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Foreword

It is a great pleasure to introduce Stochastic Dynamics of Structures by Jie Li and Jianbing
Chen. The book begins with a brief history of the early discovery and developments of the field,
starting with Einstein’s introduction of the Brownian motion, followed by the classical
developments, including the mathematical formulations of Fokker, Planck, and Kolmogorov.
It is a timely and much needed exposition of the existing state of knowledge of stochastic
dynamics and its potential applications in structural dynamics and the reliability of dynamical
systems.

The topical coverage of stochastic dynamics starts properly with an introduction of the
fundamentals of random variables, random vectors, and stochastic processes including random
fields, which are the essentials necessary for the study of random vibration and stochastic
structural analysis, and culminates with the presentation of the probability density evolution
theory and its corollary the equivalent extreme value distribution; the latter is especially
significant for evaluating the dynamic reliability of structures and other engineering systems.

This book is a valuable contribution to the continuing development of the field of stochastic
structural dynamics, including the recent discoveries and developments by the authors of the
probability density evolution method (PDEM) and its applications in the assessment of the
dynamic reliability and control of complex structures through the equivalent extreme-value
distribution. The traditional analytical approach to such a dynamic reliability problem is to
formulate it as a “barrier-crossing problem” that leads to the solution of the Fokker-Planck
equation; the limitations of this approach are well known, even for single-degree-of-freedom
systems. The authors thoroughly discuss this classical approach and show its limitations,
following with the PDEM, including the numerical solution of complex multi-degree-of-
freedom systems. These are preceded with new insights, derivations, and interpretations of the
classical formulations and solutions—such as the Liouville equation, the Kolmogorov
equation, and the It6 stochastic equations—are provided through the concept of the preser-
vation of probability.

Besides elucidating the principles of stochastic dynamics from an engineer’s viewpoint, the
most significant contribution of this book is its lucid presentation of the PDEM and its
applications for the assessment of the dynamic reliability and control of structures under
earthquake excitations and wind and wave forces. In this regard, the PDEM should serve to spur
further developments of stochastic structural dynamics; with the PDEM, solutions to the
dynamic reliability of multi-degree-of-freedom systems can be evaluated numerically, includ-
ing non-linear systems. Innovative numerical schemes are proposed; besides finite difference
schemes, spherical packing schemes are also suggested for solutions of highly complex
problems.



xiv Foreword

In other words, this book includes a novel approach to the field of stochastic dynamics with
special emphasis on the applications to the dynamic response and reliability of structures. It
should serve well to advance the research in the field of stochastic structural dynamics in
general and dynamic reliability in particular.

A. H-S. Ang, NAE, Hon. Mem. ASCE

Research Professor
University of California, Irvine



Preface

As a scientific discipline, stochastic dynamics of structures has evolved from its infancy in the
early 1940s to a relatively mature branch of dynamics today. In the process, basic random
vibration theory is believed to have been established in the late 1950s and mainly deals with the
response analysis of structures to stochastic excitations, such as the response of buildings and
bridges to wind loading and earthquakes, the vibration of vehicles traveling over rough ground
and the dynamic behavior of aircraft induced by atmospheric turbulence and jet noise. In the
late 1960s, the importance of the effect of randomness in structural parameters on the structural
response was recognized gradually and this led to stochastic structural analysis, or stochastic
finite-element analysis as termed by many researchers. There has been a large amount of
literature published in the past 40 years; however, careful people may find that random
vibration theory and stochastic finite element analysis seem to have developed in two parallel
ways. Itis very hard for most engineers, even those specialists who are familiar with stochastic
analysis, to organize their knowledge of the two branches of dynamics in a systematic
framework. Therefore, the first aim of this book is to present a coherent and reasonably
self-contained theoretical framework of the stochastic dynamics of structures which may
bridge the gap between traditional random vibration theory and the stochastic finite-element
analysis method. We hope such a treatment will provide a comprehensive account for
stochastic dynamic response analysis, reliability evaluation and system control.

The second aim, which may be more important and seems a little bit ambitious, is to deal with
the basic content of stochastic dynamics of structures in a unified new theoretical framework.
We refer to this as the frame of the physical stochastic system. Most people know that, in many
practical applications, the system of concern usually exhibits nonlinearities. However, it is just
for nonlinear dynamical systems that the foundational stochastic dynamics theory involves
huge complexities. After considerable research efforts in the field of random vibration and
stochastic finite-element analysis, although some important progress has been made for simple
structural models, people still cannot solve the problem of nonlinear stochastic dynamical
systems rationally, especially for practical complex structures. Motivated by the need to
provide a rational description of a nonlinear stochastic system and of developing appropriate
analytical tools, we undertook a systematic investigation on the difficult area in the past
15 years. Tracing back to the source of the discipline, we find that there are two historical
traditions in the study of stochastic dynamics: the phenomenological tradition and the physical
tradition. Because of the introduction of the Wiener process, the two traditions gain an intrinsic
relation. However, if we return to the physical processes themselves (that is, investigating
random phenomena from a physical viewpoint), then we will be led to another possible way:
approaching the stochastic system based on physics. Using this approach, we give a rational



xvi Preface

description of the relationship between the physical sample trajectories of a dynamic system
and its probabilistic description and, therefore, establish a family of generalized probability
density evolution equations for dynamical systems which could deal with both linear and
nonlinear systems in a unified form. Furthermore, bearing in mind the physical stochastic
system, we find that traditional random vibration theory and the stochastic finite-element
methods can be appropriately brought into a new theoretical frame. Obviously, this provides a
foundation to rearrange the content of stochastic dynamics of structures in a comprehensive
framework. This book tries to present such a development, as well as pragmatic methods and
algorithms where possible.

We assume that the book will be used by graduate students and professionals in civil
engineering, mechanical engineering, aircraft and marine engineering, as well as in mechanics.
The level of the preparation assumed of the reader corresponds to that of the bachelor’s degree
in science or engineering, especially those who have a basic understanding of the concept of
probability theory and structural dynamics. In addition, to make the book self-sufficient, the
essential concepts of random variables, stochastic processes and random fields are presented in
the book.

Our sincere appreciations go first to Professor P.D. Spanos at Rice University, for his friendly
encouragement, and to Professor R.G. Ghanem at the University of Southern California, for his
constructive comments and fruitful discussions. For their valuable help and advice, special
thanks are also due to Professor W.D. Iwan at California Institute of Technology, Professor
Jinping Ou at Dalian University of Technology and Professor Yangang Zhao at Nagaya
Institute of Technology. The first author would also like to take this opportunity to express his
deep appreciation to Professor J.B. Roberts of Sussex University, who is greatly missed, for the
generous support given for the chance to complete the investigation on stochastic analysis and
modeling during 1993 and 1994 when the author spent one year as a senior visiting scholar at
Sussex University, and to his colleagues Professor Xilin Lu, Professor Guoqiang Li, Professor
Ming Gu, Professor Yiyi Chen and Professor Menglin Lou at Tongji University for their
continuous cooperation and support.

Much of the research work of the authors was developed with support from the National
Natural Science Foundation of China, over a period of decade, including the National
Outstanding Young Scientist Foundation (received by the first author in 1998), the Young
Scholars Foundation (received by the second author in 2004), and the Innovative Research
Groups Plan. All the support is gratefully acknowledged.

Finally, a votes of thanks go to Mr James Murphy, editor at John Wiley & Sons, Ltd, for his
patience and encouragement during the preparation of this book, and to Mr Roger Bullen,
Project Editor, for his patience and scrutiny in the editing of this book.

Jie Li and Jianbing Chen

Shanghai
June 2008



1

Introduction

1.1 Motivations and Historical Clues

Structural dynamics deals with the problems of response analysis, reliability evaluation and
system control of any given type of structure subjected to dynamic actions." Structures (such as
buildings, bridges, aircraft, ships and so on) refer to those bodies or systems composed of
various materials in a certain way that are capable of bearing loads and actions. On the other
hand, when we say an action applied on structures is dynamic, this not only indicates that the
action is time varying, but also that the induced inertial effects cannot be ignored. For example,
earthquakes, wind, sea waves, jet noise and turbulence in the boundary layer and the like are
typical dynamic actions. The task of dynamic response analysis of structures is to capture the
internal forces, deformations or other state quantities of structures when they are subjected to
dynamic actions. At the same time, we may need to study whether the structural response meets
some specified limit in a sense, which is generally referred to as reliability evaluation.
Furthermore, to make a structure subjected to dynamic actions response in a desired way
to an extent is what to be done in system control.

Most dynamic actions exhibit appreciable randomness. Actually, investigators frequently find
that the results observed under almost identical conditions have obvious deviation, but simul-
taneously exhibit some statistical rules. In essence, the randomness results from the uncontrolla-
bility of causation of the realized phenomenon. For example, consider wind turbulence in the
atmospheric boundary layer. It is well known that the observed wind speeds recorded at the same
positionbutduring different time intervals are quite different (Figure 1.1). However, if the statistics
of alarge number of samples are examined, then we find that the probabilistic characteristics of the
wind speed are relatively stable (Figure 1.2). In fact, the randomness involved stems from a
complicated physical mechanism in the wind flows, say the mechanism of turbulence. The
underlying reason is the uncontrollable nature of the motion of air molecules.

In addition, the randomness involved in the physical parameters of structures is also one of
the sources that induce randomness in the dynamic responses of structures. For instance, in the

! The dynamic properties of structures, such as the frequencies and mode shapes, are also research topics of structural
dynamics. But, in a general sense, the dynamic properties of structures can be regarded as part of the dynamic analysis
of structures.

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5



2 Stochastic Dynamics of Structures

Wind speed (m/s)
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Figure 1.1 Records of wind speed.

dynamic response analysis of building structures, the soil-structure interaction is one of the
basic problems where the properties of soil must be considered in the establishment of a
reasonable structural analysis model. Evidently, it is impossible to measure the physical
properties of soil completely at all points in the groundwork. Thus, a reasonable modeling
approach is to regard the physical properties of soil, such as the shear wave speed and the
damping ratio, as random variables or random fields. This will lead to the structural analysis
involving random parameters, usually known as stochastic structural analysis.

Stochastic dynamic response analysis, reliability evaluation and system control compose the
basic research scope of the stochastic dynamics of structures.

20f ]

15 oo oo — s ——=—d

Wind speed (m/s)

10t 1 1 1 7
400 405 410 415 420
Time (s)

Figure 1.2 Contour of probability density of wind speed.

Although the studies on stochastic dynamical systems can be dated back to the investigations
on statistical mechanics by Gibbs and Boltzmann (Gibbs, 1902; Cercignani, 1998), itis generally
considered more reasonable to regard the studies on Brownian motion by Einstein (1905) as the
origin of the discipline.
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Figure 1.3 Typical trajectories of Brownian motions.

In 1905, Einstein studied the problem of the irregular motion of particles suspended in
fluids, which was first observed by the Scottish botanist Robert Brown in 1827 (Figure 1.3).
Einstein believed that Brownian motion of the particles was induced by the highly frequent
random impacts of the fluid molecules. Based on this physical interpretation, Einstein made
the following assumptions:

(a) the motion of different Brownian particles is mutually independent;

(b) the motion of Brownian particles is isotropic and no external actions except the collision of
fluid molecules are applied;

(c) the collision of fluid molecules is instantaneous, such that the time of collision can be
ignored (rigid collision).

Based on the above assumptions, the probability density of the particle group at two different
instants of time can be derived by examining the phenomenological evolution process of the
particle group; that is:
+oo

f(x,t+r):J fx+r,)®(r)dr (1.1)
where f(x,t + ) is the probability density of the position of the particles at time ¢ + T,
f(x + r,t)is the probability density by transition of the particles with distance r during the time
interval 1, and ®(r) is the probability density of displacement of the particles.

Using the rigid collision assumption, expanding the functions by using the Taylor series and
retaining the first-order term with respect to f (x, ¢ 4+ 1) and the second-order term with respect
to f(x + r, ¢) will yield

F(x 1) _ (1)

o P (12)

where
J %r2<1>(r) dr (1.3)

Clearly, Equation (1.2) is a diffusion equation, where D is the diffusion coefficient.



4 Stochastic Dynamics of Structures

In 1914 and 1917, Fokker and Planck respectively introduced the drift term for a similar
physical problem, leading to the so-called Fokker—Planck equation (Fokker, 1914; Planck,
1917; Gardiner, 1983), of which the rigorous mathematical basis was later established by
Kolmogorov (1931).2

We note that, initially, the studies on Brownian motion were based on physical concepts;
however, a statistical phenomenological interpretation was subsequently introduced in the
deductions. In this book, we call this historical clue the Einstein—Fokker—Planck tradition or
phenomenological tradition. In this tradition, a large number of studies on the probability
density evolution of stochastic dynamical systems have been done (Kozin, 1961; Lin, 1967;
Roberts and Spanos, 1990; Zhu, 1992, 2003; Lin and Cai, 1995). However, for the multi-
degree-of-freedom (MDOF) systems or multidimensional problems, advancement is still quite
limited (Schuéller, 1997, 2001).

Soon after Einstein’s work, Langevin (1908) came up with a completely different research
approach. In his investigation, the physical interpretation of Brownian motion is the same as
that of Einstein, but Langevin contributed to two basic aspects. He:

(a) introduced the assumption of random forces;
(b) employed Newton’s equation of motion to govern the motion of the Brownian particles.

Based on this, he established the stochastic dynamics equation, which was later called the
Langevin equation:

mX = —yx+E&(1) (1.4)

where m is the mass of the Brownian particles, X and X are the acceleration and velocity of
motion respectively, 7y is the viscous damping coefficient and £(¢) is the force induced by the
collision of the fluid molecules, which is randomly fluctuating.

Using the ensemble average, Langevin obtained a diffusion coefficient identical to that given
by Einstein.

In contrast to the diffusion equation derived by Einstein, the Langevin equation is more
direct and more physically intuitive. However, the physical features of the random forces are
not completely clear in Langevin’s work.

In 1923, Wiener proposed a stochastic process model for Brownian motion (Wiener, 1923).
Around 20 years later, It6 introduced the It6 integral and gave the more generic Langevin
equation based on the Wiener process (Itd, 1942, 1944; 1t6 and McKean, 1965):

dx(z) = a[x(¢), 7] dt+ b[x(z), 1] dW () (1.5)

where a(-) and b(-) are known deterministic functions and W(7) is a Wiener process.
The form of Equation 1.5 is nowadays called the It0 stochastic differential equation. Clearly,
this equation is in essence a physical equation. It is generally believed that the 1t6 equation

2 Interestingly, Kolmogorov did not at first know about the work of Fokker and Planck and developed his equation
independently.
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provides a sample trajectory description for stochastic dynamical systems. In this book, we
refer to this historical clue as the Langevin—Ito tradition or physical tradition. In this approach,
the mean-square calculus theory was established, based on which correlation analysis and
spectral analysis in classical random vibration analysis were well developed (Crandall, 1958,
2006; Lin, 1967; Zhu, 1992; @ksendal, 2005).

There were intrinsic and countless ties between the phenomenological tradition and the
physical tradition in stochastic dynamics. As a matter of fact, upon the assumption that the
system inputs are white-noise processes, it is easy to obtain the Fokker—Planck—Kolmogorov
(FPK) equation via the Itd equation. This demonstrates that in the physics approach we can
discover the intrinsic arcanum of the evolution of stochastic systems. Unfortunately, white noise
is physically unrealizable. In other words, although mathematically it plays a fundamental role
in a sense, the various singular or even ridiculous features of white noise (say, continuous but
indifferentiable everywhere) are rare in the real world.

The white-noise process is, of course, an idealized model for various real physical processes.
Noticing this, we naturally hope to return to the real physical processes themselves. For a specific
physical dynamical process, the problem is usually easily resolvable. Thus, once further
introducing the intrinsic ties between the sample trajectories and the probabilistic description,
we will be led to an approach of studying stochastic systems based on physics. In this approach,
we not only can establish the generalized probability density evolution equation (Li and Chen,
2003, 2006c, 2008), but also find that the nowadays available major research results, such as
traditional random vibration theory and stochastic finite element methods, can be appropriately
brought into the new theoretical frame (Li, 2006). In fact, correlation analysis and the spectral
analysis in classical random vibration theory can be regarded as the results of combining the
formal solution of physical equations and the evolution of moment characteristics of the
response processes. Perturbation theory and orthogonal expansion theory in the analysis of
structures with random parameters can also be reasonably interpreted in this sense. The classical
FPK equation, as mentioned before, can be viewed as the result of the idealization of physical
processes. In addition, the thoughts of physical stochastic system can also be used in modeling of
general stochastic process, such as seismic ground motion, wind turbulence and the like (Li and
Ai, 2006; Li and Zhang, 2007).

On the basis of the above thoughts on physical stochastic systems, we prefer to entitle this
book Stochastic Dynamics of Structures: a Physical Approach.

1.2 Contents of the Book

This book deals with the basic problems of the stochastic dynamics of structures in the
theoretical frame of physical stochastic systems.

In Chapter 2 the prerequisite fundamentals of probability theory are outlined, including the
basic concepts of random variables, stochastic processes, random fields and the orthogonal
expansion of random functions.

Chapter 3 deals with stochastic process models for typical dynamic excitations of struc-
tures, including the phenomenological and physical modeling of seismic ground motions,
fluctuating wind speed and sea waves. Simultaneously, we introduce the standard orthogonal
expansion of stochastic processes, which can be applied to random vibration analysis of
structures.
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The approaches for analysis of structures with random parameters mainly include the
random simulation method, the perturbation method and the orthogonal expansion method.
These approaches are discussed in detail in Chapter 4.

Chapter 5 deals with the response analysis of deterministic structures subjected to stochastic
dynamic excitations, including correlation analysis, spectral analysis, the statistical lineariza-
tion method and the FPK equation approach. In particular, in this chapter we introduce the
pseudo-excitation method for linear systems. We believe these contents are valuable to
in-depth understanding of classical random vibration theory.

Probability density evolution analysis of stochastic responses of dynamical systems is an
important topic of the book. We will deal with this topic in Chapters 6 and 7. In Chapter 6 we trace
in some detail the historical origin of probability density evolution analysis of stochastic
dynamical systems. Using the principle of preservation of probability as a unified basis,
we derive the Liouville equation, the FPK equation, the Dostupov—Pugachev equation and the
generalized probability density evolution equation proposed by the authors. In Chapter 7 we
study the numerical methods for probability density evolution analysis in detail, including
the finite difference method, the strategy of selecting representative points via tangent spheres,
lattices and the number theoretical method. For all these methods, we discuss the problems of
numerical convergence and stability where possible.

The aim of structural dynamical analysis is to realize reliability-based design and
performance control of structures. We discuss the problem of dynamic reliability and global
reliability of structures in Chapter 8. Based on the random event description of the evolution
of probability density, the absorbing boundary condition for the first-passage problem is
introduced. The theory on evaluation of the extreme value distribution is elaborated through
introducing a virtual stochastic process related to the extreme value of the response process.
Furthermore, the principle of equivalent extreme value and its application to the global
reliability evaluation of structures is discussed. It is worth pointing out that the principle of
equivalent extreme value is of significance and applicable to static reliability evaluation of
generic systems.

We come to the problem of the dynamic control of structures in Chapter 9. On the basis of
classical dynamic control, the concept of stochastic optimal control is introduced and the
approach for design of the control systems based on probability density evolution analysis is
proposed. For realization of ‘real’ stochastic optimal control of dynamical systems, the
proposed approach is undoubtedly promising.



2

Stochastic Processes
and Random Fields

2.1 Random Variables
2.1.1 Introduction

By an experiment we mean taking a kind of action or operation devised to seek for a certain truth or
fact. For some experiments, the results possess basic properties of deterministic phenomena once
all underlying conditions are well controlled and all experimental phenomena are exactly observed.
In other words, the results of these experiments are predictable. Owing to uncontrollable or
immeasurable facts, however, those experiments may obtain varied results, though fundamental
conditions remain invariant in some respects. This is the so-called random phenomenon. The results
occurring in a set of random experiments are generally called random events, or events for
simplicity. The basic property of a random event lies in that the predicted event may be observed or
not when the observational conditions differ by a small amount. However, we can always identify
the set whose elements consist of all the possible results for a given experiment. In other words, the
union of all experimental results can be determined beforehand. This set is called the sample space
and denoted by Q. Each possible resultin Q is called a sample point, denoted by @. Each event A can
be understood as a subset of 2. An event is called an elementary event if it contains only a single
sample point. On the other hand, we can say that a compound event is a certain set of sample points.
A family of events, denoted by F or termed o-algebra, refers to the subset of A which satisfies the
following statements:

(a) Qe F;
(b) A € F implies A € F, where A is the complement of A;
(c) Ay e F(n=1,2,...) implies U>_,A, € F.

To measure a sample space, we need to assign a numerical value to measure the possibility of an
event occurring. This gives rise to the concept of probability measure, by which every event in
F is mapped into the unit interval [0, 1]. That is, the possibility of each occurrence can be
represented by a nonnegative number smaller than unity. In general, we call this number the

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5
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probability measure of , or the probability of the given event A, denoted by P(A) or Pr{A}. In
addition, in Kolmogorov’s Foundations of the Theory of Probability, the triple (Q, F, P) is
defined as the probability space (Kolmogorov, 1933; Loeve, 1977; Kallenberg, 2002).

We have already noted that the probability measure gives a gauge of an event’s occurrence,
but does not give a similar one for the sample points. In mathematics, this problem is resolved
by defining on the probability space a measurable function X(@), which is generally called a
random variable, and denoted by X for short.! It has two basic properties:

(a) A random variable is a single-valued real function of sample points. That is, each random
variable produces a mapping from a probability space to a field of real numbers.
(b) For any real number, {®@ : X(@) < x} is a random event.

With the concept of a random variable, we can adopt numerical values to describe the results of
any random experiment. For instance, an elementary event is expressed in the form that a
random variable X is equal to one deterministic number (i.e. X = x), while any arbitrary event
can be expressed in a way that X takes values over an interval x; < X < x; and its probability of
occurring is denoted by Pr{x; <X <x,}. There are two basic types of random variable:
discrete random variable and continuous random variable. The former take values in a finite or
countable infinite set, while the latter can be assigned any value in one or several intervals.
When the Dirac delta function is introduced later, the discrete random variable and continuous
random variable will be seen to operate in a unified way (see Appendix A), but in this book it
is mainly the continuous random variables that are discussed.

In general, Fx(x)=Pr{X(@) <x} (—eo<Xx <o) is called the cumulative distribution
function (CDF) of the random variable X. It satisfies the following basic properties:

(a) lim, . . Fx(x) = 0,lim, .. Fx(x) = 1;
(b) if x| < x5, then Fx(x)) < Fx(x2);

(¢) Fx(x —0)=Fx(x);

(d) Pr{x; <X <xp}=Fx(xy) — Fx(x)).

By introducing random variables, we can further deal with probability measure problems
of complicated systems. This is done by the use of operations performed on random variables.

2.1.2 Operations with Random Variables

Two of the most important operations are the distributions of random variables’ functions and
the moments of random variables. They are both based on calculations of the probability
density functions (PDFs). Thus, the concept of the PDF is introduced first.

For a continuous random variable X, the PDF is defined as the derivative of its CDF:

px(x) = %FX(X) (2.1)

where px(x) is a nonnegative function; that is, there always exists px(x) > 0.

' A random variable is usually denoted by a capital letter or Greek character, say X or £, while the sample value of a
random variable is usually denoted by the corresponding lower case character, say x. The convention is used in the book
except for special statements.
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The inversion of Equation 2.1 gives

Fx(x) = J:opx(x) dx (2.2)

where the condition Fy(—e0) =0 has been used.
As the upper limit of the integral goes to infinity, we have

J px(x)dx =1 (2.3)
Figure 2.1 depicts a typical PDF and the CDF.

