1(t), c2(t), . . ., cn(t)]

T are to be determined.

Differentiating Equation 9.118 with respect to time t yields

_l ¼ _SXþ S _Xþ _cðtÞ ð9:119Þ
Substituting the state-control equation (Equation 9.117) in this gives

_l ¼ _SXþ S½AX�BR� 1BTlþLjðQ; tÞ� þ _cðtÞ ð9:120Þ

Replacing the left-hand side by the right-hand side of Equation 9.113 and introducing

Equation 9.118 to eliminate l, we reach

�AT½SXþcðtÞ� �QX ¼ _SXþ SfAX�BR� 1BT½SXþcðtÞ� þLjðQ; tÞgþ _cðtÞ
ð9:121Þ

Making the coefficient matrices of X be zero, we obtain

_S ¼ �ATS� SAþ SBR� 1BTS�Q ð9:122Þ
and

_cðtÞ ¼ ½�AT þ SBR� 1BT�cðtÞ� SLjðQ; tÞ ð9:123Þ
Equation 9.122 is a matrix Riccati equation, of which the terminal condition is specified

according to Equation 9.114 by

SðtfÞ ¼ Sf ð9:124Þ
Once S(t) is determined by solving Equation 9.122, we can introduce it into Equation 9.123

and then solve it backward in time with the terminal condition, according to Equation 9.114:

cðtfÞ ¼ 0 ð9:125Þ
The control law may be given by combining Equations 9.116 and 9.118:

UðtÞ ¼ �R� 1BTSðtÞXðtÞ�R� 1BTcðQ; tÞ
¼ �CðtÞXðtÞ�CInputðtÞcðQ; tÞ ð9:126Þ

Here, the gains

CðtÞ ¼ R� 1BTSðtÞ and CInputðtÞ ¼ R� 1BTðtÞ ð9:127Þ(9.127a,b)
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are respectively the state feedback gainmatrix and the input feedforward gainmatrix. The latter

term is due to the fact that c(t) results from the existence of the input load j(Q, t). Incidentally,

we note that if the excitation disappears (that is, j(Q, t)� 0), then from Equations 9.123

and 9.125 it is seen that the solution process c(t)� 0. Thus, the input feedforward term

disappears if the input disappears. The solution now becomes the conventional ‘pure’ state

feedback control.

In Equation 9.126, the first part of the control force comes from the linear state feedback,

where the control gain is available in advance offline and the information of the state comes

from the online measured data or optimal estimate. The second part of the control force,

however, cannot be obtained through the online measured information because a backward

differential equation needs to be solved and this differs from sample to sample. Some

techniques could be employed to treat this part reasonably. A possible option is to use the

mean effect; that is, the control law is given by

UðtÞ ¼ �CðtÞXðtÞ�CInputðtÞ�cðtÞ ð9:128Þ
where �cðtÞ ¼ E½cðQ; tÞ�. Note that for an earthquake, usually we have E½jðQ; tÞ� ¼ 0; thus,

from Equations 9.123 and 9.125, we have E½cðQ; tÞ� ¼ 0. In this case, the control law becomes

UðtÞ ¼ �CðtÞXðtÞ ð9:129Þ
By substituting the control law (Equation 9.129) in the state-control equation (Equa-

tion 9.110), the state vector and the optimal control force process can be obtained. The GDEEs

Equations 9.107a–9.108b can thus be solved to obtain the PDFof the statevector and the control

history.

It is worth pointing out that, in the design stage of the controller, all the above computations

can be carried out offline. In practical implementations, the only online computations needed

are in Equation 9.129, for which the computational effort is small.

Selection of the Weighting Matrices
In the the Riccati equation, the weighting matrices Q and R are involved in the coefficients.

Different weighting matrices will of course lead to different control laws. Although it is very

important to select appropriate weighting matrices, between which the relative relationship

accounts for the trade-off between the controlled response and the input control demand, there

is no available rational criterion. In most cases the selection of the weighting matrices is based

on engineering experience and determined through a trial-and-error strategy (Stengel, 1994;

Zhang andXu, 2001;Agranovich et al., 2004). This problemwill bemore significant in optimal

control of stochastic systems because of the variation of the system parameters and the

fluctuation of the excitations.

In the context of civil engineering, the weighting matrices Q usually take the block form

Q ¼
Qd 0 0

0 Qv 0

0 0 Qa

2
4

3
5 ð9:130Þ

where Qd, Qv and Qa are diagonal matrices of appropriate dimension, corresponding to the

weights on the displacements, velocities and accelerations. For simplicity, we can use times of
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unit matrices of appropriate dimension; thus:

Q ¼
gdI 0 0

0 gvI 0

0 0 gaI

2
4

3
5 ð9:131Þ

where gd, gv and ga are the corresponding weighting coefficients. If we suppose the weighting
matrix R also takes the form of multiples of unit matrices of appropriate dimension, namely

R ¼ gRI ð9:132Þ
then the four parameters gd, gv, ga and gR determine theweightingmatricesQ andR. Therefore,

if we establish a criterion for the selection of the weighting matrices, we come to a parametric

optimality problem.

To consider the optimal control problem where the accelerations are weighted, a more

involved filtering process should be taken into account. Consistent with the preceding sections,

we now set ga¼ 0 for simplicity. Further, we let gQ , gd ¼ gv. The weighting matrixQ is now

Q ¼ gQI ð9:133Þ

where I is the unit matrix of appropriate dimension.

Because only the relative relationship betweenQ andRmatters, nowonly one parameter, the

weighting ratio

gW ¼ gQ
gR

ð9:134Þ
is involved.

Example 9.1. ProbabilityDensityEvolutionAnalysis of a Linear SDOFSystem Consider

an SDOF linear system subjected to random ground-motion excitations. Using the random

Fourier function model for seismic ground motion (see Equation 3.41), 221 representative

ground-motion acceleration histories can be generated (Li and Ai, 2006). Figure 9.2 shows the

relationships of the maximum acceleration and the maximum control force versus the weighting

ratio of the 221 representative excitations. Figure 9.3 shows the mean maximum quantities (the

maximum acceleration, relative displacement and the control force) versus the weighting ratio

gW. It is seen that the tendency of themeanmaximum relative displacement versus theweighting

Figure 9.2 Maximum quantities versus weighting ratio (gQ¼ 100).
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ratio (Figure 9.3b) is somewhat opposite to that of the mean maximum acceleration (and control

force) versus the weighting ratio. From the figures, a trade-off among the relative displacement,

acceleration and control force means that it is reasonable to choose the weighting ratio

gW¼ 1.0� 1011.

Figure 9.4 shows the standard deviations of the relative displacement and the acceleration

responses of the uncontrolled and controlled systems. Obviously, the control greatly reduces
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Figure 9.3 Mean maximum quantities versus weighting ratio (gQ¼ 100).

Figure 9.4 Standard deviations of the responses of a controlled and uncontrolled system.
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the standard deviation of the displacement by about 12 times. Similarly, the control also

reduces the standard deviation of the acceleration response by about four times.

Figure 9.5a and b shows the probability densities of the acceleration of the uncontrolled and

controlled systems at some instants of time. Clearly, the distribution range of the acceleration is

greatly narrowed.

As previously pointed out, the control force process is also a stochastic process, even if the

control gains are deterministic. Figure 9.6 shows the standard deviation and the probability

density of the control force at some instants of time. From the figure, it is seen that during

the stage of strong ground motion, larger control forces are needed to suppress the response

of the controlled structure. In addition, at different instants of time, the PDFs are quite

distinct. &

9.4 Reliability-Based Control of Structural Systems

9.4.1 Reliability of Controlled Structural Systems

Reliability of the control is one of the critical issues in stochastic control. In the past decade or

so, some investigators have proposed a few frameworks to incorporate reliability theory in

1.4
PDF at 14.00 s
PDF at 17.00 s
PDF at 20.00 s

× 10
-3 × 10

-3

3

2.5

2

1.5

1

0.5

0
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

1.2

0.8

0.6

0.4

0.2

0
-2500 -2000 -1500 -1000 -500 0

Absolute Acceleration (mm/s2)

(a) uncontrolled acceleration (b) controlled acceleration  

Absolute Acceleration (mm/s2)

P
D

F

P
D

F

500 1000 1500 2000 2500

1

PDF at 14.00 s
PDF at 17.00 s
PDF at 20.00 s

Figure 9.5 Probability density at different time instants.

Figure 9.6 Probabilistic information of the control force.

338 Stochastic Dynamics of Structures



stochastic control (Spencer et al., 1994; Field and Bergman, 1998; Scott May and Beck, 1998;

Battaini et al., 2000; Yuen and Beck, 2003; Scruggs et al., 2006; Zhu, 2006; Li et al., 2008).

Depending on the purpose, the problem involves two aspects: the first is to minimize the

performance index with the reliability of the synthesized system not lower than a prescribed

level (P1, for brevity); the second is to maximize the reliability of the synthesized system with

some indices of the systembounded in a prescribed range (P2, for brevity). Zhu (2006) has done

somework in P2, whilemost other studies have focused on P1. In this section, wewill only deal

with P1.

Without loss of generality, we consider the controlled stochastic system in Equation 9.99,

repeated here as Equation 9.135 for convenience:

_X ¼ f½XðtÞ;UðtÞ; t;QðvÞ� ð9:135Þ
Once we determine a control law, say in the form of

UðtÞ ¼ G½XðtÞ; t;Q; k� ð9:136Þ
where k is an undetermined parametric vector related to the feedback gains, then substituting

Equation 9.136 in the dynamic Equation 9.135 yields

_X ¼ ffXðtÞ;G½XðtÞ; t;Q; k�; t;QðvÞg
¼ ~f½XðtÞ; t;G; k;QðvÞ� ð9:137Þ

Solving these equations we get the Lagrangian description (formal solution) of the state

vector

X ¼ HXðQ; t;G; kÞ ð9:138Þ
where HX(�)¼ [HX,1(�), HX,2(�), . . .HX,n(�)]T.

Thus, we can further obtain the reliability (or probability of failure) of the system by

employing the approach based on the absorbing boundary condition or extreme-value

distribution elaborated in Chapter 8. Here, we exemplify the approach based on the ex-

treme-value distribution. Considering the ‘th component of X, the extreme value is given by

WðQ; kÞ ¼ ext
0�t�T

fX‘ðtÞg ¼ ext
0�t�T

fHXðQ; t; kÞg ð9:139Þ

Therefore, we can then construct a virtual stochastic process

ZðtÞ ¼ ~w½WðQ; kÞ; t� ¼ wðQ; t; kÞ ð9:140Þ
which satisfies the conditions

ZðtÞjt¼0 ¼ 0 and ZðtÞjt¼tc ¼ WðQ; kÞ ð9:141Þ

Thus, the joint density of (Z(t),Q), denoted by pZQ(z, u, t), satisfies the generalized density
evolution equation (see Equations 6.123a and 6.123b)

qpZQðz; u; tÞ
qt

þ _wðu; t; kÞ qpZQðz; u; tÞ
qz

¼ 0 ð9:142Þ
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Solving it under the initial condition

pZQðz; u; tÞjt¼0 ¼ dðzÞpQðuÞ ð9:143Þ
and then using the integration we have

pZðz; tÞ ¼
ð
WQ

pZQðz; u; tÞ du ð9:144Þ

Equations 9.142–9.144 can be solved via the numerical algorithms elaborated in Chapter 7.

On doing the above, we get the reliability

RðG; kÞ ¼
ð
Ws

pWðw;G; kÞ dw ¼
ð
Ws

pZðz; tc;G; kÞ dz ð9:145Þ

and simultaneously the probability of failure

PfðG; kÞ ¼ 1�RðG; kÞ ð9:146Þ
where Ws is the safe domain.

Denote the desired reliability by RD. Thus, if

PfðG; kÞ ¼ 1�RðG; kÞ � 1�RD ¼ Pf;D ð9:147Þ
where Pf,D¼ 1�RD is the highest acceptable probability of failure, then the designed control

with the form G and parameter vector k satisfies the desired purpose. If G is first determined by

some method, then the optimal parameter k should be searched for. For instance, let k(j), j¼ 0,

1, 2, . . ., denote the parameter vector used in the jth iteration. We might choose the k(jþ 1) by

jjkðjþ 1Þ � kðjÞjj
jjkðjÞ � kðj� 1Þjj ¼

PfðkðjÞÞ �Pf;D

PfðkðjÞÞ �Pfðkðj� 1ÞÞ ð9:148Þ

where ||�|| is the norm of the vector. For the single-parametric problem, Equation 9.148 is easy to

realize. However, for general multiparametric problems, it may be much more complicated.

Engineering experiences are very important in selecting the new parameters.

9.4.2 Determination of Control Criterion

Actually, in stochastic optimal control, what is really important is how to determine the control

laws. In other words, how to design the controller, including the mechanism G and the control

parameters k. In the preceding sections, we determine the control laws in fact based on some

modifications on the sample counterpart. However, this might not ensure optimality. A more

reasonable way might be based on the concept of reliability or exceeding probability.

For instance, if Z(t) is a physical quantity to be considered in the controlled system, then

denote the extreme value

Zext ¼ ext
t2½t0;tf �

ZðQ; tÞ ð9:149Þ
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The control law might be determined by minimizing the performance index

J 1½G; k� ¼ E½Zext� ð9:150Þ
or minimizing the performance index

J 2½G; k� ¼ E½Zext� þas½Zext� ð9:151Þ
where a� 0 is a coefficient. Alternatively, the control law can also be determined by

minimizing the performance index

J 3½G; k� ¼ PrfZext >Zbg ð9:152Þ
where Zb is a prescribed threshold.

Clearly, the above performance indices will yield different control laws, which is in need of

further investigation.
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Appendix A:

Dirac Delta Function

A.1 Definition

The Dirac delta function has various physical backgrounds in many different disciplines. If a

function f(x) satisfies the two conditions

f ðxÞ ¼ ¥ for x ¼ x0
0 otherwise

�
ðA:1Þ

ð¥
�¥

f ðxÞ dx ¼ 1 ðA:2Þ

then f(x) is called the Dirac delta function and usually denoted by

f ðxÞ ¼ dðx� x0Þ ðA:3Þ

It is also usually called theDirac function for simplicity, and can be illustrated by FigureA.1.

The condition in Equation A.1 says that the Dirac function is zero except at the point x0,

where its value is infinite. The condition in Equation A.2 means that the total area below the

curve of the function is unity. Clearly, it is a function with some interesting features.

Mathematically, rigorously speaking, the Dirac function belongs to the family of distribution

functions (also called generalized functions) (Zemanian, 1965; Zayed, 1996).

To give amorevisual image, we consider the PDFof a uniformly distributed randomvariable

pUniformðx; aÞ ¼
1

2a
form� a � x � mþ a

0 otherwise

(
ðA:4Þ

It is easy to verify that

lim
a! 0

pUniformðx; aÞ ¼ dðx�mÞ ðA:5Þ

which shows that, as the distribution width of a uniformly distributed random variable narrows

and tends to zero, the uniform distribution tends to a Dirac delta function. Of course, the
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uniformly distributed random variable reduces simultaneously to a deterministic variable

(Figure A.2a).

Likewise, if we consider the probability density of a normally distributed random variable

pNormalðx;sÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ2=2s2 ðA:6Þ

then we can verify that

lim
s! 0

pNormalðx;sÞ ¼ dðx�mÞ ðA:7Þ

Thus, as the standard deviation of a normally distributed random variable narrows and tends

to zero, the normal distribution also tends to a Dirac delta function. Simultaneously, the

normally distributed random variable reduces to a deterministic variable (Figure A.2b).

A.2 Integration and Differentiation

According to the conditions in Equations A.1 and A.2 in the definition, it is easy to verify that

for a general function g(x) the integral involving a Dirac delta function is given byð¥
�¥

gðxÞdðx� x0Þ dx ¼ gðx0Þ ðA:8Þ

This indicates that a Dirac delta function identifies the value of the adjoint function in the

integrand.

Figure A.2 The Dirac delta function as a limit of other functions: (a) uniform distribution; (b) normal

distribution.

x

f(x)

x0o

0,    otherwise
δ (x −x0) =

δ (x −x0)dx = 1
∞

−∞

∞,  for x = x0 

∫

f(x) = δ (x−x0)

Figure A.1 The Dirac delta function.
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Based on this, if we consider the Fourier transform of d(t� t0), then we have

F½dðt� t0Þ� ¼
ð¥
�¥

dðt� t0Þe� ivt dt ¼ e� ivt0 ðA:9Þ

Conversely, we know that the inverse Fourier transform on Equation A.9 gives

F � 1 e� ivt0
� � ¼ 1

2p

ð¥
�¥

e� ivt0eivt dv ¼ 1

2p

ð¥
�¥

eivðt� t0Þ dv ¼ dðt� t0Þ ðA:10Þ

If we let t0¼ 0, then Equations A.9 and A.10 become

F½dðtÞ� ¼ 1 ðA:11aÞ
and

F � 1½1� ¼ dðtÞ ðA:11bÞ
respectively. According to Equation A.8, we know that for a time history x(t) there is

xðtÞ ¼
ð¥
�¥

xðtÞdðt� tÞ dt ðA:12Þ

That is, the Dirac delta function can be regarded as a basis unit of a general time history.

The Dirac delta function can also be regarded as the derivative of a discontinuous function –

the unit step function (Heaviside�s function)

uðt� t0Þ ¼ 1 for t � t0
0 otherwise

�
ðA:14Þ

If we denote _uðt� t0Þ ¼ duðt� t0Þ=dt, then it is easy to verify thatð¥
�¥

_uðt� t0Þ dt ¼ uð¥Þ� uð�¥Þ ¼ 1 ðA:14aÞ

_uðt� t0Þ ¼ ¥ for t ¼ t0
0 otherwise

�
ðA:14bÞ

Comparing these with Equations A.1 and A.2, it is clear that

_uðt� t0Þ ¼ dðt� t0Þ ðA:15Þ

Thus, the Dirac function can be regarded as the derivative of the unit step function.

We now consider the integral of a Dirac function involving a compound function; for

instance:

I½gðxÞ� ¼
ð¥
�¥

gðxÞd½wðxÞ� x0� dx ðA:16aÞ

ðA.13Þ
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If we change the integral variable x by w�1(y), then Equation A.16a becomes

I½gðxÞ� ¼
ð¥
�¥

jJjg½w� 1ðyÞ�d½y� x0� dy ¼ jJjg½w� 1ðx0Þ� ðA:16bÞ

where jJj ¼ jdw� 1=dyj is the Jacobian. Here, it should be noted that the Jacobian cannot be

omitted.

We now consider the integral of Dirac�s function when the x0 take only integer values over a
neighboring small interval near the integers:

I ij ¼ lim
e! 0

ðjþ e

j� e
dðx� iÞ dx ¼ lim

e! 0

ðiþ e

i� e
dðx� jÞ dx ¼ 1 for i ¼ j

0 otherwise

�
ðA:17Þ

when i and j are integers; the above integral I ij is called the Kronecker delta and is denoted

by

dij ¼ 1 for i ¼ j

0 otherwise

�
ðA:18Þ

Thus, it is seen that the Dirac delta function can be regarded as the continuous version of

the Kronecker delta and, in turn, the latter can be regarded as the discretized version of the

former.

A.3 Common Physical Backgrounds

A.3.1 Probability Distribution of Discrete Random Variables

If X is a discrete random variable with the distribution that

PrfX ¼ xjg ¼ Pj j ¼ 1; 2; � � � ; n ðA:19Þ
and

Pn
j¼1 Pj ¼ 1, then the PDF of X can be written as

pXðxÞ ¼
Xn
j¼1

Pjdðx� xjÞ ðA:20Þ

Actually, according to the definition in Section 2.1.1, the CDF of the random variable with

the distribution in Equation A.19 is given by

FXðxÞ ¼
Xn
j¼1

Pjuðx� xjÞ ðA:21Þ

where u(�) is the unit step function defined in Equation A.14. Noting pXðxÞ ¼ dFXðxÞ=dx (see

Equation 2.1) and Equation A.15, this immediately yields Equation A.20.

Thus, introducing the Dirac delta function, the discrete and the continuous random variable

can be treated in a unified theory frame. In this context, a discrete random variable can be

viewed as the limit of a sequence of continuous random variables; this can be understood very

clear particularly when we note Equations A.4–A.7.
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A.3.2 Concentrated and Distributed Loads

Consider a simply supported beam AB in Figure A.3. A distributed vertical load wðxÞ and n

concentrated forces F1;F2; � � � ;Fn are applied.