Px(x)

Fy ()

Felx) =

o X4 X

Figure 2.1 PDF and CDF.

If a random variable Y is the function of another one X, namely Y = f(X), and f(:) only has a
finite number of discontinuity points, then the CDF of Y is given by

R =P <) = | pa)ax (24)

This integral is calculated over all the segments in the x axis which satisfy the inequality
below the integral symbol.

Theoretically, according to Equation 2.1, it is easy to obtain the PDF of Y from
Equation 2.4. However, we may encounter difficulties when making specific operations,
because sometimes f(-) may be a very complicated function. Thus, in general we only
consider two cases as follows:
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0 X

Figure 2.2 A single-valued function.

(a) Suppose f(x) is a monotonic function. Then there exists g(v) as the unique inverse function
of f{x). Using Equations 2.1 and 2.4, the PDF of Y is given by

dg (y)‘

pr(y) px[g(y)]‘dy

(2.5)

(b) Suppose f(x) is not monotonic but a single-valued function (see Figure 2.2). In this case, we
can try to divide the domain of x-values into several intervals such that, over each interval, f
(x) is a monotonic function. Then, similar to Equation 2.4, there is

pr(y) = pxler(y)] ’dggy(y)‘ (2.6)
k

where g.(y) is the inverse function of f(x) in the kth interval.

As already noted, the CDF or PDF describes the distribution properties of random variables
in a precise way. On the other hand, somewhat rough descriptions of random variables are the
moments, among which two of the most useful ones are the expectation and the variance.

The expectation of a continuous random variable is defined as the first origin moment of its
density function; that is,

EX] = JW xpx(x) dx (2.7)
Its variance is the second central moment of its density function:
D) = (X~ W)} = [ (= EX)palx) dn (8
The basic property of the expectation is its linear superposition; that is:

ElaX + b = al]X]+ b (2.9)

where a and b are any two constants.
Correspondingly, the variance obeys

DlaX + b] = a*D[X] (2.10)
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In general, we call
m, = EX"] = ) xX"px(x) dx (2.11)
the nth origin moment of X and denote the expectation m; by .
Ky = E[X— )] = [ (x—w)"px(x) dx .12)

is called the nth central moment of X, and o?isu
called the standard deviation of X.

— oo

sed to denote K, or D[X]. o = /D[X]is usually

The central moments can be expressed by the linear combination of origin moments:

X —p) =

i=0

where

n\ n!
i) il(n—

(

’7)(—5[){])”"‘5[){"] (2.13)

]

Similarly, the origin moments can also be computed by the central moments.
For a continuous random variable X, the characteristic function, denoted by fx(1}), is the

Fourier transform of its PDF; that is:
A0 = |

As noted, the characteristic function can serv

e px(x) dx (2.14)

e as amode of describing random variables like

the PDF. More significantly, moment functions of arandom variable can be given by derivatives

of its characteristic function. In fact:

dn 19 - - ivx n
ﬁf;" ) =1 Jime‘?‘x px(x) dx (2.15)
Let 9 =0, then
d/x(9) :i”J py(x) dx = EX] (2.16)

where i is the imaginary number unit. Meanwhile, we obtain the Maclaurin series expansion

of fx(9):

K®) =)+ 3
n=1

9=

9" = (i9)" .,
E:I—&-Z;Té'[x] (2.17)
0 n=

Equation 2.17 implies that the lower-order moments contain the major parts of information
about a distribution. For many practical problems, second-order statistics are enough to

describe them.
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2.1.3 Random Vectors

In many cases there is more than one random variable of interest. If the random variables
X (@), Xo(®), . . ., X,,(w) belong to the same probability space (Q, F,P), then

X = (Xi(@), Xa(@), . .., Xo(@)) (2.18)

is an n-dimensional random vector.
The joint CDF of a random vector is defined by

Fx(x1,X2,...,%x,) = Pr{X) <x1, X2 <x2,..., X, <Xxn}

X1 X2 Xn (219)
:J J J px(x1,x2,. .., x,) dxydx; ... dx,

oo — o0

where px(xy, X2, . . ., X,,) is the joint PDF of X. The joint density function satisfies the following
properties:

px(x1,x2,...,%,) >0 (2.20)
J J J px(x1,%2, ..., x,)dx;dxy ... dx, =1 (2.21)
and there exists
o"F o Xy
Px(e 32, ) = XL X2 ) (2.22)

6x16xz ce axn

For a certain component X;, the marginal distribution and the marginal density function are
respectively defined by

FX[(X,‘) = PI'{X[<.XI‘} = Fx(oo7 ce ., 00, X, 00, .. .,00) (223)

and
px,(xi) = J .. J px(X1,x2, .oy xp) dxydxg .. dxo g dxggg ... dxy (2.24)

Generally speaking, the marginal distribution can be uniquely determined by the joint
probability distribution function, but the converse is not true. In other words, the joint PDF
contains more information than each marginal density function separately, since the latter can
be obtained from the former. This implies that the correlation between random variables is an
important profile of a random vector.

For an n-dimensional random vector, the conditional cumulative distribution and the
conditional PDF with respect to a certain component X; are respectively defined by

Fxpx, (X1, oo Xi o 1, Xig 1500+ X | X5)

=Pr{X;<xi,.. ., Xio1<Xi- 1, Xip 1 <Xig1, .-, X <X |X; = X3} (2.25)
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and
Pxx; (x Xi—1,X; Xulxi) = Px(X1, X2, %)
XA oo M=l R Do e Rl I7 opx(x1,x2, .o xp) dxg oo dx o dxg g dxy
(2.26)
If for all the x{, x», .. ., X,, there exists
Fx(X17X2, .. .,xn) = FX] (X])sz(xz) .. .Fxn(x,,) (227)
or
pX(Xl,XQ, oo 7xn) = Dx, (xl)PXz (x2) - Px, (xﬂ) (228)

then we call X, X», . . ., X,, statistically independent random variables. In this case, the marginal
probability distribution of a certain component is equal to the corresponding conditional
probability distribution.

Let a function Y=£(X|, X5, . . ., X,,). Then its probability distribution function is given by

Fy(y) = PI'{f(Xl,XQ, e ,Xn)<y} = J pX(xl,xz, .. .,Xn) dX1 dXZ e dx,,

f(1,%2,00,X0) <Y

(2.29)

Similarly, for m functions Y;=f(X, X5, ....X,), i=1,2,...,m, there is
Fy(yl,yz, e ;ym) = Pr{f,’(Xl,Xz, e 7Xn)<yi7 I = 1,2, e ,m}

= J px(X1,%2, ..., x,) dxy dxp . .. dx, (2.30)
i (X1,X2,505X0) < Yis1<i<m

Like the one-dimensional case, Equations 2.29 and 2.30 require that fi(-) obey some
restrictions. In particular, consider the case m =n. To be exact, assume that there exist the
unique inverse functions of y;=f(xy, X,, ..., X,), denoted by x;=x{y1,2,...,V»), and the
continuous partial derivatives 0x;/0y;. Then, the PDF of the n-dimensional random vector Y can
be given by

_Jex(x1, x5, x0) ] it (v1,52,-,9n) € Qs s,
YY1, Y25 -3 Yn) = { 0 otherwise (2.31)
where Qg 4 is the value domain of (f},f>,....f,) and IJI is the absolute value of the
determinant of the Jacobian matrix
0x; 0xp 0x,,
Oyp oy 0w
0x; 0xp 0x,,
|J| = 6y2 6y2 o ayz (232)
0x; 0xp 0x,
Oyn Oy 0w




14 Stochastic Dynamics of Structures

When the inverse functions are not one-to-one, namely y; =f{x, Xo, ..., X,), i=1,2,...,n,
have more than one solution, then one point in the space Y corresponds to multiple points in the
space X. In such a case, it is necessary to partition X into several sub-domains so as to yield one-
to-one transformations from Y to each sub-domain of X. Then, the probability that Y takes
values over a certain subset of Y is equal to the sum of probabilities that X takes the values over
the corresponding sets in each sub-domain of X; that is:

) = {kax(m,xzk, ey Xng) [k if(y1,y2,- -, 9n) € Qi
»Jn -

Y1y, .- 0 otherwise

(2.33)

where Qf - is the value domain of (f},f2, . . ..f)-

To describe the distribution of an n-dimensional random vector completely, its n-dimen-
sional joint probability distribution function is needed. This may be difficult for most practical
cases. In many practical applications, it is feasible to use a family of expected values of the
random vectors.

For a random vector (X1, X», . . ., X,,), the expectation is given by (£[X1], E[Xz], . . ., E[Xu)),
where

g[Xl] = Ji:c XiPXx; (x,-) dx,» (234)
and its variance is (D[X], D[X5], ..., D[X,]), where
D) = (%~ ) = | (- ] o) (2:35)

It is obvious that the above expectations and variances only reflect the information of each
random variable itself. Apart from these, in practical problems, the correlated information
between two random variables is equally worth noting. The covariance of two components X;
and X; is defined by

cj = cov[X;, Xj| = E{(X; — E[Xi]) (X; — E[X)])}

N (2.36)
| |t e - e (o) axidy
The matrix
i1 Ci2 ... Cip
C— €1 € ... Cp (2.37)
Cnl Cp2 ... Cpp
is called the covariance matrix of (X, X>,...,X,).
Sometimes it is convenient to define the parameter
_ cov[X;, X;] (238)

Pi = /D)D)
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as the correlation coefficient of X; and X;. This parameter indicates whether two random
variables are linearly dependent or uncorrelated. That is, if p = 1, then X; and X are said to be
completely correlated. In other words, they are equivalent in the sense of probability. If p =0,
then X; and X are said to be completely uncorrelated. However, the uncorrelation does notimply
independence. The latter usually means no function relation between the two random variables.

Note that the correlation coefﬁcient is essentially the covariance of standardized random

variables (X; — £[X;])/\/DP[X;] and (X; — £[X;])//D[X;]. Therefore, the matrix

P P12 -+ P
p= P21 P22 --- P (2.39)
pnl pn2 e pnn

is called the normalized covariance matrix or the correlation coefficient matrix.
The expectation of a random function g(X;, X», . .., X,,) is defined by

ElgX1,Xs,...,X,)] = J .. J g(x1, x2, .y xu)px (X1, X2, ..., Xp) dxy dxp ... dxy,
(2.40)

Comparing Equation 2.40 with Equation 2.29, we find that the expectation of a function of a
random vector, ¥ = g(Xy, X>, . . ., X;,), can be computed directly from Equation 2.40 without the
need to first obtain its PDF py(y).

For more complicated functions, we can expand the random function g(-) in a series form:

Y =g(€Xi],E[Xa], ..., E[X, +ZaX = e (Xi = €1XI])
Xn:£[er]
1< d%g
3 2 3X,0%;| Y=l X; — EXDX; - E[X]) + - (2.41)
X,=E[X,]

Retaining only the linear terms, we get the mean and the variance of Y respectively as below:

ElY] = g(€x1], E[Xa], ..., E[Xa]) (2.42)
and
2
n ag n n ag ag
Dy] = > (3 e DIX;] + 2 2o el g | e VX X (243)

XH:S[XK] XW:E[XW] Xn:‘g[xu]
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The expansion formula (Equation 2.41) is actually a basis for the perturbation theory of
stochastic structure analysis (see Chapter 4).

2.1.4 Decomposition of Correlation Matrix

As noted in Equation 2.37, the covariance matrix is both symmetric and nonnegative definite.
This fact implies that, for the covariance matrix C, there exists a diagonal matrix

21 0 ... 0
0o A ...
A= ) (2.44)
. 0
0 0 "
and an n-dimensional matrix
b b . by,
b P . Dy
¢:N’17¢27"'7¢n]: (2.45)
d)nl d)nZ e d)nn
such that
Cd =\ (2.46)
where 4;,i=1,2,...,n, are the eigenvalues of C and ¢ is the eigenvector matrix of C. Note

that ¢ is an orthogonal matrix; that is, ¢'¢d=1I where the superscript T denotes the
vector transpose.

The matrix ¢ leads to a similarity transformation, through which the formerly nondiagonal
matrix C is transformed to a diagonal matrix \; that is:

A=¢4"Cd (2.47)

Thus, for a random vector X = (X3, X5, . . ., X,,), we are sure to obtain the eigenvalues and the
eigenvectors with respect to a covariance matrix by adopting the eigenvalue theory of matrices.
This process is the so-called decomposition of the correlation matrix, through which the
former correlated random vector (X, X5, . . ., X,,) can be transformed into a set of uncorrelated

random variables Y =(Y}, Y5, ..., Y,) by a linear transform:
X=Xo+oY =Xo+ > ¥¥; (2.48)
i=1

where X is the mean vector of X.
In fact, let X, =d¢Y; since adding vectors with constants makes no change to the
corresponding covariance, there is
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Cx = Cx, = E[X,X]] (2.49)
Combining Equations 2.49 and 2.47 gives
N = &TEX,XD)d = &TEDYY 7] = E[YY] (2.50)

This indicates that N is nothing but the covariance matrix of Y.
Let Y; = VAi{;, then ({1,{5,...,{,) is a standardized sequence of uncorrelated random
variables such that

X =Xo+ > /Al (2.51)
i=1

This shows that arandom vector can be represented in the form of a sequence of standardized
uncorrelated random variables.

2.2 Stochastic Processes
2.2.1 Specification of Stochastic Processes

The so-called ‘stochastic process’ refers to a family of random variables defined over a
parameter set. Every point of the setis associated with a random variable. In this point of view, a
one-dimensional stochastic process may be understood as an extension of a random vector
(Figure 2.3). Therefore, those basic concepts that hold for multidimensional random vectors
are still true for one-dimensional stochastic processes.

X ) ) ]

Aoaada L
of AR vku RN

: : | p(xt)
X : : :
ST Y WY
PO

A';/\ EA V/\ [\1 ﬁ‘\ A AN /:\fl\w o X

A YA A A

(a) stochastic samples (b) one-dimensional PDF

Figure 2.3 A stochastic process and the one-dimensional PDF.
Assume that {X(¢), # € T} is a stochastic process, where  is a time parameter that belongs to a set
T (a time interval). To describe its probability properties, what first counts is the distribution of
every one-time random variable (or the random variable atacertain time ¢, t € 7). This is denoted by

F(x,f) = Pr{X(1)<x} t€T (2.52)

and called the one-dimensional distribution of {X(¢),z € T}.
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It is obvious that the one-dimensional distribution alone is insufficient to describe
a stochastic process. Then, it naturally comes into our minds to study how the random
variables of a stochastic process at different time instants are correlated. For this purpose we
introduce

F(X],h;Xz,lz):PT{X(Z1)<X1,X(12)<X2} l],lzGT (253)
as the two-dimensional distribution of {X(¢), 7€ T}.
In increasing order of completeness, for any finite {#,, f,, ..., t, € T}, there is
F()Cl, 11, X2, 125 .. .5 Xy, ln) = Pr{X(tl) <X1,X([2) <X2,... ,X(ln) <xn} (254)

which is called the n-dimensional distribution of {X(¢),t € T}.

For a stochastic process {X(?),t € T}, its one-, two-, ..., and n-dimensional distributions
constitute its complete probabilistic structure. In fact, once this family of finite-dimensional
distributions is given, we can determine the correlation of any finite random variables of the
stochastic process at different time instants. That is, the probabilistic structure of {X(¢), 7 € T} is
obtained.

The family of finite-dimensional distributions satisfies the following three properties:

(a) Nonnegative; that is:
0 < F(xi,ti3x0, 8055 Xny 1) < 1 (2.55)
(b) Symmetry; that is, for any permutation (jy, j, . . .,j,) of (1,2,...,n), there is
F(xj, 63X, t; -3 X, ) = F(xn, ti; X2, 5.+ 5 X, 1) (2.56)
(c) Compatibility; that is, as m < n, there is
F(X1,t05 05 Xy b 0y 15+« o500, 1) = F(X1, 815X0, 825+ 25 Xy ) (2.57)

According to Equation 2.57, the lower dimensional distributions can be obtained from the
higher dimensional ones.

Similar to the cases of a random variable and a random vector, for a stochastic process the
finite-dimensional density functions are defined by the derivatives of the corresponding
distribution functions; that is:

OF (x,1)
) = —2
p('x’ ) ax
azF(Xlall;x27t2)
X0, 1y) = —— 22
p(xla 15 X2, 2) axlaxz (258)
O"F(X1,t13X2, 82} -« 3 Xy 0y
p(x1,t1;x2,l2;...;xn,ln) — (xla ]7x27 25 7xl’l7 1)

0x10x, ...0x,

Certainly, this family can completely describe the probabilistic structures of a stochastic
process as well.
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A stochastic process may also be specified by a sequence of characteristic functions. In fact,
performing a Fourier transform on every member of the above family yields the family of finite-
dimensional characteristic functions:

M(9,t) = E{exp[ivX(?)]} = ijp(x7 £)e dx
M (D1, 11302, 1) = E{explith X(11) + it X (12)]}

= J p(x1,t1;x2, tz)eiﬂ‘x‘ H02% ) dx,

M(ﬁl, 11;1(}2, 1 .. .;19,,, ln) = S{exp[ZZﬂjX(tj)]}

J=1

= J P(Xh 115X2, 025« 3 X,y tn)eXp (iZﬁij) dx;dx,... dx,

- (2.59)

where ¥; are arbitrary real numbers.
A higher order characteristic function can be reduced to a lower order one by setting some of
the 4, as zero:

MO, ;0,550 b3 0, by 13-+ 50, b k) = M(0q, t130, 1550, 1) (2.60)

Generally, characteristic functions are continuous and complex-valued. Since they form the
Fourier transform pairs with the corresponding density functions, the family is an equivalent
description of the probabilistic structure of a stochastic process.

2.2.2 Moment Functions of a Stochastic Process

A stochastic process can also be described by moment functions of various orders, which are
defined as

EX(n)] = Jio x1p(x1, ) dx

” 2.61
EX(t1)X(12)] ZJ xX1X2p(X1, 113 %2, 12) dxy dxz (261)
when these moments exist.
From the MacLaurin series expansion of a characteristic function
MOy, 110, ;.. ;0 1) = 1+zZﬂS ()] 'Zkz:ﬁﬁkg (t)X (1)) +
J 1
(2.62)

it is noted that all the moment functions give a complete description of a stochastic process.
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The first moment function of a stochastic process X(7) is called the expectation, which is
defined by

mx (1) = E[X(1)] = Jio xp(x,t)dx (2.63)

Clearly, for a specific section of random samples, the above equation represents the
first origin moment of the random variable of the stochastic process at time #. For the whole
process, it represents the locus of average centers of the X(#) sample functions x«¢) in the time
domain.

A stochastic process is said to be stationary of first order if m1x(¢) = constant. The stochastic
process of this type can be easily reduced to a process with zero mean. With this transform, we
may concentrate our attention on the deviation of the process from its expectation; that is, its
variance.

The correlation function serves as a measure of interrelation of any two different states of
stochastic processes. It quantifies how close the values of the random variables specified at two
different time instants are in the sense of probability. There are auto- and cross-correlation
functions according to whether the correlation information of one or between two stochastic
processes needs to be characterized.

The autocorrelation function of X(t) is defined for two random variables from the same
process by

Rx(ll , Zz) = (‘:[X(l])X(lz)] = J J xlxzp(xl,tl;xz, 12) dx dx, (264)

On the other hand, the cross-correlation function is assigned to those from two different
processes. Suppose X(¢) and Y(¢) are two stochastic processes, then the cross-correlation
function is defined by

Ryy(t1,12) = EX(1)Y(2)] = J J xX1y20(X1, 113 y2, t2) dxp dys (2.65)

where p(x1, t;y,, 1) is the joint PDF of X(#;) and ¥(1,).

The cross-correlation function describes the interrelation between two stochastic processes
in the time domain. In other words, it indicates the degree of probabilistic similarity between
two stochastic processes at different time instants.

The normalized correlation functions are called as correlation coefficient. The auto-
correlation coefficient is denoted by

Rx(ti, 1)

ox(t)ox(t2) (260

rx(t, ) =

for a zero-mean stochastic process. Correspondingly, the cross-correlation coefficient is

Rxy(ti,t2)

70)((“)01/02) (2.67)

rxy(ti, ) =

As noted, the correlation is based on the second origin moments of processes, whereas the
following covariance is on the second central moments.
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For a stochastic process X(?), the auto-covariance function is defined as

Kx(t1,12) = E{X(11) — mx (0)][X (22) — mx (12)]}

<[ (2.68)
= J_ J_ [X] — mX(l1)][X2 — I’}’Zx(lz)]p(xl , I X, lz) dx; dx,
As t; =1, =1, the above definition gives
Kx(t,1) = E{[X(t) = mx(1)]} = DX (1)] (2.69)

where D[X(7)] is called the variance of X(f), which is used to gauge how extensively X(7)
varies around its expectation. The standard deviation of X(¢) refers to the square root of D[X(¢)];
that is:

ox(t) = v DIX(1)] (2.70)
For two stochastic processes, the cross-covariance function is defined as

Kxy (11, 12) = E{[X(t1) — mx(0)][Y (t2) — my(22)]}

N (2.71)
= J J [x1 —mx(t1)][y2 — my(t2)]p(x1, t1;y2, 12) dx; dy>
It is easy to verify the following relationships:
Kx<11,l2) :Rx(ll,lz) —mX(tl)mx(lg) (2728)
ny(ll,lz) :ny(ll,lz) —mX(h)I’ny(lz) (272b)

These two equations imply that, for stochastic processes with zero mean, the covariance
function equals the correlation function.

A stochastic process is called a weakly stationary process if its expectation is a constant and its
autocorrelation function depends only on the time difference T = ¢, — #; (independent of #; and
1,). In contrast, a strictly stationary process refers to one whose finite-dimensional distributions
are time invariant. Generally speaking, a weakly stationary process is not necessarily a strictly
stationary one, while a strictly stationary process must be a weakly stationary one. Only for a
normal process, if weakly stationary, is it also strictly stationary. In practical applications, the
weak stationarity is much more widely used than the strict stationarity. Thus, the stationary
processes mentioned below, unless specified otherwise, mean the weakly stationary ones.

The autocorrelation function of a stationary process is expressed as

Rx(t) = Rx(t, — 11) (2.73)
and its cross-correlation function as
Rxy(t) = Rxy(t2 — 11) (2.74)
Notice that, for a stationary process, the variance D[X ()] in Equation 2.69 becomes

DIX(t)] = 0% = Kx(0) (2.752)
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and if X(7) has zero mean, then from Equation (2.72a) there exist
DIX(1)] = 0% = Kx(0) = Rx(0) (2.75b)
The following properties hold true for the autocorrelation function:
(a) It is symmetric
Rx(t) =Rx(—1) (2.76)

(b) It is nonnegative definite

n n

DD Rx(ti— t)h(t)h (1) > 0 (2.77)

i=1 j=1

where A(¢) is any arbitrary complex function and /"(¢) is the complex conjugate.
(c) It is bounded

|Rx(7)| < Rx(0) (2.78)
(d) If X(¢) does not contain periodic components, then for a zero-mean stochastic process

lim R(1) = 0 (2.79)

T — 00

A typical autocorrelation function of a zero-mean stationary process is shown in Figure 2.4.

R(7)

\/ o T

Figure 2.4 Autocorrelation function of a zero-mean stationary process.