The load applied on the beam can be written in a unified way as

qðxÞ ¼ �wðxÞ�
Xn
j¼1

Fjdðx� xjÞ ðA:22Þ

Actually, it is easy to know that if the reaction force of support A isRA, then the shear force of

the beam at x is given by

QðxÞ ¼ RA �
ðx
0

wðxÞ dx�
Xn
j¼1

Fjuðx� xjÞ ðA:23Þ

Noting qðxÞ ¼ dQðxÞ=dx and Equation A.15, this immediately leads to Equation A.22.

This is actually themathematical expression of the physical sense that a concentrated force is

an idealized situation when the applied area of the distributed force is very small.

A.3.3 Unit Impulse Function

If f(t) is a time history of a force applied on an initially rest mass particlem, then the impulse of

the force is given by

k ¼
ðt
0

f ðtÞ dt ¼ mv ðA:24Þ

where v is the velocity of the mass particle. If the time duration of the force is shortened, then to

achieve the same velocity v the force should be enlarged. In the limit, as t ! 0, for a specified v

we have

mv ¼ lim
t! 0

ðt
0

f ðtÞ dt ¼ constant ðA:25Þ
Therefore, we find that

f ðtÞ ¼ mvdðtÞ ðA:26Þ

Figure A.3 Loads on a simply supported beam.
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This indicates that d(t) is a unit impulse function. The applied d(t) produces a sudden

increment of the momentum on the mass point. We have elaborated this fact in Section 5.2.1.

A.3.4 Unit Harmonic Function

Consider the inverse Fourier transform of a function gðvÞ ¼ 2pdðv�v0Þ, we have

F � 1 2pdðv�v0Þ½ � ¼ 1

2p

ð¥
�¥

2pdðv�v0Þeivt dv ¼ eiv0t ðA:27Þ

Thus, the Fourier transform of a unit harmonic function gives

F½eiv0t� ¼
ð¥
�¥

eiv0te� ivt dv ¼
ð¥
�¥

e� iðv�v0Þt dv ¼ 2pdðv�v0Þ ðA:28Þ

The physical sense is clear: in a unit harmonic function the frequency content is so simple

that only one single frequency is involved; this is just what is implied in Equation A.28.

Further, in the case gðvÞ ¼ p½dðv�v0Þþ dðvþv0Þ�, Equations A.27 and A.28 become

F � 1

(
p dðv�v0Þþ dðvþv0Þ½ �g ¼ 1

2p

ð¥
�¥

p½dðv�v0Þþ dðvþv0Þ�eivt dv ¼ cosv0t

ðA:29Þ
and

F½cosv0t� ¼
Ð¥
�¥ cosv0te

� ivt dt

¼ p½dðv�v0Þþ dðvþv0Þ� ðA:30Þ

respectively.
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Appendix B:

Orthogonal Polynomials

B.1 Basic Concepts

Let [a, b] denote a finite or infinite interval and a function wðxÞ is defined over it. If wðxÞ
satisfies the following properties:

(a) wðxÞ � 0; x 2 ½a; b�
(b)

Ð b
a
wðxÞ dx > 0 and

(c)
Ð b
a
xnwðxÞ dx; n ¼ 1; 2; . . . exists

then wðxÞ is called a weight function over [a, b].

For the n-order polynomials, whose first-term coefficient an „ 0:

fnðxÞ ¼ anx
n þ . . . þ a1xþ a0 n ¼ 0; 1; 2; . . . ðB:1Þ

if they satisfy ðb
a

wðxÞfnðxÞfmðxÞ dx ¼ 0 n „m; n;m ¼ 0; 1; 2; . . . ðB:2Þ

then the sequence of polynomials fnðxÞ; fmðxÞ; . . . is orthogonal over [a, b]with respect towðxÞ,
and fn(x) are orthogonal polynomials over [a, b] with weight function wðxÞ.

In the case n¼m, there is

ðb
a

wðxÞfn2ðxÞ dx ¼ hn ðB:3Þ

where hn is a positive number.

Let

wnðxÞ ¼
fnðxÞffiffiffiffiffi
hn

p ðB:4Þ
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Then from Equations B.2 and B.3, there isðb
a

wðxÞwnðxÞwmðxÞ dx ¼ 1 if n ¼ m

0 otherwise

�
n;m ¼ 0; 1; 2; . . . ðB:5Þ

Here, wn(x) are called standard orthogonal functions with weight wðxÞ.
Using

~wnðxÞ ¼
wnðxÞffiffiffiffiffiffiffiffiffiffi
wðxÞp n;m ¼ 0; 1; 2; . . . ðB:6Þ

then wn(x) is transformed into standard orthogonal functions in common cases.

For a space of functions with weight wðxÞ, the inner product is defined by

hf ; gi ¼
ðb
a

wðxÞf ðxÞgðxÞ dx ðB:7Þ

where f(x) and g(x) are points in the space.

It can be proved that a space with the inner product defined as above is a Hilbert space.

Thus, any function f(x) in it can be expanded into a generalized Fourier series; that is:

f ðxÞ ¼
X¥
i¼0

aiwiðxÞ ðB:8Þ

where the coefficients

ai ¼ hf ;wii ¼
ðb
a

wðxÞf ðxÞwiðxÞ dx ðB:9Þ

are considered as the projections of f(x) on the basis functions wi(x).

Obviously, the weighted orthogonal decomposition mentioned above is an extension of the

orthogonal decomposition in the Hilbert spaces. As theweight functionwðxÞ ¼ 1, it is reduced

to the orthogonal decomposition in the Hilbert spaces. On the other hand, if we first make the

transformation

~f ðxÞ ¼ f ðxÞffiffiffiffiffiffiffiffiffiffi
wðxÞp ðB:10Þ

then the orthogonal decomposition of~f ðxÞ also belongs to the orthogonal decomposition in the

Hilbert spaces. Note that ~f ðxÞ form a Hilbert space. It follows that the weighted Hilbert spaces

are equivalent to the transformed Hilbert spaces.

There are a variety of orthogonal polynomials, each of which comes from a specific

generating function (Andrews et al., 2000). Denoting these generating functions byGðx; tÞ, in
general there is

Gðx; tÞ ¼
X¥
n¼0

fnðxÞtn ðB:11Þ
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This implies that the orthogonal polynomials are essentially the coefficients of the series

expansions of the generating functions with respect to the parameter t.

Among the properties of orthogonal polynomials, the property of recursion is most useful.

For three orthogonal polynomials fn� 1ðxÞ, fnðxÞ and fnþ 1ðxÞ defined in Equation B.1, they

satisfy the recursion relation

fnþ 1ðxÞ ¼ anþ 1

an
ðx�AnÞfnðxÞ� anþ 1an� 1

a2n
Bnfn� 1ðxÞ ðB:12Þ

where

An ¼ 1

hn

ðb
a

xwðxÞfn2ðxÞ dx ðB:13Þ

Bn ¼ hn

hn� 1

ðB:14Þ

Rearranging Equation B.12 and expressing it in terms of the weighted standard orthogonal

functions yields

xwnðxÞ ¼ anwn� 1ðxÞþbnwnðxÞþ gnwnþ 1ðxÞ ðB:15Þ

where

an ¼ an� 1h
1=2
n

anh
1=2
n

ðB:16Þ

bn ¼
1

hn

ðb
a

xwðxÞfn2ðxÞ dx ðB:17Þ

gn ¼
anh

1=2
nþ 1

anþ 1h
1=2
n

ðB:18Þ

B.2 Common Orthogonal Polynomials

The so-called ‘common’ here means that these orthogonal polynomials are closely related to

the contents in this book. They are Hermite, Legendre and Gegenbauer polynomials respec-

tively (Andrews et al., 2000; Dunkl and Xu, 2001).

B.2.1 Hermite Polynomials HenðxÞ
The Hermite polynomials are orthogonal in (�¥,¥) with respect to the weight function

e� x2=2. Since the weight function e� x2=2 is just the density function of the standard normal

distribution,HenðxÞ play an important role in the expansion of functions on probability spaces
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associated with the normal distributions. Hermite polynomials are generated by

HenðxÞ ¼ ð� 1Þnex2=2 dn

dxn
ðe� x2=2Þ n ¼ 0; 1; 2; . . . ðB:19Þ

It can be verified that

hn ¼
ð¥
�¥

e�x2=2H2
en
ðxÞ dx ¼

ffiffiffiffiffiffi
2p

p
n! ðB:20Þ

and the recursion coefficients, corresponding to Equation B.15, are given by

an ¼
ffiffiffi
n

p
bn ¼ 0 gn ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðB:21Þ
Using Equation B.19, the first few polynomials are as follows:

He0 ¼ 1

He1 ¼ x

He2 ¼ x2 � 1

He3 ¼ x3 � 3x

He4 ¼ x4 � 6x2 þ 3

. . .

8>>>>>><
>>>>>>:

ðB:22Þ

In fact, the recursion formula relative to HenðxÞ can be rewritten as

Henþ 1
ðxÞ ¼ xHenðxÞ� nHen� 1

ðxÞ
He0 ¼ 1; He1 ¼ x

�
ðB:23Þ

Graphs of the first six Hermite polynomials are shown in Figure B.1.

B.2.2 Legendre Polynomials Pn(x)

The Legendre polynomials are orthogonal with respect to weight function wðxÞ ¼ 1 over the

interval [�1, 1]. As noted, their weight function and the defining interval are analogous to

the density function of the uniform distribution and its interval respectively. Thus, for the

probability space associated with the uniform distributions, the Legendre polynomials are of

great significance.

The Legendre polynomials are generated by

PnðxÞ ¼ 1

2nn!

dn

dxn
ðx2 � 1Þn n ¼ 0; 1; 2; . . . ðB:24Þ

We can verify that

hn ¼
ð1
� 1

P2
nðxÞ dx ¼ 2

2nþ 1
ðB:25Þ

and give the recursion coefficients in Equation B.15:

an ¼ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 � 1

p bn ¼ 0 gn ¼
nþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n2 þ 8nþ 3
p ðB:26Þ
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Using Equation B.24, the first few polynomials are as follows

P0ðxÞ ¼ 1

P1ðxÞ ¼ x

P2ðxÞ ¼ 1

2
ð3x2 � 1Þ

P3ðxÞ ¼ 1

2
ð5x3 � 3xÞ

P4ðxÞ ¼ 1

8
ð35x4 � 30x2 þ 3Þ

. . .

8>>>>>>>>>><
>>>>>>>>>>:

ðB:27Þ

x

y

He0
(x)

He1
(x)

He2
(x)

He3
(x)

He5
(x)

He4
(x)

0

x

y

0

(b) (a) 

x

y

0 x

y

0

(d) (c) 

x

y

0 x

y

0

(f)(e) 

Figure B.1 Orthogonal polynomials.
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A Legendre polynomial of any order can be obtained from the following recursive formula:

Pnþ 1ðxÞ ¼ 2nþ 1

nþ 1
xPnðxÞ� n

nþ 1
Pn� 1ðxÞ ðB:28Þ

Graphs of the first six Legendre polynomials are similar to those shown in Figure B.1.

B.2.3 Gegenbauer Polynomials C
ðaÞ
n ðxÞ

The Gegenbauer polynomials are orthogonal with respect to weight function ð1� x2Þa�ð1=2Þ

over the interval [�1, 1], and in general are expressed by

CðaÞ
n ðxÞ ¼ ð� 1Þnð2aÞn

2nn! aþ 1=2ð Þnð1� x2Þa�ð1=2Þ
dn

dxn
ð1� x2Þnþa�ð1=2Þ a >

1

2
; n ¼ 0; 1; 2; . . .

ðB:29Þ
where a is a given parameter.

It can be proved that in this case there exists

hn ¼
ð1
� 1

ð1� x2Þa�ð1=2Þ½Ca
n ðxÞ�2 dx ¼ p21� 2aGðnþ 2aÞ

n!ðnþaÞ½GðaÞ�2 ðB:30Þ

where G(�) denotes the Gamma function.

In like manner, for Equation B.15, there are

an ¼ nþ 2a� 1

2ðnþaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþaÞGðn� 1þ 2aÞ
ðnþ 1þaÞGðnþ 2aÞ

s
bn ¼ 0

gn ¼
nþ 1

2ðnþaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþaÞGðnþ 1þ 2aÞ

ðnþ 1Þðnþ 1þaÞGðnþ 2aÞ

s

8>>>>>><
>>>>>>:

ðB:31Þ

The first few polynomials are as follows:

C
ðaÞ
0 ðxÞ ¼ 1

C
ðaÞ
1 ðxÞ ¼ 2ax

C
ðaÞ
2 ðxÞ ¼ 2að1þaÞx2 �a

C
ðaÞ
3 ðxÞ ¼ 4

3
að1þaÞð2þaÞx3 � 2að1�aÞx

. . .

8>>>>>><
>>>>>>:

ðB:32Þ

and the others can be obtained by the recursive formula

C
ðaÞ
nþ 1ðxÞ ¼

2ðnþaÞ
nþ 1

xCðaÞ
n ðxÞ� nþ 2a� 1

nþ 1
C

ðaÞ
n� 1ðxÞ ðB:33Þ

In some other books, Gegenbauer polynomials are also called hyper-spherical polynomials.

Graphs of the first six Gegenbauer polynomials are also similar to those shown in Figure B.1.
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Appendix C:

Relationship between Power
Spectral Density and Random
Fourier Spectrum

C.1 Spectra via Sample Fourier Transform

Consider two real-valued stationary stochastic processes X(v, t) and Y(v, t), wherev denotes

the embedded randomevent.We define the finite Fourier transforms of a sample ofX(t) andY(t)

over the time interval [�T,T] as

X�Tðv;vÞ ¼
ðT
�T

Xðv; tÞe� ivt dt ðC:1Þ

and

Y�Tðv;vÞ ¼
ðT
� T

Yðv; tÞe� ivt dt ðC:2Þ

respectively; then, the cross-PSD can be obtained by

SXYðvÞ ¼ lim
T!¥

1

2T
E X�Tðv;vÞY�

�Tðv;vÞ� � ðC:3Þ

Here, E½ � � is the ensemble average with respect tov; the superscript asterisk denotes complex

conjugate.

Equation C.3 can be proved as follows.
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Proof: Using Equations C.1 and C.2, we have

lim
T !¥

1

2T
E X�Tðv;vÞY�

�Tðv;vÞ� � ¼ lim
T !¥

1

2T
E

ðT
� T

Xðv; tÞe� ivt dt

ðT
�T

Yðv; tÞe� ivt dt

� ��� �

¼ lim
T !¥

1

2T
E

ðT
� T

Xðv; t1Þe� ivt1 dt1

ðT
�T

Yðv; t2Þeivt2 dt2
� �

¼ lim
T !¥

1

2T
E

ðT
� T

ðT
� T

Xðv; t1ÞYðv; t2Þeivðt2 � t1Þ dt1 dt2

� �

¼ lim
T!¥

1

2T

ðT
� T

ðT
� T

E½Xðv; t1ÞYðv; t2Þ�eivðt2 � t1Þ dt1 dt2

� �

¼ lim
T !¥

1

2T

ðT
� T

ðT
� T

RXYðt1; t2Þeivðt2 � t1Þ dt1 dt2

� �

ðC:4Þ
Now, change the region of integration from (t1, t2) to (t1, t), where t¼ t2� t1, dt¼ dt2. This

changes the limits of integration as shown in Figure C.1. Thus, Equation C.4 is changed to

lim
T!¥

1

2T

ðT
�T

ðT
�T

RXYðt1; t2Þeivðt2 � t1Þ dt1 dt2

� �

¼ lim
T!¥

1

2T

ð0
� 2T

ðT
� t�T

RXYðtÞeivt dt1
� �

dtþ
ð2T
0

ðT� t

�T

RXYðtÞeivt dt1
� �

dt
� �

¼ lim
T!¥

1

2T

ð2T
0

ð2T � tÞRXYðtÞe� ivt dtþ
ð0
� 2T

ð2T þ tÞRXYðtÞe� ivt dt
� �

¼ lim
T!¥

ð0
� 2T

1þ t
2T

� 	
RXYðtÞe� ivt dtþ

ð2T
0

1� t
2T

� 	
RXYðtÞe� ivt dt

� �

¼
ð¥
�¥

RXYðtÞe� ivt dt

¼ SXYðvÞ
ðC:5Þ

&
This proves Equation C.3.

It follows from Equation C.3 immediately that the auto power spectral density is given by

SXðvÞ ¼ lim
T!¥

1

2T
E X�Tðv;vÞX�

�Tðv;vÞ� �

¼ lim
T!¥

1

2T
E jX�Tðv;vÞj2
h i ðC:6Þ

Because Equations C.1 and C.2 can be understood as random Fourier spectra, Equations C.3

and C.6 establish the relationship between the PSD and the random Fourier spectra. In other

words, they bridge the gap between the PSD and the sample properties. From this point of view,

it is convenient to derive the frequency properties of random vibration systems, as has been

elaborated in Chapter 5.
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C.2 Spectra via One-sided Finite Fourier Transform

In practice, the measured data are usually over the time interval [0, T]. We define the sample

one-sided finite Fourier spectra of the real-valued X(t) and Y(t) over the time interval [0, T] as

XTðv;vÞ ¼
ðT
0

Xðv; tÞe� ivt dt ðC:7Þ

and

YTðv;vÞ ¼
ðT
0

Yðv; tÞe� ivt dt ðC:8Þ

respectively; then, the cross-PSD can be obtained by

SXYðvÞ ¼ lim
T !¥

1

T
E XTðv;vÞY�

Tðv;vÞ� � ðC:9Þ

This can be proved as follows.

Proof: Using Equations C.7 and C.8, we have

lim
T!¥

E 1

T
XTðv;vÞY�

Tðv;vÞ
� �

¼ lim
T!¥

1

T
E

ðT
0

Xðv; t1Þe� ivt1 dt1

� � ðT
0

Yðv; t2Þeivt2 dt2
� �� �

¼ lim
T!¥

1

T
E

ðT
0

ðT
0

Xðv; t1ÞYðv; t2Þeivðt2 � t1Þ dt1 dt2

� �

¼ lim
T!¥

1

T

ðT
0

ðT
0

E½Xðv; t1ÞYðv; t2Þ�eivðt2 � t1Þ dt1 dt2

� �

¼ lim
T!¥

1

T

ðT
0

ðT
0

RXYðt1; t2Þeivðt2 � t1Þ dt1 dt2

� �

ðC:10Þ

Figure C.1 Change of integral region.
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Now, change the region of integration from (t1,t2) to (t1,t), where t¼ t2� t1, dt¼ dt2. This

changes the limits of integration as shown in FigureC.2. Thus, EquationC.10 can be rearranged

into

lim
T!¥

1

T

ðT
0

ðT
0

RXYðt1; t2Þeivðt2 � t1Þ dt1 dt2

� �

¼ lim
T !¥

1

T

ðT
0

ðT � t

0

RXYðtÞeivtdt1
� �

dtþ
ð0
�T

ðT
� t

RXYðtÞeivt dt1
� �

dt
� �

¼ lim
T !¥

1

T

ðT
0

ðT � tÞRXYðtÞeivt dtþ
ð0
�T

ðT þ tÞRXYðtÞeivt dt
� �

¼ lim
T !¥

ð0
� T

1þ t
T

� 	
RXYðtÞe� ivt dtþ

ðT
0

1� t
T

� 	
RXYðtÞe� ivt dt

� �

¼
ð¥
�¥

RXYðtÞe� ivt dt

¼ SXYðvÞ

ðC:11Þ

This proves Equation C.9. &
Of course, the physical sense of Equations C.7–C.9 is similar to Equations C.1–C.3. Further,

if we define standardized spectra by

_
XTðv;vÞ ¼ XTðv;vÞffiffiffiffi

T
p ¼ 1ffiffiffiffi

T
p

ðT
0

Xðv; tÞe� ivt dt ðC:12Þ

and

_
YTðv;vÞ ¼ YTðv;vÞffiffiffiffi

T
p ¼ 1ffiffiffiffi

T
p

ðT
0

Yðv; tÞe� ivt dt ðC:13Þ

Figure C.2 Change of integral region.
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respectively, then according to Equation C.9 we have