The importance of the first- and second-order statistical properties of a stochastic process
may be realized not only from the fact that the lower moments contain the major parts of
information about the process (see Equation 2.62), but also from the fact that an upper-bound
estimate of the probability of the event {|X(¢) — mx(¢)| > ¢} at any ¢ can be made from the
mean and variance functions for an arbitrary stochastic process. In fact, let 0% () and o-é(t) be
the variance function of X(#) and its derivative respectively; it can be verified that (Lin, 1967)

Pr{|X(¢) —mx(t)] > efora <t <b} < % [0 (a) + o3 (b)] + siZE ox(t)og(t)dt ¢>0

(2.80)
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2.2.3 Spectral Description of a Stochastic Process

In a general sense, the power spectral density (PSD) function is the Fourier transform of the
covariance function of a stochastic process. However, it is easy to transform a stationary
process to a zero-mean process. Thus, the PSD of a stationary process is defined as the Fourier
transform of its correlation function.

Consider a stationary process X(z). Its auto-PSD function is

Sx(w) = Jle(r)e*"wf dt (2.81a)

while the inverse Fourier transform gives

1

Rx(‘f) = %

J Sx(w)e™™ dw (2.81b)

The above pair is the celebrated Wiener—Khintchine formula.
The auto-PSD Sx(w) satisfies the following properties:

(a) Sx(w) is nonnegative; that is:
Sx(w) > 0 (2.82)
(b) Sx(w) is real and even (or symmetric); that is:
Sx(©) = Sx(— ) (2.83)

Using Equation 2.83, we get

Jl Sy(®) de = 2 J: Sy(®) do (2.84)

which leads to the definition of the unilateral PSD

[ 285x(w) 0<w<e
Ox(0) = {O otherwise (2.85)

Accordingly, Sx(w) is called the bilateral PSD. Obviously, over the nonnegative real number
field, Gy(w) is twice that of Sy(w).

The cross-PSD Sxy(w) of two stochastic processes X(¢) and Y(¢) is the Fourier transform of
their cross-correlation function Ryy(7):

Sxy(w) = J Ryy(t)e” “dt (2.86a)
while the inverse Fourier transform gives

1 (7 .
ny(‘[) = %J Sxy(w)ele dw (286b)
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The cross-PSD Sxy(w) satisfies the following properties:

(a) Sxy(w) is generally a complex function;
(b) Sxy(w) satisfies

Sxy(@) = Syy (@) = Sxy( — o) (2.87)
(c) Sxy(w) satisfies the inequality
|Sxr (@)* < Sy(w)Sy (o) (2.88)

A relationship between the PSD function of a stochastic process and the Fourier spectrum of its
samples can be established. Actually, for stationary processes X(#) and Y(¢), we have (Bendat
and Piersol, 2000) (for proof, see Appendix C)

1
Sx(w) = Tlim ﬁE[XiT(w, )X r(o, a))] (2.89a)
.1 .
Sxy(w) = Tllinmﬁg[XiT(w’ )Y (o, w)] (2.89b)

where [—T,T] is the time interval over which the stochastic processes are specified and
X, @, w) and Y. (@, o) are the finite Fourier transform of X(#) and Y(7) in the sense of sample
defined respectively by (see Equations C.1 and C.2 in Appendix C)

T
Xir(o,w) :J X(w,t)e” " dt (2.89¢)
-7

T
Yir(o,w) = J Y(@,t)e ™" dt (2.89d)
-T

For a nonstationary stochastic process, the power spectrum is defined as the Fourier
transform of the covariance function. As an example, consider a general stochastic process
X(?) and let Kx(2,, t,) denote its covariance; the power spectrum is then given by

Sx(wl, wz) = J J Kx(ll, lg)e_i(wlll — ) dt; dt, (2903)
while the inverse Fourier transform gives

1 SN e .
Kx(ll s lz) = WJ J Sx((x)] s wz)e’(‘”"' —21) dw dw, (2901))

However, one of the problems of the above pair is that the physical significance of the double-
frequency spectral density function of a nonstationary stochastic process (given by
Equations 2.90a and 2.90b) is not as clear as that of the PSD function of a stationary stochastic
process (cf. Equations 2.81a and 2.81b). Moreover, the integral in Equation 2.90a exists
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provided that Kx(#,,?,) — 0 as ¢; and ¢, tend to infinity. This condition is too strict for many
idealized but widely used stochastic process models. Thus, the concept of an evolutionary PSDis
preferred by many investigators. We will deal with this issue elaborately in Section 5.3.2.

2.2.4 Some Operation Rules about Expectation, Correlation and Spectrum

To deal with a stochastic process, the following computation formulae may be important in
practical applications.

2.2.4.1 The Expectation Operation

The expectation is a linear operator which is homogeneous and summative. Consider stochastic

processes X(1), i=1,2,...,n, if ¢(7) and v(¢) are deterministic functions, and
n
Y(1) =D @i 0)Xi(1) + (1) (2.91)
i=1
Then:
n
my(1) =Y @i(t)my, (1) + V(1) (2.92)
=1

For an operation of expectation, the interchange order of differentiation (or integration) and
expectation is allowed (Lin, 1967); that is:

d‘s[fft(m - 5[”25’)} (2.93)
EUZX(t) dt] - JZE[X(Z)} dr (2.94)

Here, the differentiation and integration should be understood in the sense of mean-square
calculus.?

Since both the correlation and the variance are expectation operators, these rules are the basis
of the differentiation and the integration with respect to them.

2.2.4.2 The Correlation Function
Suppose ¢(?) is a deterministic function and
Y(1) = ()X (1) (2.95)
then
Ry(t1,12) = @(t1)@(t2)Rx(t1, 12) (2.96)

Noticing that the autocovariance function of a deterministic function (say v(7)) is zero, then if
X;(t)’s are zero-mean and

2 The mean-square calculus is the calculus used most in stochastic analysis. One of the advantages is that operations in
the mean-square calculus are almost the same as that of ordinary calculus. For details, refer to Gardiner (1983) for
example.
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Y(1) = @i )Xi(1) + (1) (2.97)
i=1

using Equation 2.96, this will lead to
Ry(ll, Zz) = Z Z QD,—(ll)(,Dj(lz)RXlX/(ll, 12) + V(l])V(lz) (298)

=1 j=1

If X(¢) and Y(¢) are mutually independent, and let
Z(t) =X()Y (1) (2.99)
then

Rz(tl,tz) :Rx(tl,tz)Ry(ll,Zz) (2100)

According to Equation 2.93, it can be deduced that the autocorrelation functions of the
derivative process of X(7) equal the partial derivatives of the autocorrelation functions of X(¢)
with respect to #; and 7,; that is:

6”*’”Rx(t1, lz)

Rywxm (t1,1) = 2.101
xoxon (11, 12) smom (2.101a)
where X denotes the nth derivative of X(1).
In particular, for a stationary process we get
n danX(T)
RX(n) (T) = (— 1) W (2101b)
where Ry (1) denotes the autocorrelation function of X™.
Similarly, consider a stochastic process:
!
Y(1) = J X(1) dt (2.102)
0
and note Equation 2.94; then
1l 1 b
Ryy(l],lz) = J J Rxx(l],lz) dty dt, = J J Rh'/(ll,lz) d#; dt, (2103)
0 Jo 0 Jo

where Y denotes the first derivative of Y.

2.2.4.3 The Power Spectral Density Function

Since the PSD function of a stationary process is the Fourier transform of its autocorrelation
function, its operation rules can sometimes be deduced from those of the latter.> Therefore, we
only list two widely used equations here.

3 A more direct and physical treatment is given in Section 5.3.1.1.
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(a) The derivative equation:
Sy (@) = 0*"Sx(w) (2.104)

where Syw(w) denotes the PSD function of the nth derivative of X().
(b) Let X(?) and Y(7) be two stationary processes, and

Z(t)=X()+Y(r) (2.105)
then

Sz((l)) = Sx(w) + SY((U) + Sxy(w) + Syx(w) (2106)

2.2.5 Karhunen—Loeve Decomposition

According to the above description, a stochastic process is understood as a family of random

variables with respect to the time parameter. In another point of view, however, it can also be

understood as a random combination of some deterministic time functions. The Karhunen—

Loeve decomposition establishes the intrinsic relationship between these two views.
Denote the mean process of X(7) by Xy(?); then:

X(t) = Xo(t) + X (1) (2.107)

where X, () is a stochastic process with zero mean. Noting that the covariance of a stochastic
process remains invariant when a deterministic function is added, X, (#) thus has the same
covariance function as X(7).

Assume the covariance function of X(¢) is Kx(;, >). As mentioned before, it is a bounded,
symmetric and nonnegative function. If

J Kx(ll, tz) n(tl) dy; = },Lfn(tz) (2108)

has nonzero solutions, then 4, (n=1,2,...) are called the eigenvalues of Kx(,, t,), and f,(¢)
(n=1,2,...) are the eigenfunctions corresponding to the eigenvalues. Note that f,(7) are
orthogonal, as below:

[ poma=a, {5 S (2.109)

7 otherwise

where T is the interval of integration.

The above property makes f,,(f) satisfy conditions for forming a group of orthogonal bases.
With such a set of orthogonal functions, and using the generalized Fourier expansion, Kx(?1, )
can be expanded as

=)

Kx(t,0) = > dufu(t0)f(12) (2.110)

n=1
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where
1

Jul12)

Note that Equation 2.111 is just Equation 2.108. In fact, multiplying both sides of
Equation 2.110 by f,(#,), integrating them, and noting Equation 2.109, we can obtain the
expression of 4,,. Meanwhile, this deduction process shows that #; and f, on both sides of
Equation 2.108 can be exchanged with one another.

On the basis of the above knowledge, Karhunen and Loeve both pointed out that the
stochastic process X, (7) could be represented by the linear combination of f,,(¢) and that the
combination factors are a set of uncorrelated random variables (Loéve, 1977); that is:

An =

JTKx(lhlz) n(ll)dll (2111)

Xo(1) = L/ at2) (2.112)
n=1
where {, (n=1,2,...) are mutually uncorrelated random variables and
1 fork =/
Ellide] = o = { 0 otherwise (2.113)
The expression in Equation 2.112 can be proved as follows.
From the definition of the covariance and Equation 2.107, there is
KX(,(Zh lz) = S[X,,(II)X‘,(tz)} = Kx(ll, [2) (2114)
Substituting Equation 2.112 in it yields
KX(tleZ) = Z Z€[§n§1n] Vv Inen n(tl)frH(tZ) (2~115)
n=1 m=1

Multiplying both sides of the above equation by f;(7,), integrating them over 7 and noting the
orthogonal relationship shown in Equation 2.109, we have

[EORS AT SEF ANy @.116)

n=1

From Equation 2.108, the right-hand side of the above equation becomes

o

> LN Tndadfa(tr) = Aufi(tr) (2.117)

n=1

Multiplying both sides by fy(¢;), integrating them over T and noting the orthogonal
relationship shown in Equation 2.109, we are led to

Zg[fisz]v AnicOns = i/cJTfk(ll) (1) dty = Ao (2.118)

n=1
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Noting the basic property of the Kronecker 6 symbol, there is

A ifk=1/¢
EWLi N 2idi = Iudu = { Ok otherwise (2.119)
Hence:
1 ifk=1/¢
Ellli] = {O otherwise

This is nothing but Equation 2.113. Thus, Equation 2.112 is proved.
Substituting Equation 2.112 in Equation 2.107 yields

X(1) = Xo(1) + izn\/ﬂfn(t) (2.120)
n=1

Generally, the above equation is referred to as the Karhunen—Loeve decomposition with
respect to a stochastic process.

The Karhunen-Loéve decomposition implies that a stochastic process can be expanded
somehow into the random superposition of a set of deterministic functions f,(#). From the
viewpoint of functional analysis, Equation 2.120 is the result that a stochastic process is
respectively projected on the uncorrelated variables ¢, in terms of those orthogonal functions.
Therefore, the significance of the Karhunen-Loéve decomposition is that it provides the
possibility of studying stochastic processes through a set of independent random variables.
It is this possibility that enables us to settle many practical problems with respect to stochastic
processes in a simplified way.

2.3 Random Fields
2.3.1 Basic Concepts

Extending the concept of stochastic process to a field domain, we will reach the concept of
random field. What is different between the two concepts, however, is that the indexing
parameter is time variable 7 for the stochastic processes, but space variable u = {u, v, w}* for the
random fields. Therefore, a random field is a family of random variables defined over a field-
parameter set in which any point u; corresponds to arandom variable. In fact, the parameter sets
of random fields may contain time as well as space variables, while in practice we mostly take
into account random fields with space variables as indexing parameters, and denote them by
{B(u);u € D C R"}. Here, D is the field domain of B(u), and R" is the n-dimensional
Euclidean space. The space coordinate u can have one, two or three components, correspond-
ing to which B(u) is called a one-, two- or three-dimensional random field respectively.

For a random field, a family of finite-dimensional probability distribution functions can be
used to describe the probabilistic structure. For example, the n-dimensional probability
distribution of B(u) is given by

F(xp,up; X2, w5 .. .5 X, ) = Pr{B(u;) <x1,B(up) <xp,...,B(w,)<x,} (2.121)

4To avoid confusion because x is used as a sampled value of the random field at a given point, here we use u = (u, v, w)
instead of (x,y, z) to denote the space coordinates.



30 Stochastic Dynamics of Structures

The family of finite-dimensional probability distribution functions is nonnegative, symmet-
ric and consistent, too. Thus, the lower order probability distributions can be deduced from the
higher order ones.

The finite-dimensional PDFs are defined as the partial derivatives of their corresponding
probability distribution functions. Taking a three-dimensional scalar random field as an
example, there is

7 . . .
0 F(x17u17x2au2a cee ,X”,un)
0x10x,...0x,

p(X1,u5x0,Up; . .5 Xy, 0,) = (2.122)
where u; = (u;, v;, w;).

Obviously, it seems unfeasible to describe the probabilistic structure of a given random field
with the family of finite-dimensional probability distribution functions in practical applica-
tions. Therefore, the moment functions of a random field are of great value in applications.

Let B(u) denote a random field. Its expectation is defined by

m(u) = E[B(u)] = Jic xp(x,u) dx (2.123)

Geometrically, m(u) represents the average surface centers of sample functions of B(u) in the
field domain.
The autocorrelation function of B(u) is defined by

RB(U],UQ) = 5[B(U])B(l12)] = Ji:q Jij|X2p(X|,U];X2,u2) dX] dX2 (2124)

where u; and u, are two points in the space. The autocorrelation function here has a similar
interpretation as that of a stochastic process.
The auto-covariance function of B(u) is defined by

Kp(ur,uy) = E{[B(ur) — m(w)][B(uz) — m(uy)]}

Sl (2.125)
= J_w J_w[xl —m(uy)][x2 — m(w)|p(x1, w5 x2,u2) dx; dx;
Between the autocorrelation and the auto-covariance functions, there exists
Kg(uy,up) = Rp(uy,up) —m(u;)m(uy) (2.126)
Note that
Kp(u,u) = op(u) (2.127)

is the variance function of B(u). Hence, the normalized covariance can be defined by

Kg(up,u)

ap(u;)op(uy) (2.128)

pp(ur, ) =

Corresponding to the concept of stationarity for stochastic processes, we may conceive of the
analogous one for random fields, called homogeneity. A random field is said to be strictly
homogeneous on condition that its finite-dimensional probability distribution functions
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remain invariant under any translation of the space coordinates. A random field can be
homogeneous along a line, on a certain plate or in the whole space. In practical applications,
arandom field is usually just required to have homogeneity of second order. A random field, if it
satisfies

m(u) = constant (2.129)

RB(lll,ll2> = RB(lll 7112) = RB(I') (2130)

where r =u; — uy, is called a weakly homogeneous random field. In what follows in the book
the homogeneous field means this type, unless specified otherwise.

‘Isotropy’ is another important concept for a random field. A random field is isotropic if
its finite-dimensional probability distributions make no change when the group of points
u;, uy,...,u, takes any possible rotation around the axis passing through the origin, or a
mirror reflection in any plate including the origin. Generally speaking, the so-called isotropic
random fields refer to the isotropic homogeneous ones. This means their probabilistic
properties are invariant under all the translations, rotations and mirror reflections of uj, u,, . ..,
u,,. Obviously, there is some trouble in understanding the ‘isotropy’ in a visual way. However, if
we loosen the constraint conditions of the finite-dimensional probability distributions,
only thinking about the isotropy of second-order characteristics of a random field, then it
becomes somewhat easier to understand. A random field, if satisfying Equation 2.129, and
further

Ry(r) = Rp(|r]), (2.131)

is called a weakly isotropic random field. The term ‘isotropy’ clearly indicates that, for
this kind of random field, the probabilistic properties are relevant only to distance, not to
direction.

2.3.2 Correlation Structures of Random Fields

A homogeneous random field {B(u),u € D C R"} can be written in the form
B(u) = Bo(u) + B, (u) (2.132)

where By(u) is the mean function of B(u) and B (u) is a random field with zero mean.

The covariance function of B,(u) is equal to its correlation function. Therefore, studying
the correlation structure of B,(u) usually refers to its covariance or its correlation. For most
practical problems, a correlation structure is generally an empirically hypothetical model. The
frequently useful patterns (expressed via normalized covariance) include the:

(a) triangular pattern

1— Jur —w| lu; —wy|<a
pp(ur,wp) = a ! (2.133)
0 otherwise
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(b) exponential pattern

ps(Ur,us) = exp < - Lg“"") (2.134)

(c) Gaussian pattern

a2

2
u —u
pp(ug,up) = exp<— M) (2.135)

where the constant a is called the correlation scale parameter.

For a certain physical problem, whether or not there is a widely used hypothesis about the
correlation structures may serve as a mark of how developed studies of this field are.

2.3.3 Discretization of Random Fields

For a continuous random field, we can transform it into a set of random variables by dividing the
space domain over which it is defined. This partition resembles that in the finite-element
method (FEM) in some respects. The main discretization methods of random fields include the
midpoint method, the shape-function method and the local average method (Vanmarcke,
1983). A two-dimensional random field will now be used to illustrate the basic concepts of
these three methods.

Without loss of generality, Figure 2.5 shows a two-dimensional random field over the
domain D(x, y) and the form of its discretization. For a certain element, D; denotes the area, u;
(i=1,2,...,n)denotes the geometrical centroid, u; (j =1, 2, . . ., m) is the nodal position, and n
and m are the number of elements and nodes respectively.

o

Figure 2.5 Discretization of a random field.

2.3.3.1 The Midpoint Method

The midpoint method is to substitute a set of random variables B(u,;) at geometrical centroid u.;
for the element random field {B(u), u € D;}, namely

B(u) = B(u,;) foru € D; (2.136)
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By this principle, the original random field is discretized into a random variable set {¢£;, =B
(ue),i=1,2,...,n}. Then, the expectation of each variable and the correlation between
variables depend on the corresponding values of &;, the random variables at each element’s
geometrical centroid. For example, there are

Eléi] = E[B(ue)] (2.137)
o’[¢] = o?[B(u,)] (2.138)
cj = cov[§;, ] = cov[B(u;), B(u)] (2.139)

Certainly, only when the partitioned elements are very small or the original field is of little
variability will the midpoint method obtain good accuracy.

2.3.3.2 The Shape Function Method

To improve the accuracy, a reasonable method is to replace the original random field with a set
of random variables at nodes and then to approximate the random field inside any element by
interpolation of shape functions. In other words, an element random field can be obtained from
random variables at nodes by the interpolation of shape functions; that is:

B(u) = > Nj(wB(w) uweD; (2.140)
j=1

where ¢ is the number of nodes of the given element and N,(u) are the shape functions. In
general, the interpolation function can take the form of polynomials (Lawrence, 1987).

In this sense, the original random field is discretized into a random variable set {£;=B
(uy),j=1,2,...,m}. Then, the descriptive properties of every random variable and the
correlation between random variables depend on the corresponding values of the random
variables at nodes. There are expressions analogous to Equations 2.137-2.139.

For an element random field and the corresponding variables at nodes, the moment functions
can be given by

EBw)] =) NWEBW)] ueD (2.141)
=
?[B(u)] = Zq: Xq:Nk(u)N/(u)cov[B(uk),B(ug)] u €D, (2.142)
k=1 =1

If the shape functions are obtained appropriately, then the shape function method is far
more accurate than the midpoint method. In the perturbed FEM, however, this method
is not as concise as the local average method discussed below in generation of the stiffness
matrix.
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2.3.3.3 The Local Average Method

In the local average method, any element random field is represented by its local average
random variable; that is:

1
&= —J B(u) du ueD, (2.143)
D; )p,

Consequently, the original random field is discretized into a random variable set {£;,i=1,

2,...,n}, of which the mean is defined by

e =4 | Bwlan uep, 2.144)

while the variance is given by

: 2
S2lel = _
& Df2 <JD, (B(w) — £lB(w)]} du) (2.145)
= o2l D.cov[B(ul),B(uz)] du; du,

and the covariance between ¢; and §; is
1
cij = cov [f,»,fj] = —J J cov[B(u;), B(uy)] du; du, u €D, m;eD; (2.146)
‘ DiD; Jp,)p,

Utilizing the definition of correlation coefficient (see Equation 2.128), Equation 2.146
becomes

cij = LJ J o(uy)o(uy)p(u;,uy) duy du, w €D, w €D (2.147)
D iDj D;JD;

The local average method is between the midpoint method and the shape function method in
accuracy. Nevertheless, it is still broadly accepted because of its facilitating the use of general
formulae of the perturbed FEM.

For the discretization of random fields, there are also some other methods, such as the
weighted integral method, the optimal discretization method and so on. Readers who are
interested in them can refer to the relevant literature (Takada, 1990; Li and Der Kiureghian,
1993).

2.3.4 Decomposition of Random Fields

The discretization of a random field, as noted, only finishes the transition from random field to a
set of discrete random variables. However, every two of those variables may be correlated,
which sometimes brings inconvenience and even difficulty in applied problems. Then, the
question arises as to whether it is possible to find a set of uncorrelated random variables to
replace a random field.

The answer is ‘yes’ for most problems. Two approaches are discussed in detail hereafter.
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2.3.4.1 Karhunen-Loeve Decomposition

Consider a homogeneous random field {B(u), u € D C R"}. Quoting Equation 2.132, repeated
here for convenience:

B(u) = Bo(u) + B, (u) (2.132)

let Kgz(u;, u,) denote the covariance function of B, (u). If
J Kp(ui,w)f,(w) duy = A,fy(w2) (2.148)
D

is solvable, then according to the method of Karhunen—Loeve decomposition we have

o

B(u) = Bo(w) + Y £/ 2ufo() (2.149)

n=0
where {, (n=1,2,...) are mutually uncorrelated random variables, satisfying
EWdi] = B (2.150)

where & is the Kronecker delta (see Appendix A).

As noted, the method of Karhunen—Loeve decomposition is not counted as a method for the
discretization of a random field, but one of decomposition of a random field. The distinction
between ‘discretization’ and ‘decomposition’ is that the former refers to the geometrical
partition of a field domain while the latter means decomposition with respect to the subspaces
of a probability space.

2.3.4.2 Decomposition of Discretized Random Fields

Upon using Karhunen-Loeve decomposition, we need to solve the integral equation in
Equation 2.148, which is not so easy in most cases. In contrast, a two-step transition method
can be used without such mathematical difficulty.

In the two-step transition method, a random field is first discretized by methods described in
the preceding subsection and represented by §= (&, &5, - . ., &,), a set of correlated random
variables. It is obvious that § can be written as

E=§ +§& (2.151)

where & is the mean of §, and &, is arandom vector with zero mean, having the same covariance
matrix as &.