SXYðvÞ ¼ lim
T!¥

E½_XTðv;vÞ_Y �
T ðv;vÞ� ðC:14Þ

In particular, these relations establish the theoretical basis for the random Fourier spectrum

methodology in Chapter 3 (for example, Equation 3.12). In addition, for practical applications

they are particularly useful when we want to obtain the PSD of stochastic processes if a set of

sample time histories is available (Bendat and Piersol, 2000).
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Appendix D:
Orthonormal Base Vectors

To satisfy Equations 7.134 and 7.135, the orthonormal base vectors for the coordinate

transformation in dimensions of s ¼ 4; 5; . . . ; 23 could be chosen as follows:

e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0Þ

e3 ¼ 1

2
ð1; 1; � 1; � 1; 0Þ

e4 ¼ 1ffiffiffiffiffi
20

p ð1; 1; 1; 1; � 4Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

for s ¼ 4 ðD:1Þ

e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1Þ

e4 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0Þ

e5 ¼ 1ffiffiffiffiffi
12

p ð1; 1; 1; 1; � 2; � 2Þ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

for s ¼ 5 ðD:2Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0Þ

e4 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0Þ

e5 ¼ 1ffiffiffiffiffi
12

p ð1; 1; 1; 1; � 2; � 2; 0Þ

e6 ¼ 1ffiffiffiffiffi
42

p ð1; 1; 1; 1; 1; 1; � 6Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 6 ðD:3Þ

e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1Þ

e5 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0Þ

e6 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1Þ

e7 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 7 ðD:4Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0Þ

e5 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0Þ

e6 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0Þ

e7 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0Þ

e8 ¼ 1ffiffiffiffiffi
72

p ð1; 1; 1; 1; 1; 1; 1; 1; � 8Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 8 ðD:5Þ

e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1Þ

e6 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0Þ

e7 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0Þ

e8 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0Þ

e9 ¼ 1ffiffiffiffiffi
40

p ð1; 1; 1; 1; 1; 1; 1; 1; � 4; � 4Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 9 ðD:6Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0Þ

e6 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e7 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0Þ

e8 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0Þ

e9 ¼ 1ffiffiffiffiffi
40

p ð1; 1; 1; 1; 1; 1; 1; 1; � 4; � 4; 0Þ

e10 ¼ 1ffiffiffiffiffiffiffiffi
110

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 10Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 10 ðD:7Þ

e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1Þ

e7 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e8 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0Þ

e9 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1Þ

e10 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0Þ

e11 ¼ 1ffiffiffiffiffi
24

p ð1; 1; 1; 1; 1; 1; 1; 1; � 2; � 2; � 2; � 2Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 11 ðD:8Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0Þ

e7 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e8 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0Þ

e9 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0Þ

e10 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0Þ

e11 ¼ 1ffiffiffiffiffi
24

p ð1; 1; 1; 1; 1; 1; 1; 1; � 2; � 2; � 2; � 2; 0Þ

e12 ¼ 1ffiffiffiffiffiffiffiffi
156

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 12Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 12 ðD:9Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0Þ

e7 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1Þ

e8 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e9 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0Þ

e10 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0Þ

e11 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0; 0Þ

e12 ¼ 1ffiffiffiffiffi
24

p ð1; 1; 1; 1; 1; 1; 1; 1; � 2; � 2; � 2; � 2; 0; 0Þ

e13 ¼ 1ffiffiffiffiffi
84

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 6; � 6Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 13 ðD:10Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0Þ

e7 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0Þ

e8 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e9 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e10 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0Þ

e11 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e12 ¼ 1ffiffiffiffiffi
24

p ð1; 1; 1; 1; 1; 1; 1; 1; � 2; � 2; � 2; � 2; 0; 0; 0Þ

e13 ¼ 1ffiffiffiffiffi
84

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 6; � 6; 0Þ

e14 ¼ 1ffiffiffiffiffiffiffiffi
210

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 14Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 14 ðD:11Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0Þ

e7 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0Þ

e8 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1Þ

e9 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e10 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e11 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0Þ

e12 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1Þ

e13 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e14 ¼ 1ffiffiffi
8

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; � 1; � 1; � 1; � 1Þ

e15 ¼ 1

4
ð� 1; � 1; � 1; � 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 1; 1; 1; 1Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 15

ðD:12Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0Þ

e7 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0Þ

e8 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0Þ

e9 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e10 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e11 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0Þ

e12 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0Þ

e13 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e14 ¼ 1ffiffiffi
8

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 0Þ

e15 ¼ 1

4
ð� 1; � 1; � 1; � 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 1; 1; 1; 1; 0Þ

e16 ¼ 1ffiffiffiffiffiffiffiffi
272

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 16Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 16

ðD:13Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0Þ

e7 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0Þ

e8 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0Þ

e9 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1Þ

e10 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e11 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e12 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0Þ

e13 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0Þ

e14 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e15 ¼ 1ffiffiffi
8

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0Þ

e16 ¼ 1

4
ð� 1; � 1; � 1; � 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 1; 1; 1; 1; 0; 0Þ

e17 ¼ 1

12
ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 8; � 8Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 17

ðD:14Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e7 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0Þ

e8 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0Þ

e9 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0Þ

e10 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e11 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e12 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0Þ

e13 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0Þ

e14 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e15 ¼ 1ffiffiffi
8

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0Þ

e16 ¼ 1

4
ð� 1; � 1; � 1; � 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 1; 1; 1; 1; 0; 0; 0Þ

e17 ¼ 1

4
ð1; 1; 1; 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; � 1; � 1; � 1; � 1; 0; 0; 0Þ

e18 ¼ 1ffiffiffiffiffiffiffiffi
342

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 18Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s ¼ 18

ðD:15Þ
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e1 ¼ 1ffiffiffi
2

p ð1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e2 ¼ 1ffiffiffi
2

p ð0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e3 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e4 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e5 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e6 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e7 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0; 0; 0Þ

e8 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0; 0; 0Þ

e9 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1; 0; 0Þ

e10 ¼ 1ffiffiffi
2

p ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; � 1Þ

e11 ¼ 1

2
ð1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e12 ¼ 1

2
ð0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e13 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

e14 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1; 0; 0; 0; 0Þ

e15 ¼ 1

2
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; � 1; � 1Þ

e16 ¼ 1ffiffiffi
8

p ð1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

e17 ¼ 1ffiffiffi
8

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0Þ

e18 ¼ 1

4
ð1; 1; 1; 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; � 1; � 1; � 1; � 1; 0; 0; 0; 0Þ

e19 ¼ 1ffiffiffiffiffi
80

p ð1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; � 4; � 4; � 4; � 4Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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e1 ¼ 1ffiffiffi
2

p ð1; �1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e2 ¼ 1ffiffiffi
2

p ð0;0;1; �1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e3 ¼ 1ffiffiffi
2

p ð0;0;0;0;1; �1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e4 ¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;1; �1;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e5 ¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;1; �1;0;0;0;0;0;0;0;0;0;0;0Þ

e6 ¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;1; �1;0;0;0;0;0;0;0;0;0Þ

e7 ¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;1; �1;0;0;0;0;0;0;0Þ

e8 ¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;1; �1;0;0;0;0;0Þ

e9 ¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1; �1;0;0;0Þ

e10 ¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1; �1;0Þ

e11 ¼ 1

2
ð1;1; �1; �1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e12 ¼ 1

2
ð0;0;0;0;1;1; �1; �1;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e13 ¼ 1

2
ð0;0;0;0;0;0;0;0;1;1; �1; �1;0;0;0;0;0;0;0;0;0Þ

e14 ¼ 1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;1;1; �1; �1;0;0;0;0;0Þ

e15 ¼ 1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1; �1; �1;0Þ

e16 ¼ 1ffiffiffi
8

p ð1;1;1;1; �1; �1; �1; �1;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e17 ¼ 1ffiffiffi
8

p ð0;0;0;0;0;0;0;0;1;1;1;1; �1; �1; �1; �1;0;0;0;0;0Þ

e18 ¼ 1

4
ð1;1;1;1;1;1;1;1; �1; �1; �1; �1; �1; �1; �1; �1;0;0;0;0;0Þ

e19 ¼ 1ffiffiffiffiffi
80

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1; �4; �4; �4; �4;0Þ

e20 ¼ 1ffiffiffiffiffiffiffiffi
420

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1; �20Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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e1¼ 1ffiffiffi
2

p ð1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e2¼ 1ffiffiffi
2

p ð0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e3¼ 1ffiffiffi
2

p ð0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e4¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e5¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0Þ

e6¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0Þ

e7¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0Þ

e8¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0Þ

e9¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0Þ

e10¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0Þ

e11¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1Þ

e12¼1

2
ð1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e13¼1

2
ð0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e14¼1

2
ð0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0;0;0;0Þ

e15¼1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0;0;0;0Þ

e16¼1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;�1;�1;0;0Þ

e17¼ 1ffiffiffi
8

p ð1;1;1;1;�1;�1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e18¼ 1ffiffiffi
8

p ð0;0;0;0;0;0;0;0;1;1;1;1;�1;�1;�1;�1;0;0;0;0;0;0Þ

e19¼1

4
ð1;1;1;1;1;1;1;1;�1;�1;�1;�1;�1;�1;�1;�1;0;0;0;0;0;0Þ

e20¼ 1ffiffiffiffiffi
80

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�4;�4;�4;�4;0;0Þ

e21¼ 1ffiffiffiffiffiffiffiffi
220

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�10;�10Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s¼21
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e1¼ 1ffiffiffi
2

p ð1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e2¼ 1ffiffiffi
2

p ð0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e3¼ 1ffiffiffi
2

p ð0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e4¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e5¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e6¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0Þ

e7¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0Þ

e8¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0Þ

e9¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0Þ

e10¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0Þ

e11¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0Þ

e12¼1

2
ð1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e13¼1

2
ð0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e14¼1

2
ð0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0Þ

e15¼1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0Þ

e16¼1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0Þ

e17¼ 1ffiffiffi
8

p ð1;1;1;1;�1;�1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e18¼ 1ffiffiffi
8

p ð0;0;0;0;0;0;0;0;1;1;1;1;�1;�1;�1;�1;0;0;0;0;0;0;0Þ

e19¼1

4
ð1;1;1;1;1;1;1;1;�1;�1;�1;�1;�1;�1;�1;�1;0;0;0;0;0;0;0Þ

e20¼ 1ffiffiffiffiffi
80

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�4;�4;�4;�4;0;0;0Þ

e21¼ 1ffiffiffiffiffiffiffiffi
220

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�10;�10;0Þ

e22¼ 1ffiffiffiffiffiffiffiffi
506

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�22Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for s¼22
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e1¼ 1ffiffiffi
2