Then, by decomposition of the correlation matrix in Section 2.1.4, § can be expressed via a
sequence of normalized uncorrelated random variables:

E=§+ Z"’i\//l_igi (2.152)
Py

where {{;,i=1,2,...,n} is the sequence of normalized uncorrelated random variables,
satisfying
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gl =0 (2.153)
Varlf,] = 1 (2.154)
cov[{;, ¢l = 8y (2.155)

where 4; and {s; are respectively the eigenvalues and eigenvectors of the covariance matrix of §,
obtained from the following eigenvalue equation:

Celh; = A (2.156)

2.4 Orthogonal Decomposition of Random Functions
2.4.1 Metric Spaces and Normed Linear Spaces

In mathematics, a space means a kind of set possessing certain structures. For example, a real
straight-line / forms a one-dimensional space, and properties such as ‘there exists distance
between any two points’ are structures in this space. In a given space, according to functional
analysis theory, each point represents a function generally. Thus, the content of functional
analysis mainly covers basic properties of spaces of continuous functions as well as the
relations among the point sets that belong to these spaces.

The most basic concept in the investigation of functional spaces is the ‘metric’ between
points. Consider a set denoted by &’. If for any two points x and y in X, there always exists one
deterministic real number d(x,y), such that

(a) d(x,y)>0, d(x,y)=0 if and only if x =y; and
(b) d(x,y) <d(x,z) + d(y, z) is true for any z.

Then, we call d(x,y) the metric between x and y.

A space, if given a metric between any two of its points, is called a metric space, and denoted
by X = (X,d). The Euclidean space R" and the space of continuous functions C[a, b] are
typical examples of metric spaces.

For a Euclidean space R", the metric between two points

X = (x1,X2,...,x,) and y= (y1,¥2,.--,Vn) (2.157)
is given by
d(x,y) = /> (xi—y)’ (2.158)
i=1
For the union of continuous functions over a closed interval [a, b], there is
d(x.y) = max |x(1) =y(0) (2.159)

Assume {x,}_, is a sequence of points in the metric space X' If, for any arbitrary number
&> 0, there is always a natural number N = N(¢), such that as n,m > N, there exists
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d(xp, Xm) <& (2.160)

then we call {x,},_, the Cauchy point sequence or basic point sequence in X.

A metric space is said to be complete if in it every Cauchy point sequence is convergent.

In functional analysis theory, the normed linear space is of great value and utility. In the
normed linear spaces, elements can be added up or multiplied by scalars, and between two
elements there is a metric. In addition, like a general vector, every element in the space is
assigned a scalar of length that is called the norm.

Let X be a real (or complex) linear space. If for any x € X there is a deterministic real
number, denoted by llxll, such that

(a) IIxll >0, and llxll =0 is equivalent to x =0; and
(b) llaxll=lal-lixll, where a is any arbitrary real (complex) number; and
(c) lix + yll <lixIl + liyll, for any x,y € X

then llxll is called the norm of x, and & is thus a normed linear space with norm llxll.
The normed linear space may be illustrated with Euclidean space R" and the space of

continuous functions Cla, b].
For any arbitrary vector x = (x1,x2,...,X,) € R", we can define

|| Z\/x%+x§+...+x5 (2.161)
and for any arbitrary function f(¢) € Cla, b], we can define

Il = max |f(z)] (2.162)

a<t<b

Comparing Equations 2.158 and 2.159 with Equations 2.161 and 2.162, we find that for a
normed linear space X the metric d(x,y) can be determined from the norm by setting

dx,y) = llx=yll  (x,yed) (2.163)

Equations 2.162 and 2.163 clearly show us the difference between the ‘norm’ and ‘metric’: the
norm is defined for a single element, whereas the metric is given to associate any two elements.

2.4.2 Hilbert Spaces and General Orthogonal Decomposition

The metric and the norm, defined in the normed linear spaces, make it possible to think over
such properties as continuity and convergence for functional spaces (spaces of continuous
functions). However, compared with ordinary spaces of finite-dimensional vectors, normed
linear spaces still lack a geometrical property analogous to ‘angle.” A functional space in which
an angle is defined is called an inner product space.

Consider X a complex linear space. If for any two elements’ x and y in X there exists a
complex number (X, y), such that

5In linear spaces, element is equivalent to vector in concept. Therefore, they are not distinguished in this book.
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(@) (x,x)>0and (x,x)=0<x=0; and

(b) (ax + By,z) =a(x,z) + B(y,z), for any arbitrary z € X, where a and B are complex
numbers; and

(¢) (x,y)={(y,x), where (-)" is the complex conjugate,

then (x,y) is called the inner product of x,y.
For an inner product space &, if

|lx]| = v/ {x, x) (2.164)

then lIxll is anorm on X Notice that |lxll here is determined by the inner product. Thus, the inner
product spaces are a type of special normed linear space. In other words, any inner product
space, with the norm given by Equation 2.164, is a normed space.

An inner product space, if it is complete as a normed linear space, is called a Hilbert
space.

In a Hilbert space, the inner product of two functions f(r) and g(¢), a <t <b, is often
defined by

b

(f.g) = j F(0)g(r) dr (2.165)

a

Note that the above integration is in the sense of the Lebesgue integral.
From Equation 2.165, it follows that the norm

b
1]l = j £2(1) dr (2.166)

This definition shows that the Hilbert spaces with inner products defined by Equation 2.165
is a type of special Hilbert space associated with the union of square integrable functions
L*[a, b).

The metric, determined by the above norm, is in the form

d(f,g) = \/

For inner product spaces, the Schwarz inequality

[ &l < IfIl- Mgl (2.168)

Jb (1) = g(0)) i (2.167)

a

is always true.
From this inequality, in a Hilbert space there certainly exists

| [P f()g(2) di]
\/f:ﬂ(l) df\/ff g2(ndr

(2.169)
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Thus, the left-hand side of the above can be treated as the cosine of an angle ¥; that is:

b
Lrwend  {fg)
b b .
\/JafZ([) d[\/ja gZ(Z«) dr Hf” ||g||
In a Hilbert space, 9 is called the angle between f(¢) and g(¢). If (f,g) =0, then we get

cost =0, or ¥ =90° by using Equation 2.170. Thus, f and g are considered perpendicular or
orthogonal. Meanwhile:

cost = (2.170)

b
J FlD)g(t) dt = 0 (2.171)
a

Assume A and B are two subsets in the space X. Then A and B are orthogonal if any vector in
A is orthogonal to any one in B. With the concept of orthogonality, we are able to advance the
concept of orthogonal decomposition in the inner product spaces.

Suppose @ denotes a subset which includes all the nonzero points in a Hilbert space; that is:

D = {1 (1), @2(1); - s (1)} (2.172)

If in @ any two functions are orthogonal to each other, namely

b
[ etear=o (i) (2.173)

then the set @ is called a system of orthogonal functions. Meanwhile, if the norm of every
element equals unity; that is:

b
J pr()dt=1  (k=1,2,...,m,...) (2.174)

a

then @ is a system of standard orthogonal functions and {¢.(?),k=1,2, ...} are orthogonal
basis functions. A system of orthogonal functions is complete if there is no possibility of adding
to this system a nonzero function which is orthogonal to all its functions.

The aim of introducing the system of standard orthogonal functions in an inner product space
is to expand any function in the space into the series in terms of these orthogonal functions. For
a nonzero Hilbert space X there certainly exists a complete system of standard orthogonal
functions. Suppose this system is denoted by

e1(),02(8), .., @u(0), ...

then any function f{(#) in X can be decomposed into a convergent series (or generalized Fourier
series) in the form

70 = 1im > aei() = 3 a0 2.175)
i=1 i=1

where the coefficients a; are equal to the projections of x(¢) on ¢«¢) and are called the Fourier
coefficients of f(¢) associated with ¢;; that is:
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b
a= {6 = [ 1000 (2.176)
a
Equation 2.175 is an orthogonal decomposition of f{(#) with respect to the system of standard
orthogonal functions.
It is easy to verify that

b
171> = J Fde=> a (2.177)

a i=1

Note that a; are projections of f() on ¢(#). Thus, we can use the partial sum of the above series
@) =" aipi(1) (2.178)
i—1

to approximate the function f{(¢). The error of such an approximation depends on the sum of
squares of projections of f{#) on the complementary set {¢,, | {(2), ¢, 4 2(?), .. .}. Actually, there
is an error function in the form

= lf—FIP= Y @ (2179)

i=n+1

2.4.3 Orthogonal Decomposition of Random Functions

When extending the functional space concepts to the probability spaces, we can deal with
problems of orthogonal decomposition with respect to spaces of random functions. In these
spaces, a random function can be denoted by X(¢, 1), where ¢ € Q and ¢ € T. In other words, in
the space of random functions, every point in it is a function of the given random variables.
Therefore, using the variables separation method for reference, there are two ways of
orthogonal decomposition with respect to a random function. The first way is similar to
Equation 2.175. The only difference is that, in a space of random functions, the expanding
coefficients @; should be viewed as random variables. We will discuss these situations in detail
in Section 3.5. On the other hand, if we choose a system of standard orthogonal functions with
respect to random variables as basic functions, then the second orthogonal decomposition
method can be derived.

Consider 7, as an example, a space of random functions of random variables having
standard normal distributions. Note that the PDF of the standard normal variables is given by

1 e
pe(u) =75 /2 (2.180)

Here, we use lower case u to represent a sample value of & without risk of confusion. We can
define

Hy(¢) = (2.181)
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where H,, (£) are Hermite polynomials (see Appendix B). It is easy to prove that

1 ifn=m

0 otherwise ' 0,1,2,... (2.182)

€l ©H©)] = | pet Wy 1) au = {

Thus, H,(§¢) form a system of standard orthogonal functions on 7.
The inner product of /7 is written as

(.6) = @) = | peuf Wt du (2.183)

Meanwhile, we can obtain the corresponding norm, and then the metric. Finally, we find that
Z is a Hilbert space. Thus, any random function X(¢, t) in.Z can be expanded in terms of H,,(£);
that is:

X(E0) =3 alH(©) (2.184)
i=1
where the coefficients
ailt) = (X, Hy) = EX(E, O H(E)] = Ji pe(WX(, D) du (2.185)

are considered as the projections of X(&, ¢) on the basis functions H,,(£).
The expansion in the form of Equation 2.184 is called the second kind of orthogonal
decomposition of a random function.



3

Stochastic Models of Dynamic
Excitations

3.1 General Expression of Stochastic Excitations
3.1.1 Dynamic Excitations and Modeling

Most dynamic actions applied to civil engineering structures exhibit an obvious character of
randomness; therefore, they are termed stochastic excitations. Typical stochastic excitations
include the effects of seismic ground motions, wind gusts or turbulence in wind and ocean
waves and so on. In general, these dynamic actions vary in spatial location and time. Therefore,
to reflect them, the spatial random field model should be adopted as the basic model. However,
owing to difficulties in observation and modeling, some simplifications must be introduced in
the modeling process.

One of the most common simplifications is to neglect the variation of the dynamic actions in
space and simplify the spatial random fields as a series of random processes with the same
statistical characteristics. That is, use the time sequence at one point to reflect the effect of the
random excitation on the structure and assume the excitation at various points to be identical
within an acceptable range. A typical example is the seismic ground motion input to the bottom
of building structures with a relatively small planar size. Considering the building base within
the scope of the foundation as a rigid plate, the input of seismic ground motions can be reflected
by using the stochastic process model at one point.

If the difference of the dynamic actions applied to different points of the structure cannot be
ignored, the random field model should be adopted to reflect the spatial dynamic actions. In
these cases, the homogeneous and isotropic assumption may be used to simplify the model. In
the homogeneous assumption, the difference among the points in the random fields is only
related to the distance between two points and has nothing to do with the location, whereas the
probability distribution of the random fields is independent of the orientation according to the
isotropic assumption. Owing to the lack of adequate actual measurement tests, it is usually
believed that the homogeneity and isotropy are theoretical assumptions introduced to facilitate
the modeling and analysis.

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5
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The third assumption commonly used in the establishment of stochastic excitation models is
the stationary assumption, which means the homogeneity of dynamic actions in the time scale.
If a process meets the stationary assumption, then its variance is a constant and not changing
with time. For example, it is usually assumed that wind turbulence in the atmospheric boundary
layer has the characteristics of stationary stochastic processes.

In fact, when considering stochastic excitations acting on structures, one problem concerns
whether the energy exchange between the structure and the external environment is taken into
account. When this energy exchange is so small as to be ignored, the dynamic action on the
structures may be determined only with the external environmental conditions. If this energy
exchange is sufficient to impose a significant impact on the input dynamic action, then the
interaction between the structure and the external media should be considered to determine the
excitations affected by the structure. For example, the determination of seismic ground motions
of large-scale engineering structures will encounter such a problem.

There are two basic methods for modeling stochastic dynamic excitations: phenomenology-
based modeling and physics-based modeling. Owing to the difficulties in establishing finite-
dimensional probability distributions, the correlation function or the PSD function is used
commonly in phenomenology-based modeling. In essence, the method is based on statistical
moments. In contrast, physics-based modeling focuses on giving a random function model of
dynamic excitations considering the real physical background. Not only can these models give
a complete mathematical description for the stochastic processes or random fields, but they also
enable experimental verification of the random processes or random fields possible because of
their physical significance.

This chapter will outline the mathematical models and physical models for the common types
of stochastic dynamic excitations in structural analysis and design. In addition, the relevant
mathematical models are introduced for modeling stochastic excitations.

3.1.2 Models of Stationary and Nonstationary Processes

If a stochastic excitation is a stationary process, particularly if it can be regarded as a Gaussian
process, then, as long as the mean and the correlation function or the PSD function are known,
the statistical characteristics of the excitation model can be totally determined. According to
the description in Chapter 2, the mean of a stationary process X(#) is a constant and the
correlation function is only a function of time interval t =, — #;; that is:

Wlx(l) =c (31)

Rx(‘C) ZRx(lz—ll) (32)

If ¢=0, then the correlation function and the PSD function of X(¢) have the following
relationship (see Equations 2.81a and 2.81b):
+ oo

Sx(w) = J Ry(t)e” ™" dr (3.3)

— oo

Rx(1) = —J ) Sx(w)e™" dw (3.4)
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This indicates that Sy(w) and Rx(7) consist of a Fourier transform pair. If ¢ # 0, then there is
the same relationship as above between the covariance function Kx(t) and the PSD function
Sx(w).

To determine a specific stationary excitation model, the ergodicity assumption is generally
introduced. This indicates that, for an ergodic process, various random behaviors could appear
in a long enough time-series. Therefore, the ensemble average can be replaced by the time
average. For an ergodic process, the estimated values of the mean and the correlation function
can be obtained using the measured samples as

i :%Zx,- (3.5)

X 1
RX(Tk = k) = m Z XiXi+k (36)
i=1

where X;=X(,) is the amplitude of the sampled process at the time instant #; k is the lag
number, N is the total number of the sampled points and the hat symbol represents the estimated
value. The PSD function can be obtained from the discrete Fourier transform of Rx(ty).
However, such spectral estimation results are usually biased. In order to obtain unbiased
results, the maximum entropy spectral method can be adopted (Burg, 1967).

If a number of measured samples are available, then the sample set could be used to achieve
the estimation of the PSD. In this case, the PSD is given as (see. Equation C.6, Appendix C)

1 M

Sx() =37 ] (37)

where M is the sample number of the sample set, T is the observation time duration and X(w) is
the Fourier spectrum of the time history sample.

A stationary process is the result that is scientifically abstracted from the actual dynamic
action. The majority of actual random excitations do not completely possess stationary
characteristics. If there is a significant difference between the stationary assumption and
the actual background, then it is necessary to adopt a nonstationary model to establish the
model of random excitations. The modeling of seismic ground motions is a representative
example.

For nonstationary stochastic processes, the ergodicity assumption is no longer valid.
Therefore, the ensemble average cannot be replaced by the time average. In other words, the
model should be established based on sample sets. In practice, a type of uniformly modulated
nonstationary random process model is usually employed to establish a nonstationary random
excitation model. This model can be expressed as a product of a deterministic time function f{¢)
and a stationary process X(#), namely

X(1) = (X0 (38)

Here, we suppose the mean of X(¢) = 0. For those processes X’(¢) with a nonzero mean, we
can always let X(7) = X'(f) — mx /() to construct a zero-mean process.



46 Stochastic Dynamics of Structures

When the correlation function or the PSD function of X(7) is given, then it is easy to calculate
the correlation function or the PSD function of the nonstationary random excitation X(¢); that is
(see Equation 2.96):

Rx(t1,12) = f(t1)f (2)Rx, (1) (3.9)

Sx(t, @) = f*(1)Sx, (w) (3.10)!

In order to get the model of the nonstationary random excitations, the first requirement is to
isolate f(f) from the sample functions. For a time history sample x(¢), this can be done by a
variety of approaches. For example, we can first define

yi(t) = [xi(1))] (3.11)

and then use the technique employed in empirical mode decomposition to determine the upper
and lower envelope curves in the sifting process (Huang et al., 1998) to specify the upper
envelope fi(t) of y«(?).

For a sample set, the specific expression of f(#) can be determined by assuming the function
form of f(#) and using the least-squares method to fit f(7) through fi(¢) (i=1,2,...,M).

Once f(?) is determined, it is easy to derive the sample set of the stationary process
X,(?) according to Equation 3.8 and then the aforementioned modeling methods on stationary
random processes can be used to complete the modeling of nonstationary random excitations.

3.1.3 Random Fourier Spectrum Model

It is very difficult to model nonstationary random excitations based on the previous classical
correlation function or PSD method. In fact, only for random excitations with Gaussian normal
nature can all the statistical features of the random excitations be obtained by the previous
modeling methods. Unfortunately, for most practical engineering cases, the Gaussian nature
cannot be fully verified.

The random Fourier spectrum model tries to build a dynamic excitation model by starting
from the point of view of a random function and combining the understanding of the physical
mechanism of the random excitations. For the time history sample assemble X(7), the random
Fourier spectrum is defined by (Li, 2006) (also see Appendix C)

X(m,w) = \/LTJO X(m, t)e” " dt (3.12)

where 7 is a random variable or random vector which affects the stochastic development
process and has physical significance.

Obviously, the random Fourier spectrum is not confined just to stationary processes, but is
also suitable for modeling general excitations. Using probability density evolution theory, to be

! Equation 3.10 is an evolutionary spectral density, of which the physical sense will be elaborated in Section 5.3.2.
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stated in Chapter 6, the finite-dimensional probability distribution of the stochastic excitation
process and its evolution with time can be observed. Thereby, the probability characteristics of
the excitation can be completely determined.

When 7 in X(7), w) is given a specific realization value z, the definite sample function X(z, )
will be given, which provides the possibility of using the observed sample sets to complete the
modeling. There are two basic modeling channels: sample-based modeling and modeling
based on the statistical moments of the sample assemble.

3.1.3.1 Sample-Based Modeling

For samples in a sample assemble, the realized values of the basic random variables can be
identified by using the best uniform approximation or the mean-square approximation on the
basis of the observed sample values.

The best uniform approximation takes the following formula as the basic criterion to identify
the parameter 7:

Ji = max[X¥(w) — X(n,w)] < & (3.13)

where X is the observed value of samples, ¢ is the specified error bound.
The mean-square approximation takes J; as the basic criterion to identify the parameter n:

J> = max(£{[%(®) — X(m,0)}) < &2 (3.14)

where &[] expresses the mean of the sum of error square and ¢, is the specified error bound.

After the sample realized values of the basic random variables are identified, common
mathematical statistics can be used to obtain the probability distribution of the random
variables.

3.1.3.2 Modeling Based on the Statistical Moments of the Sample Assemble

If the probability distribution function p,(7) of the random variable 7 is known, then the mean
and the standard deviation of the random Fourier function can be obtained by

mx(w) = JQX(mw)Pn(n) dn (3.15)

ox(w) = {JQ[X(W, ) = mx ()]’ py(n) dn}l/z (3.16)

where Q is the integral domain about 7).

After the mean 7y (w) and the standard deviation x(w) of the sample set X{(w) (i=1,2,
..., n) are obtained through mathematical statistical methods (see Equations 3.5 and 3.6), the
objective random functions can be identified by using the following modeling criterion:

J =alJ,; + BJ, — min (3.17)
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where a and B are weighted coefficients and

12 [mx (w;) — g (w;)]? (3.18)

i=1

N

L

Z ox(w;) —bx(w)) (3.19)

1:1

—

where L is the number of scatter points within the effective frequency range.
By adjusting the distribution parameters and the probability distribution types of the basic
random variables, the PDF of the identified variables can be determined.

3.2 Seismic Ground Motions
3.2.1 One-Dimensional Model

When an earthquake happens, the seismic wave produced by the seismic source is a time
process. Through propagation in the Earth media, the wave shape will undergo complex
changes. For a given site, the seismic ground motion at all points within a certain range of the
ground surface or the vibration process under the ground surface can be characterized by
the time history of ground motion displacements, velocities or accelerations. Usually, for the
near-field strong ground motion records, the actual observation data is acceleration. Therefore,
the seismic ground motion model usually refers to the acceleration model. The ground motion
at one point usually has three spatial coordinate components. According to the studies of
Penzien and coworkers (Penzien and Watabe, 1975; Kubo and Penzien, 1979), there are
directions of principal axes and the components along the principal directions are uncorrela-
ted. Therefore, for three-dimensional ground motions, only one-dimensional ground motions
along the principal axis directions need to be considered.

Owing to the influence of a series of uncontrollable factors like the mechanism of the seismic
source, the earthquake propagation paths and the geotechnical media distribution at the
engineering site, the ground motion process is a typical stochastic process. Actual earthquake
records show that the time history of the ground motion accelerations usually includes three
stages of vibrations: the initial, the strong and the attenuating stages (Figure 3.1). Therefore,
the ground motion is a typical nonstationary process. When the stationary process model is
used to establish the ground motion models, it is usually believed that this only reflects its
strong motion stage.

As a simplification, the ground motion on the surface may be regarded as a filtered white
noise. In this consideration, if the ground motion on the bedrock is assumed as a zero-mean
white-noise process with spectral density Sy, and the soil surface is simulated as a single-
degree-of-freedom linear system, then the Kanai—Tajimi spectrum model can be obtained
(Kanai, 1957; Tajimi, 1960):

1 +42(0/wo)’
(1~ (0/w0)’]" +4£* (/o)

S(w) = (3.20)
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Figure 3.1 Three stages of a typical ground motion record.

where S(w) is the PSD function of the stationary ground motion process, { is the damping
ratio of the soil on the site and wy is the natural frequency of the site.

The physical meaning of the model above is clear that the influence of the soil property on
the ground motion frequency spectrum is taken into account. However, this model inappro-
priately exaggerates the low-frequency content of the ground motions. Meanwhile, the
ground-motion velocity and displacement obtained according to the model have a singular
point where the frequency is zero; therefore, a finite variance of the ground displacement and
velocity cannot be achieved. To overcome these shortcomings, the following correction
model has been introduced (Hu and Zhou, 1962):

1 +4§2(w/w0)2 "

S(w) = - (w/wo)2]2 +4{2<w/w0)2 o +a)§ So

(3.21)

where o, is the low-frequency decrease factor and n =4-6.
There are many similar correction models; for example, adding a filter to the model in
Equation 3.20 forms a double white-noise process (Ruiz and Penzien, 1969):

1448 (w/w)? (w/w)*
[1 = (0/@0)’ + 4L (w/w0)” [1 = (0/1)’]” + 4L, (w/@1)

S(w) = 550 (3.22)

where {; and w, are parameters of the assumed second filter.

In contrast to the model in Equation 3.20, in which the PSD is a finite value different from
zero at w =0, both the models in Equations 3.21 and 3.22 can ensure that the PSD is zero at
o =0 (Figure 3.2).

If there is a need to reflect the rising and decaying sections of the ground-motion process — that
is, to reflect the nonstationary nature of the ground motion — then a modulated nonstationary
random process model can be introduced (see Equation 3.8). The modulated envelope function
can be given by, say (Amin and Ang, 1968; Jennings, et al., 1968).
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e alt-n) fort >ty

where 7, and #, are respectively the starting time and the end time of the stationary section of the
strong ground motion and « is a parameter controlling the decay speed of the attenuation section
(Figure 3.3).

f(t)
e—a(t— ty)

1

1ty

~ e —— o

X t

Figure 3.3 Envelope function for ground motion.