p ð1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e2¼ 1ffiffiffi
2

p ð0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e3¼ 1ffiffiffi
2

p ð0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e4¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e5¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e6¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0;0;0Þ

e7¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0;0;0Þ

e8¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0;0;0Þ

e9¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0;0;0Þ

e10¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0;0;0Þ

e11¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1;0;0Þ

e12¼ 1ffiffiffi
2

p ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;�1Þ

e13¼1

2
ð1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e14¼1

2
ð0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e15¼1

2
ð0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0Þ

e16¼1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0;0;0;0;0;0Þ

e17¼1

2
ð0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;�1;�1;0;0;0;0Þ

e18¼ 1ffiffiffi
8

p ð1;1;1;1;�1;�1;�1;�1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

e19¼ 1ffiffiffi
8

p ð0;0;0;0;0;0;0;0;1;1;1;1;�1;�1;�1;�1;0;0;0;0;0;0;0;0Þ

e20¼1

4
ð1;1;1;1;1;1;1;1;�1;�1;�1;�1;�1;�1;�1;�1;0;0;0;0;0;0;0;0Þ

e21¼ 1ffiffiffiffiffi
80

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�4;�4;�4;�4;0;0;0;0Þ

e22¼ 1ffiffiffiffiffiffiffiffi
220

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�10;�10;0;0Þ

e23¼ 1ffiffiffiffiffiffiffiffi
264

p ð1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;�11;�11Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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Appendix E:
Probability in a Hyperball

The probability in a hyperball of radius r in dimension s is

Fðr; sÞ ¼
ð
jjxjj�r

pðxÞ dx ¼
ð
x2
1
þ x2

2
þ ...þ x2s�r

pðx1;x2; . . . ; xsÞ dx1 dx2 . . . dxs ðE:1Þ

where pðxÞ ¼ pðx1; x2; . . . ; xsÞ is the joint PDF of a set of standardized random variables.

Here, the independent normal distribution is considered; that is:

pðxÞ ¼ 1

ð2pÞs=2
exp � x21 þ x22 þ . . . þ x2s

2

� �
ðE:2Þ

Using a multiple integral equality:

ð
x2
1
þx2

2
þ ...þx2s�r2

f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ . . . þ x2s

q
Þ dx1 dx2 . . . dxs ¼ rs

ps=2

Gðs=2Þ
ð1
0

uðs=2Þ� 1f ðr ffiffiffi
u

p Þ du

ðE:3Þ

where f(�) is any arbitrary integrable function, we can get

Fðr; sÞ ¼ Ð
jjxjj�r

pðxÞ dx ¼ Ð
x2
1
þx2

2
þ ...þx2s�r2

f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ . . . þ x2s

p
Þ dx1 dx2 . . . dxs

¼ rs
ps=2

Gðs=2Þ
ð1
0

uðs=2Þ� 1 1

ð2pÞs=2
exp � ðr ffiffiffi

u
p Þ2
2

 !
du

¼ rs

2s=2Gðs=2Þ

ð1
0

uðs=2Þ� 1exp � r2u

2

� �
du

¼ 1

Gðs=2Þ
ðr2=2
0

xðs=2Þ� 1e� x dx

ðE:4Þ
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where the Gamma function is (Zayed, 1996; Andrews et al., 2000)

GðtÞ ¼
ð¥
0

xt� 1e�x dx ðE:5Þ

If we define

~Gðt; gÞ ¼
ðg
0

xt� 1e�x dx ðE:6Þ

then Equation E.4 becomes

Fðr; sÞ ¼
~Gðs=2; r2=2Þ

Gðs=2Þ ¼
~Gðs=2; r2=2Þ
~Gðs=2;¥Þ ðE:7Þ

where use has been made of GðtÞ ¼ ~Gðt;¥Þ according to Equations E.5 and E.6.

For convenience, in the following sections, Equation E.4 is integrated by considering the

cases s as even and as odd numbers.

E.1 The Case s is Even

In the case s ¼ 2m ðm � 1Þ, Equation E.7 becomes

Fðr; 2mÞ ¼
~Gðm; r2=2Þ

GðmÞ ¼
~Gðm; r2=2Þ
~Gðm;¥Þ ðE:8Þ

The integral in Equation E.6 gives

~Gðm; gÞ ¼ G1ðm; 0Þ�G1ðm; gÞ ðE:9Þ
where

G1ðm; gÞ ¼ �
ðg
0

xm� 1e�x dx ¼ e� x
Xm
j¼1

xm� j
Yj� 1

k¼1

ðm� kÞ
" #( )

ðE:10Þ

in which the convention is used that
Q0

k¼1 ðm� kÞ ¼ 1.

Therefore:

Fðr; 2mÞ ¼
~Gðm; r2=2Þ
~Gðm;¥Þ ¼ 1

GðmÞ G1ðm; 0Þ�G1ðm; r2=2Þ� � ¼ 1� G1ðm; r2=2Þ
GðmÞ ðE:11Þ

E.2 The Case s is Odd

In the case s ¼ 2mþ 1ðm � 0Þ, Equation (E.7) becomes

Fðr; 2mþ 1Þ ¼
~Gðmþ 1

2
; r2=2Þ

Gðmþ 1
2
Þ ¼

~Gðmþ 1
2
; r2=2Þ

~Gðmþ 1
2
;¥Þ ðE:12Þ
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According to Equation E.6, we can find that

~Gð1
2
; r2=2Þ ¼

ðr2=2
0

x� 1=2e� x dx ¼ 2

ðr= ffiffi2p

0

e� z2 dz ¼ 2
ffiffiffi
p

p ðFðrÞ� 1

2
Þ ðE:13Þ

where FðrÞ ¼ Ð r�¥ð1=
ffiffiffiffiffiffi
2p

p Þe� z2=2 dz is the CDF of the standardized normal distribution.

Likewise, we get

~Gð1þ 1
2
; r2=2Þ ¼

ðr2=2
0

x1=2e� x dx ¼ � x1=2e�x
��x¼r2=2

x¼0
þ
ðr2=2
0

e� x dx1=2

¼ � rffiffiffi
2

p e� r2=2 þ
ðr= ffiffi2p

0

e� z2 dz

¼ ffiffiffi
p

p
FðrÞ� 1

2

h i
� rffiffiffi

2
p e� r2=2 ðE:14Þ

and then for m� 2:

~Gðmþ 1

2
; r2=2Þ ¼

~Gð1þ 1
2
; r2=2Þ

2m� 1

Ym
j¼2

ð2j� 1Þ�G2ðm; r2=2Þ ðE:15Þ

where

G2ðm; xÞ ¼ e� x
Xm
j¼2

xm�ð1=2Þ� ðj� 2Þ Yj� 1

k¼2

m� 1

2
�ðk� 2Þ

" #( )
ðE:16Þ

If we use the convention that
Pm

j¼2 fjð � Þ ¼ 0 form¼ 0 andm¼ 1, and
Q1

k¼2 fkð � Þ ¼ 1, it is

seen that G2(m,x)¼ 0 for m¼ 0 and m¼ 1.

Substituting Equation E.15 in Equation E.12 will then yield

Fðr; 2mþ 1Þ ¼
~Gðmþ 1

2
; r2=2Þ

Gðmþ 1
2
Þ ¼

~Gðmþ 1
2
; r2=2Þ

~Gðmþ 1
2
;¥Þ

¼ 1� G2ðm; r2=2Þ
Gðmþ 1

2
Þ þ 2 FðrÞ� 1� rffiffiffiffiffiffi

2p
p e� r2=2

� � ðE:17Þ

where Gðmþ 1
2
Þ ¼ ð ffiffiffiffi

p
p

=2mÞQm
j¼1 ð2j� 1Þ.

Combining Equations E.11 and E.17 finally gives

Fðr; sÞ ¼
~Gðs=2; r2=2Þ
~Gðs=2;¥Þ

¼
1� G1ðm; r2=2Þ

GðmÞ for s¼ 2m; m � 1

1� G2ðm; r2=2Þ
Gðmþ 1

2
Þ þ2 FðrÞ�1�ð1�d0mÞ rffiffiffiffiffiffi

2p
p e� r2=2

� 	
for s¼ 2mþ1; m � 0

8>><
>>:

ðE:18Þ
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where G1(�) and G2(�) are given by Equations E.10 and E.16 respectively and d is

the Kronecker delta.

Clearly, it follows from Equation E.7 that

Fðr; sÞjr¼0 ¼ 0 Fðr; sÞjr!¥ ¼ 1 ðE:19Þ
The probabilities F(r,s) for different s given by Equation E.18 are shown in Figure 7.2b.

E.3 Monotonic Features of F(r, s)

E.3.1 Monotonic Feature of F(r, s) with Respect to the Radius r

According to Equation E.18, we can get

qFðr; 2mÞ
qr

¼ 1

2m� 1GðmÞ r
2m� 1e� r2=2 ðE:20Þ

and further:

q2Fðr; 2mÞ
qr2

¼ r2m� 2e� r2=2

2m� 1GðmÞ ð2m� 1Þ� r2
� � ðE:21Þ

Obviously, it is seen that

qFðr; 2mÞ
qr

¼ 0 for r ¼ 0

qFðr; 2mÞ
qr

> 0 for r > 0
ðE:22Þ

q2Fðr; 2mÞ
qr2

¼ 0 for r ¼ 0 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

p
ðE:23Þ

The above two formulae mean that, in the case s is even, F(r, s) is increasing monotonically

against the radius while has an inflexion at the position r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

p
.

Likewise, from Equation E.18 we can get that

qFðr; 2mþ 1Þ
qr

¼
ffiffiffi
2

p

r
r2me� r2=2 ðE:24Þ

q2Fðr; 2mþ 1Þ
qr2

¼
ffiffiffi
2

p

r
ð2m� r2Þr2m� 1e� r2=2 ðE:25Þ

Therefore, we have

qFðr; 2mþ 1Þ
qr

¼ 0 for r ¼ 0

qFðr; 2mþ 1Þ
qr

> 0 for r > 0
ðE:26Þ
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q2Fðr; 2mþ 1Þ
qr2

¼ 0 for r ¼ 0 and r ¼
ffiffiffiffiffiffiffi
2m

p
ðE:27Þ

These two formulae indicate that in the case s is odd F(r,s) is increasing monotonically

against the radius while has an inflexion at the position r ¼ ffiffiffiffiffiffiffi
2m

p
.

Equations E.22, E.23 and E.26 and E.27 could be unified to

qFðr; sÞ
qr

¼ 0 for r ¼ 0

qFðr; sÞ
qr

> 0 for r > 0
ðE:28Þ

q2Fðr; sÞ
qr2

¼ 0 for r ¼ 0 and r ¼
ffiffiffiffiffiffiffiffiffiffi
s� 1

p
ðE:29Þ

respectively. Therefore, in any case F(r, s) increases monotonically against the radius and has

an inflection at the position r ¼ ffiffiffiffiffiffiffiffiffiffi
s� 1

p
.

E.3.2 Monotonic Feature of F(r,s) with Respect to the Dimensions

From Equation E.18, the recursive relations follow

Fðr; 2ðmþ 1ÞÞ ¼ Fðr; 2mÞ� 1

Gðmþ 1Þ
r2

2

� �m

e� r2=2 m � 1 ðE:30Þ

Fðr; 2mþ 3Þ ¼ Fðr; 2mþ 1Þ� 1

G½ð2mþ 3Þ=2�
r2

2

� �mþð1=2Þ
e� r2=2 m � 0 ðE:31Þ

The above two formulae could be written in a unified form as

Fðr; sþ 2Þ ¼ Fðr; sÞ� 1

G½ðs=2Þþ 1�
r2

2

� �s=2

e� r2=2 s � 1 ðE:32Þ

Obviously, there is

Fðr; sþ 2Þ <Fðr; sÞ for r > 0 ðE:33Þ
Thismeans that the probability contained in a hyperball of the same radius decreases, at least

in a jumping way, as the dimension increases.

If we denote

Fs1s2ðrÞ ¼ Fðr; s1Þ�Fðr; s2Þ ðE:34Þ
then it can be proved that

F43 < 0 F32 < 0 F21 < 0 for r > 0 ðE:35Þ
and the minimum values of F43(r), F32(r) and F21(r) occur at r ¼

ffiffiffiffiffiffiffiffiffi
2=p

p
,
ffiffiffiffiffiffiffiffiffi
p=2

p
and 2

ffiffiffiffiffiffiffiffiffi
2=p

p
respectively.
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According to the above observations, we guess that

Fsþ 1;sðrÞ < 0 for r > 0; s � 1 ðE:36Þ
holds and the minimum values of Fsþ 1;sðrÞ occur at increasing value of r against s.

The monotonic features of the probability contained in a hyperball, F(r, s), can be observed

clearly in Figure 7.2b.

382 Stochastic Dynamics of Structures



Appendix F:
Spectral Moments

In the first-passage probability analysis based on the excursion assumption, computation of

spectral parameters and passage rate is useful. They will be introduced herein.

According to Equations 2.81a and 2.81b in Chapter 2, the auto-PSD SX(v) of a stationary
stochastic process is an even function; consequently, the nth-order spectral moment of the

stationary stochastic process can be defined as

an ¼
ð¥
0

vnGXðvÞ dv n ¼ 0; 1; 2; . . . ðF:1Þ

in which GX(v) is the single-sided PSD.

By the equation, the following spectral parameters can be further defined:

g1 ¼
a1

a0

ðF:2Þ

g2 ¼
ffiffiffiffiffi
a2

a0

r
ðF:3Þ

q ¼ 1� a2
1

a0a2

� �1=2

¼ g22 � g21
g22

� �1=2

ðF:4Þ

where g1 is the frequency at the area centric of GX(v), generally indicating where the spectral
density concentrates, g2 is the gyration radius ofGX(v) with respect to the coordinate origin and
q is the gyration radius ofGX(v)with respect to the frequency g1. Thevalue of q varies over 0–1.
The smaller the value of q, the narrower the figure ofGX(v) is; in contrast, the greater the value
of q, the wider the figure ofGX(v) is. Usually, the stochastic process with 0� q� 0.35 is called

a narrow-band stochastic process, whereas it is a white noise if q¼ 1.

The spectral parameters are illustrated in Figure F.1.

For nonstationary stochastic processes, when the concept of evolutionary power spectral

density is introduced (see Section 5.3.2), the nth-order spectral moment can be defined as

anðtÞ ¼
ð¥
0

vnGXðv; tÞ dv n ¼ 0; 1; 2 . . . ðF:5Þ
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Evidently, the spectral moments of nonstationary stochastic processes are functions of

time. Consequently, the spectral parameters defined by the spectral moments are also related to

time:

g1ðtÞ ¼
a1ðtÞ
a0ðtÞ ðF:6Þ

g2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ
a0ðtÞ

s
ðF:7Þ

qðtÞ ¼ 1� a2
1ðtÞ

a0ðtÞa2ðtÞ
� �1=2

¼ g22ðtÞ� g21ðtÞ
g22ðtÞ

� �1=2

ðF:8Þ

IfGXðv; tÞ is understood as an instant PSD, then at a specified time point the above spectral

parameters have the geometric interpretation shown in Figure F.1.

ω

GX (ω)

0

Area:

∞
∫

, q
γs

γ1 γ2

γ 2
2 − γ 2

1γs γ2
= =

o

GX (ω )dω = α0

Figure F.1 Spectral parameters.
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Appendix G:
Generator Vectors in the Number
Theoretical Method

As discussed in Section 7.3.3, in the number theoretical method a uniform point set

PNTM ¼ fxk ¼ ðx1;k; x2;k; . . . ; xs;kÞ : k ¼ 1; 2; . . . ; ng over the hypercube Cs ¼ ½0; 1�s can

be generated by Equation 7.140 (repeated here for convenience):

x̂j;k ¼ ð2kQj � 1Þmodð2nÞ j ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ; n

xj;k ¼ x̂j;k

2n

ðG:1Þ

or equivalently:

xj;k ¼ 2kQj � 1

2n
� int

2kQj � 1

2n

� �
j ¼ 1; 2; . . . ; s; k ¼ 1; 2; . . . ; n ðG:2Þ

Here, the integer vector ðn;Q1;Q2; . . . ;QsÞ is called the generator vector.

Tables G.1–G.12 are the generators which can be used to generate good uniform point sets

(Hua and Wang, 1978).

Table G.1 s¼ 2 (n¼Fm, Q1¼ 1, Q2¼Fm�1). (Reproduced with permission from Hua Luo-Keng and

Wang Yuan. Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978

Yuan Wang)

n 8 13 21 34 55 89 144 233 377 610

Q2 5 8 13 21 34 55 89 144 233 377

n 987 1 597 2 584 4 181 6 765 10 946 17 711 28 657 46 368 75 025

Q2 610 987 1 597 2 584 4 181 6 765 10 946 17 711 28 657 46 368
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Table G.4 s¼ 5, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 1 069 1 543 2 129 3 001 4 001 5 003 6 007 8 191

Q2 63 58 618 408 1 534 840 509 1 386

Q3 762 278 833 1 409 568 117 780 4 302

Q4 970 694 1 705 1 681 3 095 3 593 558 7 715

Q5 177 134 1 964 1 620 2 544 1 311 1 693 3 735

n 10 007 15 019 20 039 33 139 51 097 71 053 100 063 374 181

Q2 198 10 641 11 327 32 133 44 672 33 755 90 036 343 867

Q3 9 183 2 640 11 251 17 866 45 346 65 170 77 477 255 381

Q4 6 967 6 710 12 076 21 281 7 044 12 740 27 253 310 881

Q5 8 507 784 18 677 32 247 14 242 6 878 6 222 115 892

Table G.2 s¼ 3, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 35 101 135 185 266 418 597 828 1 010

Q2 11 40 29 26 27 90 63 285 140

Q3 16 85 42 64 69 130 169 358 237

n 1 220 1 459 1 626 1 958 2 440 3 237 4 044 5 037 6 066

Q2 319 256 572 202 638 456 400 580 600

Q3 510 373 712 696 1 002 1 107 1 054 1 997 1 581

n 8 191 10 007 20 039 28 117 39 029 57 091 82 001 140 052 314 694

Q2 739 544 5 704 19 449 10 607 48 188 21 252 34 590 77 723

Q3 5 515 5 733 12 319 5 600 26 871 21 101 67 997 112 313 252 365

Table G.3 s¼ 4, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 307 562 701 1 019 2 129 3 001 4 001 5 003 6 007

Q2 42 53 82 71 766 174 113 792 1 351

Q3 229 89 415 765 1 281 266 766 1 889 5 080

Q4 101 221 382 865 1 906 1 269 2 537 191 3 086

n 8 191 10 007 20 039 28 117 39 029 57 091 82 001 100 063 147 312

Q2 2 448 1 206 19 668 17 549 30 699 52 590 57 270 92 313 136 641

Q3 5 939 3 421 17 407 1 900 34 367 48 787 58 903 24 700 116 072

Q4 7 859 2 842 14 600 24 455 605 38 790 17 672 95 582 76 424
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Table G.5 s¼ 6, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 2 129 3 001 4 001 5 003 6 007 8 191 10 007 15 019

Q2 41 233 1 751 2 037 312 1 632 2 240 8 743

Q3 1 681 271 1 235 1 882 1 232 1 349 4 093 8 358

Q4 793 122 1 945 1 336 5 943 6 380 1 908 6 559

Q5 578 1 417 844 4 803 4 060 1 399 931 2 795

Q6 279 51 1 475 2 846 5 250 6 070 3 984 772

n 20 039 33 139 51 097 71 053 100 063 114 174 302 686

Q2 5 557 18 236 9 931 18 010 43 307 107 538 285 095

Q3 150 1 831 7 551 3 155 15 440 88 018 233 344

Q4 11 951 19 143 29 683 50 203 39 114 15 543 41 204

Q5 2 461 5 522 44 446 6 065 43 534 80 974 214 668

Q6 9 179 22 910 17 340 13 328 29 955 56 747 150 441

Table G.6 s¼ 7, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 3 997 11 215 15 019 24 041 33 139 46 213 57 091 71 053