3.2.2 Random Field Model

When the difference between ground motions at two points with a certain distance cannot be
ignored, then the use of random fields is required to describe seismic ground motions. Using
the spatial discretization method (see Section 2.3), the continuous random field description can
be transformed into a set of stochastic processes. Therefore, a homogeneous and isotropic
random field B can be represented by the following PSD matrix:
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Sll((u), Slz(w), ey Slm(w)
Spfu) = | 210 22 2l (20
S (w)7 A ((1)), ceey Smm(w)

where m is the number of spatial points; Sj(w) is the cross-spectral density, which is a complex
function and characterizes the correlation degree between the stochastic ground motions at the
points k and j (see Equation 2.86a). If k =, then this is the auto-spectral density of the ground
motion at one point.

In the study of special earthquake ground motions, the coherency function usually represents
the correlation feature between the ground motions at two different points and is defined as

Skj(w)

V(@) = W if St () Sj5()#0

(3.25)
otherwise

Obviously, the coherency function is also a complex function. Using the amplitude and
phase-angle expression, there is

Vig(@) = [vi(@)lexp[idy(w)] (3.26)

The amplitude ly,{w)l of the coherency function is also called the lagged coherency
function, and we always have (see Equation 2.88)

i (@) <1 (3.27)

The phase angle 9, (w) is related to the propagation speed of the harmonic wave w and the
distance between two points (Oliveira, ef al., 1991):

L
wdkj

Oij(w) = (3.28)

Va

where dg; is the projection of dj; (the link line between points 7 and j) along the wave propagation
direction and v, is the apparent wave velocity of the ground motions. Setting a certain reference
point as the starting point of the time coordinate, denoting the time instants when the earthquake
waves arrives at the points k and j respectively by #; and ¢;, there is obviously

— =1l 3.29
/

Therefore, Equation 3.26 can also be written as
Yij(@) = [vi;(w)|explio(ti — t)] (3.30)

The preceding deduction demonstrates that exp[id};(w)] represents the difference of the arrival
time of ground motions at two points, which is the traveling wave effect; thus, exp[id(w)] is
generally called the traveling wave effect factor, whereas v, {(w) reflects the coherency effect of
the ground motions between two points.
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By analyzing the earthquake records at densely packed stations, an empirical expression
for the lagged coherency function of ground motions can be deduced. Some typical examples
follow.

3.2.2.1 Feng—Hu Model

Through analysis of the observed data from the strong earthquakes in Haicheng in 1975 in China
and in Niigata in 1964 in Japan, the following formula has been proposed (Feng and Hu, 1981):

[¥(@, diy)| = exp[— (p1@ + p;)dyj] (3.31)

where p; and p, are the coherency parameters, for which the identified values from the
Haicheng and Niigata earthquakes are

Haicheng earthquake : pr=2x10"%s/m, p, =88 x10"*s/m
Niigata earthquake : pr=4x10"%*s/m, p,=19x 10" *s/m

3.2.2.2 Loh-Yeh Model

Through modeling using observed data from the SMART-1 Array, the following formula was
obtained (Loh and Yeh, 1988):

wdj;
t(od)] =exp( - aget) 3:3)

where « is the wave number of the ground motions; according to 40 acceleration records,
o =0.125 is identified (Loh, 1991).

3.2.2.3 Qu-Wang Model

Through modeling according to the observed data from four earthquake observation stations
including SMART-1 Array, the following lagged coherence function is suggested (Qu, et al.,
1996):

[¥(,dy)| = exp| - a(w)dy " (333)

where
a(w) = (12.1940.170%) x 1074 (3.34)
b(w) = (76.74 — 0.55w) x 102 (3.35)

Figure 3.4 shows the comparison of the preceding three models as w = 10x.
If the auto-power spectral densities of all points are the same, then the PSD matrix of the
ground motion random fields can be simplified as

Ss(w) = G'RG - S(w) (3.36)
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Figure 3.4 Lagged coherence functions.

where S(w) is the PSD at each point and G is a diagonal matrix representing the phase-angle
change of each point compared with the reference points:

G = diag[e™", e, ... e™"n] (3.37)

and R is the matrix of the lagged coherency function:

1 il oo [Vl
R = "Y12| 1 ce |Y2m| (338)
"le| |Ym2| s 1

3.2.3 Physical Stochastic Model

The seismic ground motion process is mainly affected by the earthquake magnitude, the
seismic wave propagation distance, the site conditions and some other factors. Because most of
these factors are beyond human control, a notable random nature is seen in the observed seismic
ground motion processes. If the impact of earthquake magnitude and dissemination factors is
not considered in the present stage and the objective is focused on the ground-motion
mechanism at a specific site, then the physical relationship can be set up between the surface
ground motions and the input motions at the bedrock (Li and Ai, 2006, 2007).

Without loss of generality, the actual engineering site can be simulated as an equivalent
single-degree-of-freedom system (Figure 3.5) with the equation of motion

¥ + 24 wo + wix = 2{woily + Wity (3.39)

where X, X and x respectively represent the absolute acceleration, the absolute velocity and the
displacement of a point in the fixed coordinate system, w and { are respectively the frequency
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Figure 3.5 Equivalent single-degree-of-freedom system.

and damping ratio of the site, and it, and u, are respectively the velocity and the displacement of
the input seismic waves at the bedrock.

Performing a Fourier transform on both sides of Equation 3.39 and noting the relationship
between displacement and acceleration, the Fourier transform of the absolute acceleration is
given as

. w2 + 2L wow
X(w) =5 0

3.40
w§ — w? + 2{wow (3.40)

where Ug(w) is the Fourier transform of the acceleration of the input seismic waves.
Introducing the concept of arandom Fourier function, the equation above can be transformed
as

1/2

L+ 42w/ o) Fy(n, ) (3.41)

Fle) = [1 — (0?/w})] +48* (@/w0)’

where 7 is a random variable related to the amplitude of the input seismic waves.

As m, { and wq are random variables, Fx(w) is a random function. When the basic random
variables and their probability distribution are given, the finite-dimensional probability
distribution of X(¢) can be obtained.

The random Fourier function of the input seismic acceleration at the bedrock F,(7, @) may
be determined according to the relationship between the physical mechanism of the source and
the earthquake attenuation, or given according to the statistics of seismic records at the bedrock.
When the energy density of the seismic input is assumed to be in the form in Figure 3.6, it is
written as

F()a)
O<w<w1
VT, o
F
Fy(n,0) = 707 0 <o <o (3.42)
Fy we—o

w; < w < we

\/Twe_wZ

where F is the amplitude value of the input Fourier spectrum.
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Figure 3.6 Energy distribution of the accelerations at bedrock.

According to the statistics of the acceleration records, it is found that the basic random
variables obey a lognormal distribution. The identified mean value and the coefficient of
variation of wy and ¢ are listed in Tables 3.1 and 3.2. Comparisons between the actual
measurement records and the results calculated by the random Fourier spectrum are shown in
Figure 3.7 (Li and Ai, 2006).

Table 3.1 Identified mean values of the random variables.

Type of soil I 1I I v
o 15 12 11 9
4 0.65 0.80 0.60 0.90

Table 3.2 Identified coefficients of variation of the random variables.

Type of soil 1 I I v
o 0.40 0.40 0.42 0.42
{ 0.30 0.30 0.35 0.35

----- Actual Records

- Proposed Model
7]
£ + Single Standard Deviation
[=
2
% Mean value
% I - Single Standard Deviation
S 0.2}y
< i
0.1/
0.0 1 : : A : :
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Frequency (Hz)

Figure 3.7 Comparison between the physical model and the measured data.
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3.3 Fluctuating Wind Speed in the Boundary Layer
3.3.1 Structural Wind Pressure and Wind Speed

The movement of air forms wind. In the scope of the atmospheric boundary layer, if the flow of
the wind is obstructed by structures, then there will be a lift force Fz, adownwind force Fp and a
horizontal force Fi (Figure 3.8) applied to the structures (Simiu and Scanlan, 1996)

1

Fz=5 u,pv*B (3.43a)
1 2

Fp = 5 MpPY B (3.43Db)
1 2

FL = S HLPY B (3.43¢c)

where uz, up and wp are respectively the lift force coefficient, the downwind resistance
coefficient and the horizontal resistance coefficient of the wind. These coefficients will change
with different structure shapes and can be determined normally by wind tunnel experiments.
p is the mass density of the air, v is the wind speed and B is the characteristic scale of the
structures.

/

Fp

|

v

y

Figure 3.8 Three-component wind forces.



Stochastic Models of Dynamic Excitations 57

Dividing by B on both sides of Equations 3.43a—3.43c will give the windward pressure of the
structures; that is:

Fi(x,z,1) = %pﬂ’i(z)vz(xv z,1) (i=1,2,3) (3.44)

where Fl = Fz/B, F2 = FD/B, F3 = FL/B, M1 = Uz, b2 = UD, U3 = UL, and z is the helght above
the surface.

A large number of observations of natural wind show that, as a process of time, the wind
speed can be expressed as the sum of the average wind speed and the fluctuating wind speed;
namely:

v(x,z,t) = vs(z) + vp(x, 2, 1) (3.45)

Introducing Equation 3.45 into Equation 3.44 and omitting the square items of the
fluctuating wind speed, the wind pressure can be decomposed to an average wind pressure
and a fluctuating pressure:

Fi(x,z,t) = Fis(x,z) + Fip(x, z, 1) (i=1,2,3) (3.46)
where
1
Fis(x,z) = EP,U«,'(Z)Vf(Z) (3.47a)
Fip(x,z,1) = ppi(z)vs(2)vp(x, 2, 1) (3.47b)

Owing to the existence of a variety of uncontrollable factors, the process of the wind speed
is a typical stochastic process, where the average wind speed (Figure 3.9) can be described
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Figure 3.9 Average wind speed.
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by a random variable. Generally, it is considered as the extreme-value typel distribution
(Zhang, 1985):

pr(v) = exp{ —exp[—a(v—b)]} (3.48)

where a and b are the distribution parameters, which can be expressed by the mean and the
standard deviation of the standard wind speed (i.e. the wind speed at a height of 10 m):

T
a=— 3.49a
v (3.49a)
b= My, — 0450, (3.49b)

Within the atmospheric boundary layer, the average speed along the height of the ground
may change at the logarithm rate:

1
nE) =7 p,*ln% (3.50)

where k= 0.4, z; is the roughness length and u. is the shear velocity of the flow:

= (;)/ (3.51)

where 7 is the surface shear force.

3.3.2 Power Spectral Density of Fluctuating Wind Speed

In Equation 3.45, vp reflects the fluctuating component of the wind speed. In essence, this

component is due to the turbulence in the flowing wind. Most of the actual measured data show

that fluctuating wind speed may be simulated as a zero-mean stationary Gaussian random field.

Introducing this basic assumption, the longitudinal velocity fluctuations at one point can be

described by the Davenport spectrum (Davenport, 1961) or the Simiu spectrum (Simiu, 1974).
The Davenport spectrum is given by

f
Sy (0) = 4Kv3 ) — 3.52a
( ) lOw(1 +f12)4/3 ( )
=@ (3.52b)
W10

where K is a parameter related to the ground situation (Table 3.3), v, is the mean wind speed at
a height of 10 m above the surface and ¢; =600 m.
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Table 3.3 The value of K.

Location Height (ft) Site description K
Severn Bridge 100 River bend 0.003
Sale 503 Open grass land with few trees 0.005
Sale 201

Sale 40

Cardington 50

Ann Arbor 25-200

Cranfield 50 Fenced square 0.008
Brookhaven 300 Bush and 30 ft trees 0.015
London Ontario 150 Urban area 0.030

The Simiu spectrum is expressed as

2
S (z,0) = B —ZTZL*f Bk (3.53a)
w z
f =5 (3.53b)

where 8~ 0.26.

Clearly, the Simiu spectrum is related to the height, while the Davenport spectrum is not.
This is because Equations 3.52a and 3.52b are derived from an average of the actual measured
wind speeds at different heights above the surface; therefore, the relationship between the
spectrum and the height cannot be reflected. Generally, it is considered that, in the Davenport
spectrum, the energy of the wind speed is overestimated in the high-frequency regions but
underestimated in the low-frequency regions.

An actual measured spectrum close to the Simiu spectrum is the Kaimal spectrum given by
(Kaimal et al., 1972)

Comp? 200f
® (1450f)"

Sy (2, @) (3.54)

It is generally believed that Equations 3.53a and 3.54b are suitable for the low-frequency
regions where < 0.2 while Equation 3.54 is applied to the high-frequency regions where
f> 0.2. Similar to the Simiu spectrum, the Kaimal spectrum cannot meet the condition that
S(w) =0 and the first-order derivative is zero as w =0. On the other hand, the Davenport
spectrum can meet the condition. A comparison of the different PSD functions is shown in
Figure 3.10.

The fluctuating wind speeds between two points within a certain distance at the same height
or different height are correlated. Generally, the cross-PSD is used to measure the probabilisti-
cally correlated degree of two stochastic processes. Noting that the spectrum is a complex
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Figure 3.10 Comparison between different wind PSDs.

function, there is

Sy (dy @) = S, (d, @) +iS, |, (d, ) (3.55)

where p; and w, are the wind speed records at the points M; and M, and d is the distance
between the two points.

Usually, the imaginary part contributes less to the coherence function than the real part and
its effect can be omitted. Therefore, the cross-PSD is expressed as (Davenport, 1968)

Sy (d, w) = Sﬁle (d, ) = \/S(z1,w)S(z2, )exp( —f) (3.56)

w[C3(z1 — )" + C3(x; — x2)°]'/?

/= Ava(z) - w(z2)]

(3.57)

where X, x, and z, z, are the coordinates of the points M and M, respectively. The link line
between M, and M, with the mean wind direction is vertical. C, and Cy are the attenuation
coefficients to be determined by experience; normally, they take the values C, =10 and
Cy=16 (Simiu and Scanlan, 1996).

3.3.3 Random Fourier Spectrum of Fluctuating Wind Speed

The PSD model is essentially the second-order numerical characteristic which is adopted to
express the main features of a stochastic process. If the probability distribution is Gaussian
for the process, then a sequence of finite-dimensional probability distributions can be given
by the first two-dimensional distributions; thereby, the statistical properties of the process can
be completely determined by the first two moments of the process. Unfortunately, this
condition is close to a hypothetical character, rather than to the summary of the facts observed
by experience. In fact, for fluctuating wind speed, the stationary assumption is right only
within a certain time-scale, while the assumption of a Gaussian normal distribution is not
supported by sufficient observed facts.
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The random Fourier spectrum model introduced in Section 3.1 brings about the possibility of
establishing a random function model for characterizing a comprehensive probabilistic
character of fluctuating wind speed (Li and Zhang, 2007). It has been said that random
Fourier spectrum modeling establishes a physical model based on the physical mechanism in
the process and, thus, can reflect the nature of the observed facts. A number of studies show that,
in a uniform flow field, the energy produced approximately balances the energy consumed
(Lumley and Panofsky, 1964). Therefore, the energy dissipation rate can be expressed as

d
¢ = 200 (3.58)
p dz
where
(2) = puin (3.59)
vs(2) = M nZO .
Noting Equation 3.51, we have
3
e=t (3.60)

" kz

According to Kolmogorov’s second hypothesis, in the inertial subrange, the eddy motion
may be assumed to be independent of the viscosity, and thus determined only by the energy
transfer rate. For a sufficiently high wave number «, this is given as

FIE(k), k,e] =0 (3.61)

where E(k) is the energy per unit wave number.
According to dimensional analysis, the above equation will give (Simiu and Scanlan, 1996)

E(k) = a;8¥3k =3 (3.62)

in which a; is a universal constant. Note that

and
%
i== 64
; (3.64

where 1 is the wavelength and v, is the vortex velocity with the frequency 7.
For the vibration process formed by several whirlpools, it can be approximated that v, equals
the average speed vy(z). Thus, the wave number can be written as

(3.65)
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At the same time, noting that
E(k) dk = E(w) do

and substituting Equations 3.60 and 3.62 in Equation 3.65, this leads to

1
E(w) = 0182/3,(—5/3@ _ auiz‘2/3v52/3(z)w‘5/3 (3.66)
S

As the energy spectrum of the process and the Fourier spectrum have a square relationship, it
follows immediately that

Flw) = ap,z" 33 (2)0 %0 (3.67)

Introducing the Monin coordinate

nz
= 3.68
F =30 (3.68)
Equation 3.67 can be changed to
_ M o3
Flw)=B—F 3.69
(w) =B \/af (3.69)

Because ., and v¢(z) are random variables, the above equation is a random Fourier function.
In fact, the application scope of Equation 3.69 is the region of f > 0.2. For general cases,
Equation 3.69 can be extended to

F(n,7,0) = 75G(f) (3.70)

After the probability distribution of the basic random variables and the specific form of G(-)

are identified by the measured wind speed records, the probability distribution of the random
function F(7, z, w) can be fully determined. As an example, assuming

le(C3C4 - 1)

T

(3.71)

and taking 310 groups of measured wind speed records as the basis, the parameters can be
identified and are given as: C; =4.25, C, =0.1, C3=0.8, C4=0.3. The roughness length Z,
obeys the lognormal distribution and the 10 m high mean wind speed obeys the extreme-value
type I distribution. Thus, the random Fourier spectrum of the fluctuating wind speed can be
expressed as (Li and Zhang, 2007)

_ 7.02\/:(/)511"/3
In(10/Zo)[1+3.5 x 10*(n/v10)*"]"/*

F(n) (3.72)

Figure 3.11 shows the comparison between the mean Fourier spectrum and the standard
deviation spectrum of the actual measured wind-speed records with the counterparts of the
random Fourier spectrum.
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Figure 3.11 Comparison between the theoretical and measured Fourier spectrum.

3.3.4 Random Fourier Correlation Spectrum

In order to reflect the correlation characteristic of the fluctuating wind speed between two
arbitrary points in space, the cross random Fourier correlation spectrum can be introduced and
defined by

Fup,(0) = FMI(“’)FM(“’)YM,M(“’) (3.73)

where F,, (w) and F,, (w) are respectively the random Fourier spectrums at the points M; and
M,, and

Vyum, = Crexp(— f) (3.74)

is a coherence function, where C; is a coefficient and f is defined by Equation 3.57.
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When considering only the coherence of two points at different heights in the same vertical
direction, the coherence function is given as

Czlz1 = 22lo } (3.75)

Yu,uz(w) = Clexp{ - m

In the case C; and Cy are both random variables, the above equation expresses a random
coherency function.

According to the statistical analysis of the actual measured data of sampled wind-speed
records, it has been confirmed that C and C obey the normal distribution with Me, = 0.492,
oc, = 0.034, uc, =0.03 and o, = 0.042 (Zhang and Li, 2006).

Figure 3.12 shows the comparison between the Fourier correlation spectrum of the actual
measured wind-speed records and the mean and the standard deviation of random Fourier
correlation spectrum calculated by Equation 3.73.
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Figure 3.12 Comparison between the theoretical and measured Fourier correlation spectrum.
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3.4 Wind Wave and Ocean Wave Spectrum
3.4.1 Wind Waves and Wave Forces

In the scope of its main energy distribution, an ocean wave is generated by wind power as a
drive and gravity as arestoring force and thus is also termed a wind wave. In the classical theory
of wave analysis, if it is assumed that the amplitude of a wave (wave height) H, the wavelength A
and the water depth /i are small, then the fluid particle velocity v caused by the wave can be
regarded as small. Therefore, the equation and the boundary conditions for the wave potential
function ¢ are linear:

azgo 62go
1
S (3.76b)
g ot
on  Op B
a — & =0 fOI'Z =0 (376C)
%0 forz= —h (3.76d)

0z
According to the above equations and the boundary conditions, the horizontal displacement
of the free surface water particle of the wind wave can be obtained as

n(x, 1) = gCOS(KX — wt) (3.77)

where k and w are the wave number and wave frequency respectively and can be expressed by
the wavelength /4 and the period T:

2

K= 7” (3.78a)

L (3.78b)
T

Figure 3.13 shows the waveform expressed in Equation 3.77. Similarly, the horizontal
velocity of the water particle at a certain depth z may be obtained as

v(x,z,t) = %Wﬂ(x, 1) (3.79)



66 Stochastic Dynamics of Structures
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Figure 3.13 Wind wave.

and the horizontal acceleration of the water particle is

alx,z, 1) = %Wﬁ(x, ) (3.80)

The above solution is commonly known as the Airy solution (Wen and Yu, 1985).
Introducing

_ wcosh[k(z +h)]

H = 3.81
(@,2) sinh(kh) (3:81)
Equations 3.79 and 3.80 can be simplified as follows:
v(x,z,t) = H(w, z)1(x, 1) (3.82)
a(x,2,1) = H(w,2)n(x, 1 (3.83)

The forces generated by wind waves applied on structures in water are known as wave forces.
When the ratio of the characteristic scale D of the object to the wavelength 4 is comparatively
small, its effect on the wave field can be neglected. In these cases, the above solution related to
the wave can be applied directly.

For a vertical cylinder under the action of an ocean wave, if D/1<0.2, then the Morison
formula can be adopted to calculate the wave forces (Morison et al., 1950):

1 D?
F(x,z,1) = EPCDV(Xa z,0)|v(x, z, )| + pCy nTa(x, z,1) (3.84)

where p is the density of the seawater, D is the diameter of the pile, Cp is the resistance
coefficient, Cj is the inertial coefficient.

The Morison formula consists of the resistance and the inertia components, among which the
resistance results from the speed when the seawater flows through the piles while the inertial
forces result from the acceleration by the seawater particles. The distribution of the wave forces
along the height of the piles is schematically shown in Figure 3.14.
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If we define
1
DZ
Ki = pCi nT (3.85b)

then the Morison formula can be simplified to
F(x,z,t) = Kpv(x, z, H)|v(x, z, £)| + Ka(x, z, t) (3.86)

The formation of wind waves is affected by many uncontrollable factors. Therefore, the
wave process is a typical stochastic process. However, this does not change the physical
relationships between the displacement, the velocity and the acceleration of the water particles
in the wave process. For the stochastic process, Equations 3.82 and 3.83 still hold. Assuming
that the waves at different points are completely correlated along the x direction, then the
random field n(x, #) can be simplified as a stochastic process n(?).

For the random speed process v(z, t), through the statistical equivalent linearization, the
random resistance

Fy(z,t) = Kpv(z, t)|v(z,1)| (3.87)

can be changed to

Fy(z,t) = \/%UVKDV(Z, 1) (3.88)

where o, is the standard deviation of v(z, t).
Substituting Equations 3.88 and 3.83 in Equation 3.86 and noting that the aforementioned
statistical relationship assumption will give

Fy(z,t) = \/%(TVKDH((H,Z)T)(I) + KiH(w,z)7(1) (3.89)
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If n(?) is a stationary stochastic process, according to the uncorrelated nature of the
stationary process and its derivative, then from Equation 3.89 it is easy to obtain the PSD
of the wave force F(z, 1):

8
Sp(z,0) = (E o2 K3 + Kfaﬂ) H*(0,2)Sy,(o) (3.90)

where S, (w) is the PSD of 7(z).

3.4.2 Power Spectral Density of Wind Waves

A large number of actual measured data indicate that the free surface particle displacement 7(?)
of the ocean wave can be reflected by a zero-mean stationary stochastic process model. So far,
investigators have proposed various wind wave power spectral models, among which a
significant type follows the basic form brought forward by Neumann (1952):

5, () :iexp<—3$) (3.91)

w[)

where p often takes a value in the range 5-6, ¢ = 2—4 and the coefficients A and B are often
related to the wind speed, the wave height and some other physical parameters. In fact, in the
Neumann spectrum, the parameters take the values

where C =3.05m?s ™, g is the acceleration due to gravity and v 5 is the average wind speed at
a height of 7.5 m over the sea surface.