Q2 3 888 10 909 12 439 1 833 7 642 37 900 35 571 31 874

Q3 3 564 10 000 2 983 18 190 9 246 17 534 45 299 36 082

Q4 3 034 8 512 8 607 21 444 5 584 41 873 51 436 13 810

Q5 2 311 6 485 7 041 23 858 23 035 32 280 34 679 6 605

Q6 1 417 3 976 7 210 1 135 32 241 15 251 1 472 68 784

Q7 375 1 053 6 741 12 929 30 396 26 909 8 065 9 848

n 84 523 100 063 172 155 234 646 462 891 769 518 957 838

Q2 82 217 39 040 167 459 228 245 450 265 748 528 931 711

Q3 75 364 62 047 153 499 209 218 412 730 686 129 854 041

Q4 64 149 89 839 130 657 178 084 351 310 584 024 726 949

Q5 48 878 6 347 99 554 135 691 267 681 444 998 553 900

Q6 29 969 30 892 61 040 83 197 164 124 272 843 339 614

Q7 7 936 64 404 18 165 22 032 43 464 72 255 89 937

Table G.7 s¼ 8, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 3 997 11 215 24 041 28 832 33 139 46 213 57 091 71 053

Q2 3 888 10 909 17 441 27 850 3 520 5 347 17 411 60 759

Q3 3 564 10 000 21 749 24 938 29 553 30 775 46 802 26 413

Q4 3 034 8 512 5 411 20 195 3 239 35 645 9 779 24 409

Q5 2 311 6 485 12 326 13 782 1 464 11 403 16 807 48 215

Q6 1 417 3 976 3 144 5 918 16 735 16 894 35 302 51 048

Q7 375 1 053 21 024 25 703 19 197 32 016 1 416 19 876

Q8 3 211 9 010 6 252 15 781 3 019 16 600 47 755 29 096

n 84 523 100 063 172 155 234 646 462 891 769 518 957 838

Q2 82 217 4 344 167 459 228 245 450 265 748 528 931 711

Q3 75 364 58 492 153 499 209 218 412 730 686 129 854 041

Q4 64 149 29 291 130 657 178 084 351 310 584 024 726 949

Q5 48 878 60 031 99 554 135 691 267 681 444 998 553 900

Q6 29 969 10 486 61 040 83 197 164 124 272 843 339 614

Q7 7 936 22 519 18 165 22 032 43 464 72 255 89 937

Q8 67 905 60 985 138 308 188 512 371 882 618 224 769 518



Table G.9 s¼ 10, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 4 661 13 587 24 076 58 358 85 633

Q2 4 574 13 334 23 628 57 271 37 677

Q3 4 315 12 579 22 290 54 030 35 345

Q4 3 889 11 337 20 090 48 695 3 864

Q5 3 304 9 631 17 066 41 366 54 821

Q6 2 570 7 492 13 276 32 180 74 078

Q7 1 702 4 961 8 790 21 307 30 354

Q8 715 2 084 3 692 8 950 57 935

Q9 4 289 12 502 22 153 53 697 51 906

Q10 3 122 9 100 16 125 39 086 56 279

n 103 661 115 069 130 703 155 093 805 098

Q2 45 681 65 470 64 709 90 485 790 101

Q3 57 831 650 53 373 20 662 745 388

Q4 80 987 95 039 17 385 110 048 671 792

Q5 9 718 77 293 5 244 102 308 570 685

Q6 51 556 98 366 29 008 148 396 443 949

Q7 55 377 70 366 52 889 125 399 293 946

Q8 37 354 74 605 66 949 124 635 123 470

Q9 4 353 55 507 51 906 10 480 740 795

Q10 27 595 49 201 110 363 44 198 539 222

Table G.8 s¼ 9, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 3 997 11 215 33 139 42 570 46 213 57 091 71 053

Q2 3 888 10 909 68 41 409 8 871 20 176 26 454

Q3 3 564 10 000 4 624 37 957 40 115 12 146 13 119

Q4 3 034 8 512 16 181 32 308 20 065 23 124 27 174

Q5 2 311 6 485 6 721 24 617 30 352 2 172 17 795

Q6 1 417 3 976 26 221 15 094 15 654 33 475 22 805

Q7 375 1 053 26 661 3 997 42 782 5 070 43 500

Q8 3 211 9 010 23 442 34 200 17 966 42 339 45 665

Q9 1 962 5 506 3 384 20 901 33 962 36 122 49 857

n 100 063 159 053 172 155 234 646 462 891 769 518 957 838

Q2 70 893 60 128 167 459 228 245 450 265 748 528 931 711

Q3 53 211 101 694 153 499 209 218 412 730 686 129 854 041

Q4 12 386 23 300 130 657 178 084 351 310 584 024 726 949

Q5 27 873 43 576 99 554 135 691 267 681 444 998 553 900

Q6 56 528 57 659 61 040 83 197 164 124 272 843 339 614

Q7 16 417 42 111 18 165 22 032 43 464 72 255 89 937

Q8 17 628 85 501 138 308 188 512 371 882 618 224 769 518

Q9 14 997 93 062 84 523 115 204 227 266 377 811 470 271
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Table G.10 s¼ 11, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 4 661 13 587 24 076 58 358 297 974

Q2 4 574 13 334 23 628 57 271 294 481

Q3 4 315 12 579 22 290 54 030 284 041

Q4 3 889 11 337 20 090 48 695 266 778

Q5 3 304 9 631 17 066 41 366 242 894

Q6 2 570 7 492 13 276 32 180 212 668

Q7 1 702 4 961 8 790 21 307 176 456

Q8 715 2 084 3 692 8 950 134 682

Q9 4 289 12 502 22 153 53 697 87 835

Q10 3 122 9 100 16 125 39 086 36 464

Q11 1 897 5 529 9 797 23 747 279 147

n 689 047 1 243 423 2 226 963 7 494 007

Q2 685 041 1 228 845 2 200 854 7 354 408

Q3 646 274 1 185 282 2 122 833 6 838 211

Q4 582 461 1 113 244 1 993 814 6 253 169

Q5 494 796 1 013 577 1 815 311 5 312 043

Q6 384 914 887 449 1 589 415 4 132 365

Q7 254 860 736 338 1 318 777 2 736 109

Q8 107 051 562 016 1 006 567 1 149 286

Q9 642 292 366 527 656 448 6 895 461

Q10 467 527 152 163 272 523 5 019 180

Q11 284 044 1 164 860 2 086 257 3 049 402

Table G.11 s¼ 12, 13, 14,Q1¼ 1. (Reproduced with permission fromHua Luo-Keng andWang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan Wang)

n 18 984 53 328 77 431 297 974 1 243 423

Q2 18 761 52 703 76 523 294 481 1 228 845

Q3 18 096 50 834 73 810 284 041 1 185 282

Q4 16 996 47 745 69 324 266 778 1 113 244

Q5 15 475 43 470 63 118 242 894 1 013 577

Q6 13 549 38 061 55 264 212 668 887 449

Q7 11 242 31 580 45 854 176 456 736 338

Q8 8 581 24 104 34 998 134 682 562 016

Q9 5 596 15 720 22 825 87 835 366 527

Q10 2 323 6 526 9 476 36 464 152 163

Q11 17 785 49 959 72 539 279 147 1 164 860

Q12 14 053 39 477 57 320 220 583 920 477

Q13 10 158 28 534 41 430 159 433 665 302

Q14 6 143 17 255 25 054 96 414 402 327

n 2 428 705 14 753 436 19 984 698 34 248 063

Q2 2 400 231 14 580 465 19 750 396 33 846 536

Q3 2 315 141 14 063 582 19 050 236 32 646 662

Q4 2 174 435 13 208 845 17 892 427 30 662 508

Q5 1 979 761 12 026 276 16 290 543 27 917 337
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Q6 1 733 402 10 529 739 14 263 366 24 443 334

Q7 1 438 245 8 736 780 11 834 661 20 281 228

Q8 1 097 753 6 668 420 9 032 903 15 479 816

Q9 715 916 4 348 908 5 890 941 10 095 390

Q10 297 211 1 805 439 2 445 610 4 191 077

Q11 2 275 252 13 821 268 18 722 002 32 084 164

Q12 1 797 913 10 921 619 14 794 199 25 353 030

Q13 1 299 495 7 893 924 10 692 946 18 324 655

Q14 785 841 4 773 681 6 466 329 11 081 440

Table G.11 (Continued)

Table G.12 s¼ 15, 16, 17, 18, Q1¼ 1. (Reproduced with permission from Hua Luo-Keng and Wang

Yuan. Applications of Number Theory to Approximate Analysis. Science Press, Beijing. � 1978 Yuan

Wang)

n 70 864 139 489 1 139 691 2 422 957

Q2 70 353 138 484 1 131 480 2 398 094

Q3 68 825 135 476 1 106 904 2 323 761

Q4 66 291 130 487 1 066 142 2 200 720

Q5 62 768 123 553 1 009 487 2 030 234

Q6 58 283 114 724 937 347 1 814 052

Q7 52 867 104 063 850 242 1 554 392

Q8 46 559 91 647 748 799 1 253 920

Q9 39 405 77 566 633 750 915 717

Q10 31 457 61 921 505 923 543 256

Q11 22 772 44 825 366 239 140 357

Q12 13 412 26 401 215 705 2 134 112

Q13 3 445 6 781 55 406 1 683 011

Q14 63 806 125 597 1 026 186 1 214 641

Q15 52 844 104 019 849 882 733 806

Q16 41 501 81 691 667 455

Q17 29 859 58 775 480 219

Q18 18 002 35 435 289 522

n 4 395 774 14 271 038 55 879 244

Q2 4 364 102 14 168 215 55 476 633

Q3 4 269 316 13 860 486 54 271 700

Q4 4 112 097 13 350 069 52 273 127

Q5 3 893 578 12 640 642 49 495 314

Q6 3 615 335 11 737 315 45 958 274

Q7 3 279 371 10 646 597 41 687 493

Q8 2 888 108 9 376 347 36 713 742

Q9 2 444 365 7 935 718 31 072 856

Q10 1 951 338 6 335 088 24 805 477

Q11 1 412 580 4 585 990 17 956 764

Q12 831 972 2 701 027 10 576 061

Q13 213 699 693 780 50 314 090

Q14 3 957 988 12 849 750 41 669 876

Q15 3 277 986 10 642 098 32 725 430

Q16 2 574 365 8 357 770 23 545 197

Q17 1 852 197 6 013 224 14 195 319

Q18 1 116 683 3 625 352 2 716 545
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