In the Pierson—-Moscowitz (P-M) spectrum which keeps the basic form of the Neumann
spectrum, the parameters take (Pierson and Moskowitz, 1964)

4
p=5 q=4 A=00081g2 B= 0.74<g>
V19.5

where vq 5 is the average wind speed at a height of 19.5 m over the sea surface.
If we take the dimensionless constants & = 8.1 x 10> and 8 = 0.74, then the P-M spectrum
can be expressed as

ag’ 4
Sp(w) = w;‘;expl—l%(v]iJ ] (3.92)
The P-M spectrum comes from an analysis on 460 spectrums observed and recorded in the
North Atlantic Ocean from 1955 to 1960. It reflects the basic characteristics of full growth of a
stormy wave.
The more convincing wind wave power spectral function model is the JONSWAP spectrum
(Hasselmann et al., 1973), which results from the integrated spectrum analysis of 2500
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observed spectra. Its form is

2
ag 5 ()] 4 xpl — (@ — w0)? /(202 w?
Sn(w) — a)sexp|:_ Z (Z) :|er p[—( 0) /(2 0)] (393)

where w is the peak frequency, « is the energy scale parameter, which is a function of the length
X = gx/vyoin the dimensionless wind region (where x is the length of the wind region and v is
the mean wind speed at a height of 10 m over the sea surface). When X = 10~ '-10, the energy
scale parameter is given as

a=0.07x"0% (3.94)
v is the peak factor, defined by
S
Y= 75;]1’\‘4““" (3.95)
7,max

where S, max is the peak of the JONSWAP spectrum and Sﬁ?‘fmax is the peak of the P-M spectrum.
The observed values of y is between 1.5 and 6, with the average being 3.3, o is the peak shape

parameter with value

B {0.07 forw < wy (3.96)

0.09 for w > wy

The JONSWAP spectrum is applied to the wind wave under different stages of growth and
even under a hurricane. Figure 3.15 is the comparison between the average JONSWAP
spectrum and the P-M spectrum (Rye, 1974).

The preceding PSD model is, in essence, a type of observed statistical model. Using a
different approach, Wen ez al. (1994a, 1994b) attempted to draw a theoretical model of the wind
wave spectrum based on an analytical viewpoint. According to their research, the spectrum is

1.0

0.8 1

0.6 JONSWAP, y=3.3

S(®) / m?s

0.4+

0.2+

0.0 L B A B a—
0.0 0.5 1.0 1.5 2.0 25 3.0

o/rad-s

Figure 3.15 The average JONSWAP spectrum and P-M spectrum.
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expressed as

S,(@) = 1.010~ *Pexp[ — 0.773(@ > — 1)] + 1.1exp| — 41.4(& — 1)°] (3.97)
where
52(@) = 54(@) (3.98)
o=2 (3.99)
o
my = JW S(w) dw (3.100)
0

The Wen model consists of the wind wave spectrum with full growth and the very young
wind wave spectrum. In fact, Wen’s model is a mathematical analysis for the wind wave
spectrum curve, but is not entirely a physical interpretation. Figure 3.16 shows the comparison
between the Wen spectrum and the JONSWAP spectrum.

3
g 2
~N
=N H
% i JONSWAP, y=3.3
| i
1 ‘ Equation 3.97,Wen
0 T T T — T 1
0.0 0.5 1.0 15 2.0 25 3.0

Figure 3.16 The Wen spectrum and the JONSWAP spectrum.

3.4.3 Direction Spectrum

When investigating the reaction to ocean waves by floating objects or ocean wave refraction
and diffraction near large-size objects, it is essential to consider the direction distribution of the
wave. The direction spectrum of the ocean wave is generally defined as

S(f,9) = S()G(f, D) (3.101)

where S(f) is the displacement frequency spectrum of the ocean wave, fis the frequency, 9 is the
angle between the oblique wave and the principal direction and G(f, ) is the direction
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distribution function which satisfies
T
J G(f,9)d9 =1 (3.102)
—T

Longuet-Higgins et al. (1963) expressed the direction distribution function as

2s
G(f,9) = Go(s) cos (3.103)
where
D max ,19 -1
Go(s) = <J coszsadl‘}) (3.104)
Fmin

Here, s is the concentration degree of the direction function and it is proper to determine it by
actually measured results in different sea areas (Mitsuyasu et al., 1975; Yu and Liu, 1994).
The direction distribution function advised by Donelan et al. (1985) is

G(f,9) = %Bsechzﬁﬁ (3.105)

where

13
2.61 Qi) for 0.56 < Ji <0.95
P fo

= —-13 3.106

P 2.28 (f) for0.95< ! <l1.6 ( )
p f

1.4

otherwise

where f;, is the peak frequency.
Using an analytic method, Wen et al. (1995) gave the direction distribution function

G(f,9) = C(n')cos" (3.107)
where
w) ? w
9.91 <—) exp( —0.0757 p') for — > 1
, w( wo
" = (3.108)
0\ 43 ®
9.91 <—> exp( —0.0757 p'?) for — <1
@9 o)
S
p = 5al) (3.109)

my
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Figure 3.17 Direction spectrum.

Figure 3.17 shows the Mitsuyasu direction spectrum and the comparison between the
Donelan and the Wen direction spectrum.

3.5 Orthogonal Decomposition of Random Excitations

The PSD of a random excitation describes the numerical characteristics of the stochastic
process in the phenomenological sense. Correspondingly, the orthogonal decomposition of a
random excitation gives the random function description of the stochastic process. The
descriptions can be regarded as equivalent forms of the Karhunen-Loeve decomposition
described in Chapter 2.

3.5.1 Orthogonal Decomposition of a Stochastic Process

In the Karhunen-Loeéve decomposition of a stochastic process, to obtain the eigenvalues and
the eigenvectors of the decomposed process, it is necessary to solve a Fredholm integral
equation. This is usually quite difficult. To avoid the difficulty, the double expansion method of
a stochastic process can be achieved based on the standard orthogonal basis (Li and Liu, 2006).

For a real, zero-mean stochastic process {X(¢),0 <¢<T} in a random functional space,

introduce a standard orthogonal function set @,(7), j=1,2,..., which satisfies
T
(o) = | @l =3, (3.110)
0

Then in the interval [0, 7], X(¢) can be expanded as

X0 =3 &al) (.111)
k=1
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The expansion coefficients &, are random variables given by

T
£ = JO XEDeu(dt k=1.2,... (3.112)

This integral is defined in the sense of the mean-square Riemann integral. Usually,
alimited-item N can be taken as the approximation of the expansion in Equation 3.111, namely:

N
n=3 &l (3.113)
k=1
In this case, the mean square error is
T oo
£ = E{J [X(1) — X(0)]? dt} = > &g (3.114)
0 k=N+1

Generally, the random variables &, k=1,2,...,N, are correlated. Define the covariance

matrix of the random vector §=(¢,&5, ..., &N T as
C11 C12 ... CIN
c c ..oc
c— | 22 2N (3.115)
CN1  CN2 CNN

where (see Equation 3.112)

Cij = [ff]]
UO (& m)ei(n)dn Jy X §,l2)90](12)dlz] (3.116)
= Jo Iy Kx (11, 2)@;(t1)@;(12) dty di

Here, Kx(t1,12) = E[X (&, 11)X (&, 12)] is the covariance function of the stochastic process.
According to the decomposition principle of the random vector described in Section 2.1.4,
the random vector § has the following forms of decomposition:

N
£=> 4V (3.117)
=

where the y; are the eigenvector of matrix C, the /; are the corresponding eigenvalues and the {;
are the standardized random variables, of which the distribution is determined by the nature of
the process.

Substituting Equation 3.117 in Equation 3.113 will yield

:Zzg \/7¢/k90k ZQ\/E (3118)

k=1 j=1
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where ¢, is the kth component of the eigenvector {; and
N
H0) = dperlt) (3.119)
k=1

Itis easy to prove that {f(r), j=1,2,...,N}isasetof standard orthogonal functions; namely:

(fi.fi) = Jofi(t) fi(¢) dt = & (3.120)

Equation 3.118 is termed the standard orthogonal decomposition of a stochastic process.
Obviously, as N — oo, the expression of such an orthogonal expansion is equivalent to the
Karhunen—Loeve decomposition.

For a stochastic process with nonzero mean, it can be apparently given as

X0 =X+ S G0 (3.121)
=

Generally, for a specific random excitation, the former rth eigenvalue and the corresponding
eigenvector from the largest eigenvalue in order are taken to reflect the major characteristic of
the stochastic process; namely, Equation 3.118 can further be reduced to

X0 = 45V (3.122)
J=1
In the sense of the mean square, the error of Equation 3.122 compared with Equation 3.118 is
T ~ N
n—e{] w@o-x@oraf = 4 (3.123)
0 J=r+1

3.5.2 Hartley Orthogonal Basis Function

In the standard orthogonal decomposition of the stochastic process, the function {¢i(?), j=1,
2, ...} can choose all possible orthogonal basis functions, such as the trigonometric functions
and the Legendre orthogonal polynomials and the like. In comparison, using the Hartley
orthogonal basis function can often obtain the best results (Li and Liu, 2006, 2008).

The Hartley transform of a real-valued function x(¢) is expressed as (Bracewell, 1986)

H.(f) = Jim x(#)cas(2mft) dt (3.124)

where f'is the frequency and

cas(t) = cos(t) + sin(¢) (3.125)
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The Hartley transform and its inverse transform have the same form of integral calculation;
namely:

(1) = Jle(f)cas(znﬂ) df (3.126)

Itis noted that the Hartley transform of a real-valued function remains a real function. This is
why the Hartley transform is simpler than the Fourier transform.
For a real time sequence x(n) in a limited range, the discrete Hartley transform is

N-1
Hy(k) = x(n)cas(2nkAfnAr)  k=0,1,...,.N—1 (3.127)
n=0

where Af is the step of the frequency and At is the time step.
The corresponding inverse transform is

N-—1
2
ZHx(k)cas( nk”) n=01,... N—1 (3.128)
k=0 N

x(n) :]l\/

In the interval [0, T], the integrated Hartley orthogonal basis is

1 2wkt
t) = —=cas k=0,1,2,... 3.129
) = eas(17°) (3.129)
while the integrated trigonometric orthogonal basis is given by
1
S (¢ -
QDO( ) \/T
2 2kt
o) = Voo (B) k=1 3.130)
V2 . (2kmt
() = ﬁmn( T )

It is easy to know that

Py 1 (1) + @5 (1) = V20 (1) (3.131)

This indicates that when the orthogonal Hartley basis is used to substitute the trigonometric

orthogonal basis as the expansion basis function of a stochastic process x(¢), under the same
error scope, the expansion items related to the Hartley basis can be reduced by a half.

3.5.3 Orthogonal Expansion of Seismic Ground Motions

When the Hartley orthogonal basis indicated in Equation 3.129 is used to expand the process of
the seismic ground displacement, there is (see Equation 3.122)

X0 =360 (3.132)
=
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where

N—-1
FO = biiiend) (3.133)
k=0

Provided that the seismic ground motion is a Gaussian process, {;(j=1,2, . ..,r) will be a set
of mutually independent standard Gaussian random variables.
Accordingly, the orthogonal expansion formula of the acceleration process is

X(@C0) = {/AF) (3.134)
Jj=1
where
N-—-1
Fi(t) = a1y 1u(t) (3.135)
k=0

Here, the «y ,  introduced is a set of coefficients to make up the truncated error and is
obtained by the principle of energy equivalence (Liu and Li, 2006).

Figure 3.18 shows the comparison between the PSD of the orthogonal expanded process of
the Hu—Zhou model (Hu and Zhou, 1962) by the preceding method and the PSD of the original
model. Figure 3.19 shows a typical time history sample given by the expansion function.
During this process, the intensity envelope function given in Equation 3.23 is used.
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Figure 3.18 PSD of the orthogonal expanded process and the original spectrum.
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Figure 3.19 A typical acceleration sample.

3.5.4 Orthogonal Expansion of Fluctuating Wind Speed Process

Research shows that direct use of the PSD function of fluctuating wind speed for orthogonal
expansion will bring more expansion items. Therefore, the concept of the virtual wind-
displacement time history, the integration of the wind-speed time process, is introduced
(Liu and Li, 2008).

For the time process of virtual wind displacement, Equation 3.122 is used for the orthogonal
expansion and the Hartley orthogonal basis is taken as a standard orthogonal function set. Then
the orthogonal expansion results of the fluctuating wind-speed stochastic process can be given
by taking time differentiation of the above results as follows:

VL) = Y4V (3.136)
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Figure 3.20 PSD of the orthogonal expanded process and the original spectrum.
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Figure 3.21 A typical sample of fluctuating wind speed.

where
N
G(1) = ZBk+1¢j,k+1¢k([) (3.137)
k=0

Here, the B, | introduced is a set of amendment coefficients to make up for the truncated
error and can be given using the principle of energy equivalence (Li and Liu, 2008).

Figure 3.20 shows the comparison between the PSD obtained from the orthogonal expansion
of the fluctuating wind-speed process of the Davenport spectrum and the PSD of the original
model. Figure 3.21 shows a typical random fluctuating wind process sample given by the
expanded function.
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Stochastic Structural Analysis

4.1 Introductory Remarks

It has been common practice in engineering to analyze structural systems by assuming that
the systems are exactly determined; for example, the system parameters and the system
inputs are deterministic parameters or excitations. However, such ideal situations are rarely
encountered in engineering reality. Not only the system inputs are stochastic processes
(such as the fluctuating wind excitations and the earthquake ground motions), but also the
structural parameters (such as the material mass density and the elastic modulus) need to be
considered as uncertain variables in the design process (Vanmarcke, 1983; Li, 1996a). In this
chapter, our basic concern is the uncertainties involved in the structural parameters. That is,
linear differential equations with random coefficients will be dealt with in the following
sections.

Three basic methodologies can be used to quantify the structural response uncertainties.
The first is the Monte Carlo simulation (MCS) method (Shinozuka, 1972; Shinozuka and Jan,
1972). In such a simulated process, a set of random samples is generated first to represent the
statistical uncertainties in the structures. These random samples are then substituted in the
finite-element model to obtain the response of the sample structures, whereby the statistical
characteristics of specified responses are analyzed to quantify the response uncertainty.
The second methodology, known as perturbation technology, relies on the use of a Taylor
series expansion to formulate the physical relationships between some characteristics of
the random responses and the random structural parameters (Collins and Thompson, 1969;
Hisada and Nakagiri, 1981, 1982; Liu et al.,1985, 1986; Kleiber and Hien, 1992). The third
methodology, which was developed in 1990s, is the orthogonal polynomial expansion
method or, as called in this book, the expanded-order system method (Spanos and Ghanem,
1989; Iwan and Jensen, 1993; Li,1995a, 1995b, 1995¢, 1996a). In the approach, the responses
of structures with random parameters are expanded by a suitable orthogonal polynomial in a
probability space, then an expanded-order system equation can be deduced which will govern
the responses of the stochastic structure. In this chapter, all these developed methodologies
will be introduced.

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5
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4.2 Fundamentals of Deterministic Structural Analysis

In any quantitative approach for analysis of stochastic structures, the deterministic analysis
using the finite-element method may be an essential basis. There have been so many
textbooks on the finite-element method published during the last four decades that any
attempt to repeat the description would seem superfluous. However, considering that most
contents of this book deal with a special aspect of the method, we at least need to set up the
fundamentals of the finite-element method in such a way as to make it possible to elaborate on
probabilistic issues.

4.2.1 The Basic Idea of Finite-Element Analysis

All the practical structures are essentially infinite degree-of-freedom systems. However, in
studies or applications, an infinite degree-of-freedom system may be transformed into a finite
degree-of-freedom system using some types of discretization method, among which the finite-
element discretization method is a typical one (Bathe and Wilson, 1985; Zienkiewicz and
Taylor, 2004). Using this approach, the structure is assumed to be partitioned into a system of
discrete elements which are interconnected only at a finite number of nodal points. According
to the nature and practical background of the problem, the connection form of element nodes
may be treated, for instance, as hinged or rigid connections. Figure 4.1 is a schematic plan of the
partitioning of finite elements of some typical structures.

P, P,
1 2 4 7 11 16
Z 5
17
6 9 413 < 25
14 22
10 191 23 ﬁ
15
20 2426 2-D element
P (b)
P, 2|
element C- -’-,-1'- -’-,«# .
—t Lo
H ' ' gl
_____ R H /:
A A
----- :T“"’:“"-E_"“ : 3-D element

Figure 4.1 Finite-element partition of structures.

The responses of structures under external loads, such as stresses, strains, internal forces and
displacements, are generally continuous functions. However, for those discretized structural
systems using finite-element discretization, the previous continuous functions are replaced
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by approximation functions that are smooth in each element. These functions should be
continuous and stepwise smooth in the whole structure. Moreover, the physical quantities at the
element nodes are generally selected as the unknown variables to establish the approximate
function in an element. The approximation functions in each element are given in a unified form
and generally termed the shape function or interpolation function. The polynomials are usually
selected as shape functions. According to the selected shape functions, combining with the
stress—strain physical relationship and the boundary conditions, we can establish the
expression of element energy. Then, the governing equation can be obtained by the variational
principles. By solving the governing equation, the responses of the element nodes can be
obtained and, accordingly, the responses of the whole structure may be computed easily
through the shape functions.

According to differences in the selected physical variables and the corresponding variational
principles, the finite-element method can be classified into the finite-element displacement
method, the finite-element force method and the mixed finite-element method. The finite-
element displacement method is based on the principle of minimum potential energy and takes
the displacements of nodes as basic unknown variables. The finite-element force method is
based on the principle of minimum complementary energy and takes the forces of nodes as
basic unknown variables. The mixed finite-element method is based on the principle
of Reissner variation and takes the nodal displacements or nodal forces as basic unknown
variables in different regions (Washizu, 1975). Considering that this book is not a monograph
on the finite-element method, we only briefly introduce the analysis process of the finite-
element displacement method and take the common truss structure as the background.

4.2.2 Element Stiffness Matrix

Considering a typical element in a plane truss structure, let the serial numbers of its ends be 7
and ;. The coordinate system established for the element e, the end forces and the deformations
are shown in Figure 4.2. These forces and displacements can be expressed as

Fei = (Nei; QeiaMei)T l~?ej = (Nefvaé_’ivME{f)T (41)

and

A T A T

Aei = (ueh Veiaﬁei) Aej = (u€j7 Vejs ﬁej) (42)
respectively.

Ve Qj
0. M, AT _
o b N,
M, T
ei i 5

Vej

0, X,

e e

Figure 4.2 Member coordinate system.
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According to material mechanics, the axial displacement u, of an arbitrary point in a member
is a linear function of the member end axial displacement; that is:

l,—Xx X
ue(xe) = uei% + uejl_e = Hequl(Xe) + ué’j()DZ(xé’) (43)
e e

where x, is the horizontal coordinate of a point in the member in the local coordinate system
and /, is the length of the member.

On the other hand, the deflection v, of a point in the member can be expressed by a cubic
curve:

Ve(Xe) = ay + X, + a3 x> + agx, (4.4)

According to the small deformation assumption, the following relationship exists between
the rotation angle and the deflection of an arbitrary point in the member:

9e(xe) ~ tand, (x,) = %

and using the boundary conditions at the ends

Ve (0) = vy
{ "-(}e((o)) = Ui (46)

Ve le = Vej
i, #7)

there exists

X2 x3 X2 x3 X2 x3 x2 x3
ve(xe) = Vei(l —31—26 +21—3€> +Vej (31—26 —21—§> +19€, (xe_zl_e+l_26) +’l9€j<— Z_€+Z_2€)
e e e e e e e

e

= VeiP3 (xe) + Ve @y (xe) +ﬁei¢5 (xe) + 19(’_]'QD() (xe)

(4.8)
Let

fo(xe) = [tte(xe), ve(xe)] (4.9)

Nu(x) = [e1(xe), 0,0, 0y (xe), 0, 0] (4.10)

Ny (x) = [0, @3(xe), @5(xe), 0, @4(xe ), @5(Xe)] (4.11)

Then, from Equations 4.3 and 4.8, we obtain

rix) = | N ][ 5] = N, “12)
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Here, N,(x,) and N,(x,) are ~the interpolation shape functions, which have a unified form for
each structural element, and A, is the element displacement in the local coordinate system.
According to material mechanics, the strain in the element is given by

du,

o |

¢ dzve
- Yed—xg

(4.13)

where y, is the distance from an arbitrary point in the sections to the neutral axis of the member.
Substituting the interpolation function expression in Equation 4.13 yields

A
£ = @N, { X } = BA, (4.14)

where B is usually called the geometry matrix.
The element potential energy I, is composed of two parts:

M, = W, +V, (4.15)

where W, is the element load potential energy; in the case that only end forces are
applied:

W= (A" AZ,]F”} - AR (4.16)

in which F, is the element nodal force vector in the local coordinate system.
In Equation 4.15, V, is the strain energy (deformation energy). According to elasticity
mechanics, V, is given by

1
V, :—J ¢l Eg, dQ (4.17)
2)q,

e

where E is the elastic modulus matrix and €2, is the integration domain of the element.
Substituting Equation 4.14 in Equation 4.17, we obtain

Ve
(4.18)

Il
N = DN =
>
~
VR
%
©°
=
e
=
=
o
@)
r!>z
~

where

k, = J BTEB dQ (4.19)
Q.
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is the element stiffness matrix in the local coordinate system. For the coordinate system
determined in Figure 4.2, its explicit expression is

E;‘e 0 0 _ EIAe 0 0
0 ¢ 12El,  6EL ‘ EI, 6EI
A I2 BB
0 6E], 4kr, _ 6EL, 2EI
k= | o, i | ko Lk (4.20)
=1 Ea, EA, :
-== 0 0 1 0 0
12EI,  6EI, 12EI, 6EI,
0 -5 Y B 7
e e e e
0 6El, 2EL 6EI, 4EI,
i 12 Lo 2z

where A, is the area of the element section and /, is the inertia moment of the element section
with respect to the section central axial.
Substituting Equations 4.16 and 4.18 in Equation 4.15 yields

F, (4.21)

4.2.3 Transformation of Coordinates

The element analysis described in the preceding section is done in the local coordinate system,
such as in Figure 4.2; the position of the element in the whole structure is not considered as yet.
In order to derive the governing equation of the whole structures, we should transform the
elements from the local coordinate system to the global coordinate system and locate the
positions of elements in the whole structures. The aim of the operations is to establish an
expression of the potential energy of the elements in the global coordinate system.

The relationship between the global coordinate system Oxy and the local coordinate system
is shown in Figure 4.3. According to the geometric relationship, the displacement u,;, v.;
of node 7 and the displacement u;, v; in the global coordinate system satisfy the following

o X

Figure 4.3 Coordinate transformation.
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relationship
{ Uej = U; COS e ~+ v; sin a, (4.22)
Vei = — U; SIN @, + V; COS @
and the angles of rotation in the two coordinate systems are identical; thus
Ve = Vi (4.23)

According to the same principle, to consider the nodal displacement of the element, we
have

A, = ToA, (4.24)
where

Ae = (ui,vi70i,uj,vj,0j)T (425)

is the element displacement vector in the global coordinate system and

cosa, sine, 0 O 0 0
—sina, cosa, O O 0 0
0 0 1 0 0 0
To = 0 0 0 cosa, sina, 0 (4.26)
0 0 0 —sina, cosa, O
0 0 0 0 0 1

is the element coordinate transformation matrix. This is an orthogonal matrix; that is:
—1 T
T, =T, (4.27)
Thus, the inverse transformation of Equation 4.24 gives
A, = TTA, (4.28)

In a similar way, the relationship between the nodal forces of the element in the local
coordinate system and that in the global coordinate system is as follows:

F. =T.F. (4.29)
F, = T,F, (4.30)

where
F. = (N;, 0i, M, N}, 03, M))" (4.31)

is the nodal force vector of the element in the global coordinate system.
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In substituting Equations 4.24 and 4.29 in Equation 4.21, the element potential energy in the
global coordinate system is given by

h, = %AZTERETQAE —Al'TIT,F,
(4.32)
= %AZkeAe — AR,
where
k. =TTk, T, (4.33)

is the element stiffness matrix in the global coordinate system.

The transformation of element coordinates only performs the transformation between
the global coordinate system and the element local coordinate system. It does not resolve
the problem of locating the element position in the structures. This work is realized through the
concept of the position transformation matrix.

If a structure can be partitioned into N elements, then its nodal displacements column matrix
can be denoted by
=@l u,...,u)’ (4.34)

Wy,

X = ()Cl,)C2,...,X3n)

where w; = (ug, vy, 9¢) (¢ = 1,2,...,n); n is the total number of the nodes.
The position of the eth element in x can be given by the following position transformation
relationship:

A, = Hj’}x = Tx (4.35)
where
T; =10,---,1,0,---,0] (4.36)
in which I is the ith block and
T;=1[0,---,L0,---,0] (4.37)
in which I is the jth block and
1 00 0 00
I=(0 1 Of, 0=]0 0 O (4.38)
0 0 1 0 00

Therefore, T, is given by

T, [0,---,L,0,---,0,0,---.0
Te—{T]}_{07...’0’0’...,1’0’...’0 (4.39)

as the position transformation matrix of element e. Generally, the position transformation
matrix is not an orthogonal matrix.
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Equation 4.35 exists when the displacement is continuous, but there is no such relationship
among element nodal forces and structural nodal loads because of equilibrium among internal
nodal forces and external loads on a common node. However, by introducing the position
transformation matrix, it can be used to locate the nodal forces simultaneously. In fact, if

F. =T.F, (4.40)

then combining with Equation 4.35, Equation 4.32 can be rewritten as

1 _
I, = EXTTgkeTgx —x'F, (4.41)

4.2.4 Static Equations

The total potential energy of the whole structure is the sum of all the element potential energy;
that is:

1 _
M= Z M, = ExT Z(TjkeTe)x —x' Z F, (4.42)
e e e

According to the equilibrium relationship between the element end forces and the nodal
equivalent load, there exists

Z F,=F (4.43)

e

where F is the nodal force vector of the structure. For the non-nodal loads, F can be given by the
principle of equivalence of potential energy.
Let

K=> TkT, (4.44)

which is called the global stiffness matrix. Substituting this equation and Equation 4.43 in
Equation 4.42 yields

1
M= ExTKx —x'F (4.45)

According to the principle of minimum potential energy, for all the allowable displacement
functions, the real displacements minimize the total potential energy (Washizu, 1975); that is:

SII=0 &M >0 (4.46)
where & denotes the variational symbol.

Utilizing the necessary condition of 6I1= 0, namely

o

=0 (4.47)
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we have
Kx = F (4.48)

This is the governing equation of deterministic structural static analysis, with x being the
unknowns.

4.2.5 Dynamic Equations

For dynamical analysis problems, new particularity only lies in the contribution of the
structural mass matrix and the damping matrix.

Still taking the previous plane truss structures as an example and using the shape functions
expressed by Equations 4.10 and 4.11, the velocity of each node in the element e can be
expressed by

f, = N(x.)A, (4.49)

and the kinetic energy of the element e is given by

1 T - 1= x
T, = EJ f.pf, dQ = AZ(J NTdeQ>Ae (4.50)
Q,

where p is the mass density of the material, Q. is the integration domain of the element and m, is
the element mass matrix in the local coordinate system; that is:

m, = J NTpN dQ (4.51)
Qe

Because of the effect of damping, the energy of the structural system is gradually
dissipated during vibration. If the damping forces acting on a structure could be determined
quantitatively, then the finite-element concept could be used again to define the element
damping matrix. For example, assuming the damping is of viscosity — that is, the viscous
damping force of any particle m; is — nf ;» where 7 is the viscous damping coefficient and
f ; is the velocity of the particle m; — then the dissipation function R of the element e can
be given by

1 .1 . 12T«
R, — _J f,nf, dQ = = A, E.A, (4.52)
2)a, 2

where

¢ = J NN dQ (4.53)
Q

3

is the element damping matrix in the local coordinate system.
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Analogous to Equation 4.33, the element mass matrix and the element damping matrix in the
global coordinate system are given by

m, =T'm,T, (4.54)
and
c. = TIe, T, (4.55)

respectively. The position transformation relationship of displacements still satisfy
Equation 4.35; differentiating it will yield

A, = Tex (4.56)

where A, is the element velocity vector in the global coordinate system and x is the nodal
velocity vector of the structure.

Having performed the coordinate transformation and the element position transformation,
the kinetic energy and the dissipation functions of the element e are

1
T, = EXTTZmeTeX (4.57)
and
1
R, = EXTTZceTex (4.58)

respectively. The total kinetic energy and dissipation functions of the whole structure are given
by the sum of the corresponding values of all the elements; that is:

1

T= 5;kTM;k (4.59)
. ..
R= X Cx (4.60)
where
M= ZijeTe (4.61)
is the mass matrix of the structure and
C=) TcT. (4.62)

is the damping matrix.

The potential energy of the structure is similar to that in the previous section (see
Equation 4.45; it is denoted by V herein according to conventional notation in the Lagrange
equation):

1
V= ExTKx —x'F (4.63)
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It is noted that V is the potential energy with the boundary conditions having been imposed
on. Hence, x is the nodal displacement vector of the whole structure with imposed boundary
conditions, too. So is the velocity vector X.

The general variational principle of dynamic systems is the Hamiltonian principle. Because
this principle is equivalent to the Lagrange equation, we often use the latter to establish the
governing equation of dynamical systems. The Lagrange equation for viscous damping system
is given by (Lanczos, 1970; Clough and Penzien, 1993)

alex) m P & 464

d (aT) or oV 0OR
Substituting Equations 4.59, 4.60 and 4.63 in Equation 4.64, we can obtain the equation of
motion of a deterministic structural system:

Mx 4+ Cx+Kx =F (4.65)

This equation can be solved by various methods, such as the time-domain method, the
frequency-domain method or the modal superposition technique (Clough and Penzien, 1993).

It is noted that the previously introduced mass matrix is the consistent mass matrix. In
practice, when the structural system is relatively regular and simple, we may use the lumped
mass matrix, and the preceding damping matrix is also generally replaced by the Rayleigh
damping matrix, which is usually given by

where a and b are coefficients that depend on the modal damping ratios.

4.3 Random Simulation Method
4.3.1 Monte Carlo Method

The Monte Carlo method is a numerical method to evaluate the approximate solutions of
physical and engineering problems by means of digital simulation and statistical analysis
of random variables (Robinstein, 1981; Shinozuka and Deodatis, 1991; 1996). The process of
solving a problem through the Monte Carlo method may be summarized as the following three
essential steps:

(a) Sampling of random variables. To generate random samples according to the known
probability distributions of the basic random variables.

(b) Obtaining the sample solutions. To get the response of each sample by solving determin-
istic mathematical or physical equations according to the nature of the problem.

(c) Computing the statistical estimation of the response quantities. For all the sample
responses, compute the mean and the variance or estimate the probability distributions
of the respective output random variables.

The theoretical foundation of the Monte Carlo method is the law of large numbers in
probability theory (Loeve, 1977). Let n be the occurrence number of event A and p(A) be the
occurrence probability of the event A in N independent trials; then, according to the Bernoulli
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law of large numbers, for any ¢ > 0, as N — oo, the frequency #n/N of event A will converge to
the probability of the event with unit probability; that is:

lim Pr{‘% —p(A) <s} =1 (4.67)

N — oo

If the random variables are independently and identically distributed — that is, if the random
variable sequence &, &, ..., £y have the same distribution and mathematical expectation
Elé)]l =a,i=1,2,...,N —then, according to the Kolmogorov law of large numbers, for any
&> 0, as N — oo, the variable (1/N) va: , &€ will converge with probability unity to the
expected value «; that is:

lim Pr{
N — oo

In the standard Monte Carlo method, the simple sampling method is applied to the digital
simulation of random variables. Therefore, each sample is an independent random variable
with the characteristic of identical distribution. According to the law of large numbers
mentioned above, as the numbers of samples are large enough, the mean of the samples will
converge with probability unity to the mean of the probability distribution. Meanwhile, the
frequency n/N of event A will converge to the occurrence probability of event A, so the
convergence of the Monte Carlo method can be ensured.

1 &
N;fi_a

> e} =0 (4.68)

4.3.2 Sampling of Random Variables with Uniform Distribution

According to the background and characteristics of the problem to be resolved, the random
variables involved in the stochastic system may belong to different probability distributions. In
order to generate samples of the random variables with different types of probability
distribution, a sample value of the random variable with uniform distribution on [0, 1] is
usually generated first. Then the sample is converted into the desired variable according to the
given type of probability distribution. Therefore, the sampling technology of uniform random
variables is the basis for realization of the Monte Carlo method (Robinstein, 1981; Niederreiter,
1992).

The foundation of generating a uniform random variable is a certain mathematical recursive
formula, of which the general form is

Xn+1 :f(xmxnflz-n»xnfk) (469)
where f(x,, X,_1, ..., X,_) is a given function. According to the function, once a set of initial
values x, x_1, ..., X_y is given, the sequence xi, X5, X3, . .. can be obtained one by one.

The common recursive formula is the linear congruential generator, which states that

Y = (ayn—1 + b)(modM) (4.70a)

Xy =22 (4.70b)
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where the multiplier a, the increment b, the modulus M and the initial value y, are all
nonnegative integers. The modulo notation (mod M) means that

VYo = ayy_1+b—k.M (4.70c¢)

where k, =[(ay,_; + b)/M] denotes the largest positive integer smaller than (ay,_; + b)/M.

Equation 4.70a expresses such a computing process that, for a given y,,_, if y,, denotes the
remainder of ay, ; + b divided by M, then the recursive form of recursively computing y,,
can be obtained by successively increasing ordinal numbers and using Equation 4.70a.
Equation 4.70b shows that y,/M gives rise to the pseudo-random numbers sequence Xx,, over
interval [0, 1]

Example4.1. Pseudo-Random Number Sequences Tables 4.1 and 4.2 are two sequences
generated by Equations 4.70a—4.70c for different values of @, b, M and y,.

Table 4.1 Sequence by Equations 4.70a—4.70c (a=2,b=3, M =17, yo=1).
n 1 2 3 4 5 6 7 8 9

Yn 5 6 1 5 6 1 5 6 1
x, 07143  0.8571 0.1429  0.7143  0.8571 0.1429  0.7143  0.8571 0.1429

Table 4.2 Sequence by Equations 4.70a, 4.70b, 4.70c (a=3, b=2, M=11, yo=5).
n 1 2 3 4 5 6 7 8 9

ya 6 9 7 1 5 6 9 7 1
X, 05455 08182  0.6364 0.0909 04545 0.5455 08182  0.6364  0.0909

O

The pseudo-random number sequences generated by the previous linear congruence method
have a definite period (see Tables 4.1 and 4.2; the periods are 3 and 5 respectively). However, in
most MCS algorithms for practical problems, random sampling usually demands thousands or
even millions of random numbers, so we hope that a simulation algorithm should have a long
period and relatively perfect statistical characteristics (mainly referring to homogeneity and
independence). In order to improve the property of random numbers generated by the linear
congruence method, we can use two effective methods as follows.

4.3.2.1 Mixed Shuffle Method

In the method we first generate a set of random variables vy, vy, .. ., v, using a generator of
standard pseudo-random numbers, and then a random positive integer j uniformly distributed
over [1,n] is generated using another generator of random numbers. Then, take v; as the
sampled value; the vacant position originally belonging to v; will be filled with a new random
number generated by the generator of standard pseudo-random numbers. Continuing such a
process will give arandom variable sequence. The process is shown schematically in Figure 4.4,
where Y is the random positive integer sequence. The sequences generated according to the
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Samples

Figure 4.4 The process of the mixed shuffle method (1, 2, 3 denote the order of the mixed shuffle).

mixed shuffle method have less self-correlation among sequences and better uniformity than
that of sequences generated by a single generator.

4.3.2.2 Joint Sampling Method

In this method we generate random numbers with uniform distribution over [0, 1] using three
linear congruential generators of random numbers. The first generator generates the maximum
effective part of the random numbers, the second generator generates the minimum effective
part of the random numbers, and then the third generator controls the process of the mixed
shuffle process. The pseudo-random number sequence generated by the joint sampling method
not only has much better independence and uniformity than that of the result of a single
generator, but also has nearly infinite period in practice.

4.3.3 Sampling of Random Variables with General Probability Distribution

In principle, sampling of random variables includes the sampling of discrete random variables
and continuous random variables. Because this book merely deals with continuous random
variables, only this situation is discussed herein.

The sampling methods of continuous random variables mainly include two categories: the
inverse transformation method and the acceptance-rejection sample method.

4.3.3.1 Inverse Transform Method

The inverse transform method is also referred to as the direct sampling method. Assume the
CDF of the random variable X to be Fx(x); in order to obtain the sample value of the random
variable, it is required first to generate the sample value z of a random variable Z uniformly
distributed over [0, 1], then the sample value of the desired random variable to be given by the
inverse of the CDF; that is:

x=Fy'(2) (4.71)
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P,(2) _///// :
X

Figure 4.5 Inverse transformation method.

The principle of the inverse transform method is shown in Figure 4.5. It is thus clear that the
secret of the inverse transform method is utilizing the fact that the CDF Fx(x) is over [0, 1].
Thus, the samples of X can be obtained once the independent random variables of uniform
distribution over [0, 1] are sampled.

4.3.3.2 Acceptance-Rejection Sampling Method

Using the inverse transformation method requires that the CDF can be expressed in an analytic
form and, moreover, that its inverse function can be expressed in an explicit formula.
Obviously, the limitation of this method is a bit strict for practical applications. On the other
hand, the acceptance-rejection sampling method may be applied to the situation for which the
inverse transformation method is not applicable.

Assume that px(x) is the PDF of random numbers that are going to be generated; the graph of
px(x) can then be drawn in a two-dimensional coordinate system (Figure 4.6). If a two-
dimensional random point (x, y) can be generated and it is scattered in the region enclosed by
Px(x), then the corresponding x has the desired distribution. In order to do so, a comparative
function f(x) > px(x) should be introduced (in Figure 4.6 it is denoted by a rectangle
surrounded by the dotted line), the domain of definition of f(x) is the same as that of px(x),
and the integral of f(x) in the field of definition is a finite value A. Thus, if a uniform random
number r € (0, A) is taken and there exists

r:rﬂwM:Fm (4.72)

a

Py(x)

X

4 a  (Accepted) (Rejected) b

Figure 4.6 Acceptance—rejection sampling method.
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and
x=F"1(r) (4.73)

and a uniform random number y € (0, f(x)) is taken as well, then the point S decided by (x, y)
must rest in the region below the curve f{x). Here, if (x, y) is also below px(x), then this point is
accepted, otherwise it is rejected. By continuing such a process, the random sample under given
condition py(x) can be obtained.

Obviously, the basis of the uniformly dropped points is still the pseudo-random numbers
over [0, 1], except for an affine transform.

4.3.4 Random Simulation Method

As described in Section 4.1, the random simulation method in stochastic structural analysis is
very straightforward. It generally follows the steps below:

(a) Establish the dynamical analysis model of the deterministic structural system and choose
the solving algorithms.

(b) Identify the basic random variables and their probability distribution functions and
generate random samples according to the Monte Carlo method.

(c) Generate a random sample structure using the generated random samples and compute the
structural responses by deterministic analysis methods.

(d) Compute the estimation values of the statistical characteristics of the given responses, such
as the mean and the covariance of the structural responses, and so on.

(e) Stop the simulation process according to the prescribed convergence criteria.

For those stochastic structures only involving random parameters, it is enough to use the
algorithm above. However, for those situations where high accuracy is required (for example,
in aerospace engineering) or those problems in which the physical background cannot be
briefly reflected only by using random variables (for example, in geotechnical engineering), a
stochastic structural model based on random fields might be needed. In this case, it is necessary
to generate the random field sample of the structural material or the geometric characteristic
when the random simulation method is employed.

Random samples of a random field can be generated by a trigonometric series simulation on
the basis of the spectral decomposition concept or given by random variables simulation on the
basis of random field discretization.

4.3.4.1 Trigonometric Series Simulation

Let the correlation function of a homogeneous random field be Rg(r), whose Fourier
transformation may be defined as follows:

O ik
Sp(k) = WJ,MRB(r)e Y dr (4.74)
where k is the wave number vector. The one-dimensional wave number is defined by the
reciprocal of its wave length and «-r denotes the inner product of vectors. We should specially
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note that the integral symbol in Equation 4.74 denotes an n-dimensional integral and # is the
space dimensions of the random field.

In Equation 4.74, Sp(k) is called the wave number spectral density function or wave number
spectrum for short. Obviously, the inverse Fourier transform of the wave number spectrum is
the correlation function of the homogeneous random field; that is:

Rp(r) :J Sp(K)e T di (4.75)
Equation 4.74 is commonly called the spectrum decomposition of the random field

correlation function. According to the concept, the following trigonometric series can be
used to simulate the random field samples:

B(u) = ZA(K[)COS(K[ ‘u+ @) (4.76)

where ¢; is the random phase angle uniformly distributed over [0, 277] and

A% (ki) = 4Sp(k;) - |Ak] (4.77)

Ki = (Kii,, K2iy, - - ‘,Km',,)T (4.78)
o1

Kj,ij = Kj"L+ L — 5 AKj (479)

Ak = (A, Ay, - -+ Aky)"

_ Kiu —KiIL Kou—K2L . Knu — KnL T (480)
N ’ N> T N,
x| = ] Axi (4.81)
i=1

Ni N N,

Z:ZZZ (4.82)

i1=1ir=1 in=1

In the preceding formula, N;is the sampling number along the jth wave axial; k;, is the upper
limit of the sampling wave number while k;;_ is the lower limit of the sampling wave number.

In order to avoid periodic occurrences in the simulation sample, a small random wave
number may be added to the cosine wave number; that is, Equation 4.76 is modified to

B(u) = ZA(K,-)COS(K@ ut ) (4.83)
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where

K'; = K; + 8kK; (4.84)

5K,’ = (8K1,’1 y 8K2,’2, s ,SKm'n)T (485)

in which Jk;; is uniformly distributed over (—Ax’;/2, Ak’;/2), and Ak} < Ax;.

4.3.4.2 Random Variables Simulation Method on the Basis of Random Field
Discretization

A first-order homogeneous random field (that is, its mean is constant) can be conveniently
transformed into a zero-mean random field. In such a case, the discretization of a random field
can be implemented. Using the central point method, the shape function method or the local
average method described in Section 2.3, the correlation coefficient matrix of the discretized
random field can be obtained:

Ce = [ej] = [cov[§;, §]] (4.86)

where §; and ¢; are the discretized basic random variables.

If the correlation coefficient matrix is symmetric and positive definite, then C§ can be
decomposed into a lower triangular matrix multiplied by an upper triangular matrix using the
Cholesky decomposition; that is:

Ce=LLT (4.87)

where L is a lower triangular decomposition matrix.
Thus, if we let the discretized random vector

V=LZ (4.88)

where Z=(Z,,Z,, ...,Z,)" is a random variable vector with zero-mean and unit variance
normal distribution A (0, 1), then we can prove that

EIVVT] = EILZ(LZ)"] = LE[ZZTILT = C; (4.89)

Therefore, as long as the random variables with standard normal distribution N (0, 1) are
generated for each element, the random samples of the discretized random field can be obtained
using Equation 4.88.

A two-dimensional random field sample generated according to the above method is shown
schematically in Figure 4.7.

4.3.5 Accuracy of Random Simulation Method

The samples selected by the Monte Carlo method essentially belong to random variables with
an independent identical distribution. Therefore, the sample responses evaluated by using a
deterministic mathematical or physical equation are also random variables with the charac-
teristic of an independent identical distribution. According to the central limit theorem in
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Sample 1 Sample 2

Figure 4.7 Typical random field samples.

probability theory (Loeve, 1977), if the mean and variance of the random variables &}, &, . . .
with independent identical distribution all exist and have u = £[€], 0 = DI[£], then the random
variable

_bh-p
n—o_/\/ﬁ (4.90)

will asymptotically obey the standard normal distribution; that is:

lim Pr{ﬂ_'u <x} :Lr e ¥ /2ax (4.91)
N=e" |o/VN V2n) —w '

In the above equations, i = (1/N) SV, & is the estimated mean of the samples.
Hence, once given a definite confidence level 1 — a, if N is large enough, then the following
approximate equation exists:

XoO 2 Yo 2
Prlg—p| <222 ) ~———| e ¥/dx 4.92
(16w <=0 2| (492)

where x,, is the coordinate value of the censored bounds with the given confidence level 1 — «
(Figure 4.8). Several common sets of corresponding values are shown in Table 4.3.

According to Equation 4.92, under a given confidence level, the error between the estimated
mean according to the Monte Carlo method and the real mean can be given by

I — ) < 2
&= |u—
LN/

(4.93)

pg(x)

a/ 2 a/z

X 0 Xy X

Figure 4.8 Confidence bounds.
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Table 4.3 The x,, versus 1 — « relationship under a standard normal distribution.

Yo 1 2 3 4

1-a 0.6827 0.9545 0.9973 0.9999

The previous equation is actually the estimation for the accuracy of the Monte Carlo method.
It is thus clear that:

(a) the accuracy of the results can be estimated using o/+/N in the trial process;
(b) the convergence speed of the Monte Carlo method is proportional to v/N.

This relationship means that, if we want to increase the accuracy of the results by one digit, the
computational cost of the simulation should be increased by 100 times; therefore, there is a
need for several thousand (or even millions of) simulation computations when the Monte Carlo
method is employed to solve a stochastic structural analysis problem.

4.4 Perturbation Approach
4.4.1 Deterministic Perturbation

The perturbation approach for stochastic structural analysis stems from the deterministic
perturbation method of nonlinear analysis. In deterministic perturbation analysis, the govern-
ing equation of a physical problem is generally expressed as an equation involving small
parameters; for instance:

L(u,x,¢) =0 (4.94)

where L is a general operator, u is the solution, x is the argument and ¢ is a small parameter,
which can naturally occur in Equation 4.94 or can be artificially introduced.

The above problem usually cannot be solved precisely. However, according to the char-
acteristics that the solution u is a function of x and ¢ where ¢ is a small parameter, u can be
expanded in an asymptotic series. For example, there exists

u(x,e) = up(x) +eur (x)+ -+ +e"u,(x)+ - (4.95a)

where the coefficients u;(x) are irrelevant to ¢. Simultaneously, the operator L(-) can be
expanded by

L=Lo+elLi+ - +&'L,+ --- (4.95b)

Substituting Equations 4.95a and 4.95b in Equation 4.94 and merging coefficients of the
same order, we can obtain

(Lou() — h) + (L0u1 + Lluo)S + (Louz +Lju; + L2u0)82 +---=0 (496)

where Lo, L;, Lo, . . . are linear operators in the space U and / is a real function of x, which can
be determined according to the specific problems.
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Because Equation 4.96 should be correct for any arbitrary ¢ and the sequence of ¢ is linearly
independent, the coefficients of each order of ¢ must be zero; that is:

L()uo =h
L0u1 = —L1u0

Louz = —L]M] —Lzuo (497)

The above equations form a set of recursive equations of #;(x). The boundary condition and
the initial condition of the problem can be obtained using similar methodology. Hereby, the
above equations can be solved one by one and thus uf{x) can be obtained in sequence.
Substituting the results in Equation 4.95a leads to an approximate result of u(x, ¢) (Nayfeh,
2000).

The preceding method is generally termed the parametric perturbation method. In this
method, the expanded quantity may be a function of ¢, say §,(¢), which is generally called the
expanded asymptotic sequence and satisfies

8,‘(8) = 0[8,',1(8)} (498)

where o(-) denotes the infinitesimal of higher order.

This means that, in an asymptotic sequence, the latter terms of the sequence must be the high-
order inﬁnjtesimal of the former terms. For example, as ¢ — 0, the functions &, &l 3 (loge) -!
and (sing)" are all asymptotic sequences.

Using the asymptotic sequence, the unknown function u(x, ¢) may be expanded as the
following function:

=

u(x,e) = > ai(x)8i(e)  (6—0) (4.99)

i=0

where ¢; is a function of x and is irrelevant to &.
For any positive integer N, there exist

N
u(x,8) = a;i(x)8;(e) + Ry(x, 2) (4.100)
i=0

where Ry(x, ¢) is the remainder, given as
Ry(x,e) = O[6n(e)] (e—0) (4.101)

The left-hand side of Equation 4.100 is referred to as the nth-order asymptotic expansion
equation of u(x, ¢).

Assume the value domain of the solution is € and the boundary is 0Q. If the asymptotic
expansion Equation 4.100 always holds over Q2 + 0Q — that is, the perturbation solutions have
a uniform convergence limit with respect to x in the definition field of x — then the expansion
equation is termed a consistent convergence asymptotic expansion over Q + 0Q. This kind of
perturbation problem is called a regular perturbation problem. Because d¢) is an asymptotic
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sequence, a regular perturbation means that a{x)é(¢) is a little modification against its former
value whatever x is. However, the consistent convergence condition is not always satisfied for
perturbation problems. The perturbation problem with an inconsistent convergence field is
referred to as a singular perturbation problem. For a deterministic perturbation problem, such
problems may result from secular terms in the infinite field or the existence of singular points,
and so on (Nayfeh, 2000).

4.4.2 Random Perturbation

The random perturbation method can be constructed by extending the above perturbation
technology to the problem involving random parameters (Kleiber and Hien, 1992; Skorokhod
et al., 2002). Herein, the random differential operator of a considered problem is given by

L(y,x,€) =0 (4.102)

where the meanings of L and x are similar to those in Equation 4.94, ¢ is arandom variable with
a given probability distribution and y = y(x, &) is a random function.
According to Chapter 2, a random variable can be standardized by

§=& ol =4(() (4.103)

where & is the mean of £, o is the standard deviation of £ and { is the standardized random
variable of which the mean is zero and the variance is one.
Substituting Equation 4.103 in Equation 4.102, there is

Lly, x,¢(0)] =0 (4.104)

Utilizing the series expansion of the random function given in Equation 2.41, the solution
y=y(x, £) can be expanded as the series of {:
y(x,€) = ylx, (2]
dy 1d%

- dy 1ay 2 -
= y[x, lﬂ@)“g:o + dc g:og + 2 d§2 g:()g i

(4.105)

For simplicity of notation, y(x,#({)) is written as y(x,{) hereafter without inducing
confusion. Because y is unknown, the coefficients of [dy/d{] | ¢—o0 and so on are all unknown.
However, the equation can be written in the equivalent form

(%, 8) = uo(x) + Lun (x) + Cur(x) + -+ (4.1006)

Obviously, the coefficient u,(x) is irrelevant to { and is a deterministic function.
Substituting Equation 4.106 in Equation 4.104 and combining the same-order coefficient of
{ after appropriate operation leads to

(Louo — /’l) + (L()ul + L1u0)§+ (L()ng + Ly +L2M0)§2 +---=0 (4107)

where Lo, L, L,, ... are deterministic operators and / is a real function of x.
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Because { is a random variable that can take any arbitrary value, the sufficient condition
which makes Equation 4.107 hold is that all the coefficient terms must be zero; that is:

Louo =h
Lou; = —Ljug
Lou, = — Ljuy — Laug

(4.108)

The equations consist of a set of deterministic operator equations. By introducing the
boundary conditions and/or the initial conditions, the solutions of u, uy, ... can be obtained
one by one from these equations. Substituting these solutions in Equation 4.106, the mean and
variance solutions of y(x, ) can be given by

E(x,0)] = uo(x) +uz(x) + - (4.109)
and
Dly(x,)] = uy(x) +u3 (x)E[L*] + - (4.110)

respectively.

Corresponding to the deterministic parameter perturbation, in random perturbation, consis-
tent convergence of the solution in the sense of expectation of order M must be considered.
Suppose Sylyn(x, )]s the expectation of order M of the Nth solution expanded with respect to
{, and if there is

Su[y(x, )] = Sulyw (x,0)] + Om(x) (4.111)

then yy(x, {) is called the Nth expansion with accuracy of order N. Here, O)(x) indicates that
the remaining terms are infinitesimal of the same order.

4.4.3 Random Matrices

If the randomness involved in the structural parameters in a dynamical system cannot be
ignored, then the corresponding dynamic matrix must be treated as a random matrix. Those
parameters that render a dynamic matrix a random matrix are referred to as basic random
parameters, such as the material mass density, elastic modulus, Poisson’s ratio, geometric size,
the damping coefficient and so on. According to the specific problem background, these
parameters can be either characterized by random variables or modeled by random fields.
Without loss of generality, assume the structural random field is { B(u), u € D}; then, using the
local average method for the random field discretization, it can be partitioned to a random
variables set {&;,1=1,2,...,n}. Here, nis the partition number of the field elements. The mean
and the variance of the random variable &; are given by Equations 2.144 and 2.145 respectively.
Transforming &, to a standardized random variable, there is

51:510+U§,ZI (1:17277]/[) (4112)

where £,y is the mean of &;; oy, is the standard deviation of §; and Z; is the standardized random
variable of which the mean is zero and the variance is one.
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On the other hand, for each element with the random parameters the property matrices can be
expressed in the form of a random matrix according to the finite-element method. That is:

m; = J NTpN dQ (4.113)
Q

é,:J NTyN dQ (4.114)
Q

Ri:J'BTEBdQ (4.115)
Q

where p, 17, N and B are consistent with the definition discussed in Section 4.2 and E is the
elastic matrix that is the popularization of the elastic modulus concept in the common finite-
element method. For example, for the plane-stress problem, there exists

1 n O
E
E— w10 (4.116)
1—pu? l—p
00 =

where E is the elastic modulus and u is Poisson’s ratio.

The random variable &; can represent any basic variable in the element characteristic matrix,
suchas p, n, E, u,1;, A;and so on, while £;; (=1, 2, . ..) can also be used to represent the effect
of multiple basic variables.

4.4.4 Linear Expression of Random Matrices

In the case the random variable &; appears in a dynamic matrix in the form of a linear factor, the
corresponding random matrix can be expressed as a linear function of the standardized random
variables (Li, 1995c). Without loss of generality, we use S to express a general random dynamic
matrix; then there exists

Si =S +SiZi (4.117)

where S,- is the element random matrix, S,-o is the mean-parameter element matrix, S,-(, is the
element standard deviation matrix and Z; is a standardized random variable corresponding to
the element i.
In fact, Equation 4.117 can be deduced from the series expansion of the random matrix S;
with respect to the standardized random variable Z;:
ra
7;=0 i

~ . dS;
S; =S+
0tz

Z24 - (4.118)

1

i 1Z;=0

Because Z; is a linear factor in S;, the derivatives of higher than second order are all zero.
Then

dS;, dS;d¢  dS; .
S T 4.11
iz, dgdz g6 S (4-119)
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Thus, we reach Equation 4.117.

Basic variables occurring in a dynamic matrix in the form of linear factors include the mass
density p, the damping coefficient 7, the elastic modulus E, the inertial moment / and the
sectional area A (see Equations 4.20, 4.51 and 4.53). For example, for the beam elements in a
plane, if the axial deformation is not considered and the mass density p is taken as a random
parameter, then there exist

156 220 54  —131
Al |22 4P 131 —3P
Mo="00 |54 131 12 —6l (4.120)
131 =32 —6l 4P
156 220 54  —13
. g,Al|220 4P 131 —3P
Mie =700 |54 131 12 —6l (4.121)

—131 =32 —6l 4

Because both the coordinate transformation and the element position transformation
operation are deterministic linear transformations, the element matrix and the global dynamic
matrix in the global coordinate system maintain the relationship similar to Equation 4.117; that
is, there are

Si = Sip +SisZi (4.122)
S=So+ Y _SiZ (4.123)
i
where
Sio = T3SiTa (4.124)
Siv = T2Sis Ta (4.125)
So = T/SuT; (4.126)
Sic = T/Si, T (4.127)

Here, T, is the coordinate transformation matrix of the element i (see Equation 4.26) and T;
is the position transformation matrix of the element i (see Equation 4.39).

Therefore, the global dynamic matrix of the system can be formed by the mean-parameter
matrix Sy and the standard deviation matrix S;; accordin gto Equation 4.123. Herein, the mean-
parameter matrix can be formed by adopting the mean parameter in the direct stiffness method,
while the standard deviation matrix can be obtained through introducing the following virtual
structures (Li, 1996a).
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For a virtual structure, the parameters corresponding to the given basic variables of the
elements take the value

r=(0,0,---,0%,0,0,---0)" (4.128)

Without loss of generality, suppose the element random variables in the structure can
be partitioned into N subsets and the random variables (supposing the number of the
variables is j,,,) in each subset possess identical probability distribution, then Equation 4.123
can be expressed as

N
S=So+ > S (4.129)
j=1
where
jm
S = Z T'S;, T, (4.130)

i=1

Here, S; can be formed by the direct stiffness method according to the following virtual
structure:

T

r= (Oa t 'ao--f/vov’ o 70-5,,,707’ o 70-§p70a o 30) (4131)

The above equation shows that there are a total of three elements in the jth subsets and the

virtual structure is constructed by the corresponding standard deviation of these three elements
and other zero elements.

Introducing the correlation decomposition technology of random vectors, the linear repre-

sentation of dynamic matrices can be further simplified. In fact, according to Equation 2.152,
we can obtain

n
& =&+ Zd’ijﬁfj (4.132)
j=1
Comparing Equation 4.112 with Equation 4.132, there exists
1 n
Zi = EZ%\/@; (4.133)
i j=1
Substituting this in Equation 4.123 yields
-1 <&
S=S0+ Y Sie— by/%L; 4.134
2 S Z Vi (4.134)

Because the random variable &; occurs in the dynamic matrix in the form of a linear factor,
the o¢, in the denominator of the above equation and the o, in S;, can be eliminated.
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Simultaneously, the orders of the two sum operations can be exchanged and thus Equation 4.134
can be rewritten as

S=So+ > S (4.135)
=
where
Si=> TIST (4.136)
J

Here, S;;is the element dynamic matrix of the element 7 in the global coordinate system when
the virtual structure j is formed through regarding ¢;//; as a basic variable.

Because the variances of the independent random variables k; = \/i_]{ ; have the character-
istic of an asymptotic sequence, the original random variable set can be replaced by a subset of
g <mn; that is, there exists

q
S=So+ Y Sy (4.137)
j=1

The standard deviation matrices S; can be formed according to ¢ virtual structures and
So can be formed by using the mean parameter. Significantly, the forming ways mentioned
above can all be done by the standard finite-element method and, therefore, is a great
convenience.

It is worth pointing out that the normalized random variables set { has become an indepen-
dent random variable set after undergoing correlation decomposition such as Equation 4.132.
This is convenient for stochastic structural analysis. This aspect will be discussed in detail in
the following section.

The random variable &; may appear in dynamic matrices in the form of nonlinear factors. For
example, when Poisson’s ratio w in Equation 4.116 is a basic variable, such a situation will
be encountered. In these cases, the random dynamic matrix should generally be expressed by
introducing a series expansion like Equation 4.118, which can be rewritten as

Si = Sio+S1Zi + S22} + - - (4.138)
where
S 2
Si = S (4.139)
a7,

Through coordinate transformation and element position transformation operations, the
global dynamic matrix can be given by

S=So+ Zslizi + ZSZ,ZI.Z + e (4.140)
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where
Sji = T?ngjiTaTi (4.141)

However, for the case with nonlinear variable factors, the idea of virtual structures discussed
above cannot be used.

4.4.5 Dynamic Response Analysis

When one or more dynamic matrices contain random parameters, the equation of motion of a
multi-degree-of-freedom (MDOF) system can be given by (see Equation 4.65)

MX +CX + KX = F(7) (4.142)

Here, X, X and X are respectively the acceleration, the velocity and the displacement vectors.
Note that the capital characters are used here according to the convention because they are all
stochastic processes.

By introducing the series expansion of random matrices, the equation of motion of the
stochastic structure can be approximately written as

(Mo + Zl\_’lué + ZMZ;{?) X + (CO + chz{i + Zézz{?) X
= o i=1 i=1

n " (4.143)
+ (Ko + ZK],’Q + ZKQJ?) X = F([)
i=1 i=1

where F(?) is a deterministic time process vector. The matrices My, M,;, My, Ko, K;; and Ky;
can be formed by the method described in the preceding sections. According to the Rayleigh
damping assumption, the matrices C,, C;; and C,; can be taken as

Co = aMy + bKy (4.144)
C],‘ :aM1[+bK1,~ (4145)
(_:2,' = aMQ,' + bKQi (4 146)

where « and b are deterministic parameters. In this treatment, we only consider the situation
that the mass and the stiffness have one type of random parameter or that the mass and the
stiffness have the same type of random parameters.

According to the basic idea of random perturbation analysis, the responses of structural
acceleration, velocity and displacement can be expanded as a series of basic random variables
{; (taking second-order truncation)

n n

X = Xo-l- XH:XI,{mL %Z
i=1

Xoilid, (4.147)
i=1 j=1
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. . n_. 1N

X =Xo+ ZXUQ + 3 X2iidil; (4.148)
=1 i=1 j=1
n 1 n n

X=Xo+ > Xuli+ 5 Xoilil; (4.149)
=1 23 =

Substituting them in Equation 4.143, combining the same-order terms and considering the
sufficient condition of the equation obtained yields the following set of recursive equations:

MX + CoXo + KoXo = F(7) (4.150)
MoX; + CoXy; + KXy = — (M Xo +C ;i Xo +K;Xo)  (i=1,2,---,n) (4.151)

M()Xz,'j + C()le’j + K()le‘j = — 2[1\7[1,-)"(1]- + Cl,'le + I_(liXU + SU(Mz,Xo + CziX(] + KZiXO)]
(17]: 1,2,"',]’1)
(4.152)

where §;; is the Kronecker delta

1 fori=j
5!,{0 fori 2 (4.153)

It is thus clear that we should solve atotal of n* + n + 1 equations in order to get the solution
of the second-order perturbation. After introducing correlation structure decomposition
technology, we only need to solve ¢ + ¢ + 1 equations (see Equation 4.137). Here, ¢ is
the cardinal number of the uncorrelated random variable subset.

In principle, the time-domain analysis method, the frequency-domain analysis method or the
modal superposition method can all be applied in solving the perturbation equations. However,
when the degrees of freedom of the structure are relatively large, using the modal superposition
method to solve the problem can greatly reduce computation effort. Noting that the left-hand
side operator forms of Equations 4.150-4.152 are identical, only the following deterministic
eigenvalue problem should be solved:

(Ko — /M) = 0 (4.154)

which is essentially a deterministic eigenvalue problem and, therefore, common eigenvalue
algorithms can be used to get the eigenvalues /; and the eigenvectors {s; (Golub and van Loan,
1996).

After getting the specified number (for example, taking number m) of eigenvalues and
eigenvectors, the responses of Equations 4.150—4.152 can be respectively approximated as
follows:

m

Xo =) pxoy (4.155)
=1
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Xii = Z\'»'gxli‘é (4.156)
=1
m

Xoj = Y Wi (4.157)
=1

Substituting them in Equations 4.150—4.152 and considering the orthogonal condition of
eigenvectors {s, with respect to My and K yields the following decoupled recursive equations:

m %o+ cpXo 0 +kjxoe = f; () (t=1,2,---,m) (4.158)
mlei’g+clei1[+klej‘1{ :fl*ij (E: 1,2,"’,]’”; 1= 1,2,"'71’!) (4159)

mszyj/ + Cz).CQij,[ +ka2y7g :f;ij,é (f =1,2,--- mi,j=12,--- ,n) (4.160)

where
m; = b Moy, (4.161)
¢; =¥/ Coly, (4.162)
ki = Wi Ko, (4.163)
£ (1) = WiF(1) (4.164)
fi = _lp}(MliX0+CliXO+MI[XO) (4.165)
e = — 207 M X+ CuiXy; 4 KXy 4 85 (Mo X + C2iXo + Ko Xo))] (4.166)

After obtaining all the zeroth-, first- and second-order solutions of the above perturbation
equations, it is easy to compute the mean and covariance of the displacement responses.
According to Equation 4.149, the mean of the displacement responses is given by

X0+ ZZZXZI/ glgj (4167)
i=1 j=

and the covariance matrix of the displacement responses is

COV X X ZZX], g“ g“j ZZZ Xl; 2k +X21/ lk] [5 g](:k]

ll/l ll/lkl (4168)

+ - ZZZZX”/X;"({E 6iLLiti] — E[GG)ELGL

11/1k1/1
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in which the component cov[X|, X,] denotes the covariance between the displacements of the
sth and the rth degrees of freedom.

By introducing the correlation decomposition technique, the above numerical eigenvalues
will be further significantly simplified. In this case, Equation 4.149 can be transformed to

SO Xolil;+ - (4.169)

q
X=Xo+ ZXUZHF
p =1 =1

N =

Because of the uncorrelation between the variables ; and ; and noting that £[{ ,-2] = 1, there
exist

|1 fori=j
S[(,{j]—{O fori (4.170)

s(f[ g) “T[e (4.171)

Hence, the mean vector and the covariance matrix of the displacement vector considering
second-order truncation are respectively given as

1 q
EX] =X+ EZXZH (4.172)
i=1
q
cov[X,X] = > XX] (4.173)
i=1

Likewise, the numerical characteristic process of other responses, such as the velocity and
the acceleration and so on, can also be obtained.

In some cases, we may have interest in the correlation behavior between the responses at any
two time instants of the time history. This characteristic can be depicted with the following
correlation function matrix:

cov[Xy,X,] cov[X;,X,] -+ coviXy,Xi]
R= ?f).V[sz?Xll] f:-O.V[XINXIz] f:.O.V[Xh’XtN] (4174)
cov[Xy,, X, ] cov[X,,X,] - cov[X,,X,]

where X,, = X(t;), the subscripts #; denote the time instants and N is the number of time instants
considered. The components in the above correlation matrix can be evaluated similar to
Equation 4.168.

4.4.6 Secular Terms Problem

Itis noted that the operators on the left-hand side of the dynamic perturbation equations are in the
same form. This provides convenience for solving the dynamic perturbation equation, but
meanwhile brings about the essential weakness for this kind of method. During computational
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practice, it was found that the mean and variance given by the perturbation method were only
applicable in a short period from the beginning time instant compared with the Monte Carlo
simulated results. With increasing time, the accuracy of the results will deteriorate rapidly
(Liu et al., 1988b). Figure 4.9 shows some results of a stochastic single-degree-of-freedom
(SDOF) system. It is seen that the results of the second-order perturbation are even worse than
that of the first-order perturbation. This phenomenon is the so-called secular term problem. After
careful analysis, we may find that the essential reason leading to the above phenomenon lies in
introducing spurious resonant inputs, which do not exist during a practical vibration process.

1.0 1.0
Nmko,(t)  eee—— First order perturbation \/ﬁo_ o 0 — Second order perturbation
i
0.8 Digital simulation 0.8 Digital simulation
[
0.6 0.6
04 04
02 02
l
0.0 I I L I I L R L 0.0 I I I I 1 I 1 I 1
2z 4r 6r 8z 10 12z 14z l6zm 18z 207 27 4r  6r 8z 10z 12z 14z 16z 187 207
[oN3 o,

Figure 4.9 The standard deviation of a stochastic response process.

In fact, the system transfer functions' of Equations 4.158-4.160 are all

1

Hy(w) = 1,2,... 4.175
/(w) w(%[ — w2+ Zl'é:gw()(gw it ,Wl) ( )
where i is the imaginary number unit and
wpy = ki [m; (4.176)
& = ¢/ 2mywo (4.177)

The amplitude of the transfer function is shown schematically in Figure 4.10.
Performing a Fourier transform for Equations 4.158—4.160 with respect to ¢, there exist

X(M(a)) = H[(w) g(a)) (6 = 1, 2, s ,m) (4.178)
X1i¢(w) = Hy(o)f}; (o) =1,2,---m;i=1,2,---,n) (4.179)
x2ij.,/f(w) :Hf(w)fztjj(w) (6: 1,27“',1’)’[; laJ: 1,2,~~',I’l) (4180)

! The system transfer function is also referred to as the frequency response function, which bridges the relationship
between the Fourier spectrum of the inputs (excitations) and that of the outputs (responses). For details, refer to say
Clough and Penzien (1993). It will also be elaborated in Section 5.3.
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Figure 4.10 Schematic curve of |[H(w)I*.

From Figure 4.10, it is easy to find that, when the damping is small, the input components
near the system frequency wq, will be amplified and those components which are distant from
wo¢ will be suppressed. This amplifying effect is an essential reason of occurrence of secular
terms.

On the basis of this analysis, some researchers suggested using a filter to restrict the influence
of the secular terms (Liu ez al., 1988b). The key point of this modifying proposal is to transform
the zeroth perturbation solution X(?) into the frequency domain after it has been obtained; that
is:

Xo(w) = Ji Xo(t)e ™" drt (4.181)

A retarded band function is then used to filter out each resonant components of Xy(w): that is,
take

m

Xp(@) =Y wi(w)Xo(w) (4.182)
/=1

where the window function wy(w) can take any kind of the following types:

(a) triangle window

woy — W
wg(w):7| Oiw | (4.183)

(b) cosine window

T(wor — o)

Ao (4.184)

wi(w) =1 —cos
where Aw is the bandwidth of the retarded band.

Taking the inverse Fourier transformation of X, (w) gives

Xo(1) = zl—njlxo(w)eiw' do (4.185)
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On the basis of X (1), fii.w can be calculated and then the first-order perturbation solution can
be obtained. After getting the first-order perturbation, X (#) should be filtered in a similar way
and then the second-order perturbation can be solved.

In the preceding modified proposal there still exist some weaknesses as follows:

(a) There is no objective criterion for choosing the bandwidth of the retarded band and the
selection of window function. In fact, different bandwidths of retarded bands might lead to
completely different results.

(b) Because of filtering, the real information of the input is artificially eliminated. Thus, this
will lead to perturbation input distortion for the MDOF systems, particularly for the
frequency spectrum concentrated system.

Hence, as a universal method, the modifying proposal is untenable. It is this difficulty that
impels investigators to find a new method for stochastic structural dynamic analysis. The
orthogonal expansion approach that will be discussed in the next section is just such an
achievement of these endeavors.

4.5 Orthogonal Expansion Theory
4.5.1 Orthogonal Decomposition and Sequential Orthogonal Decomposition

It is pointed out in Chapter 2 that, if there is a family of standard orthogonal functions in the
stochastic function space, an arbitrary function in this space can be expanded as a set of
generalized Fourier series in terms of this family. Generally, assume the probability measure of
a stochastic function space H is

Pr{ucQ,} = L pe(u)du (4.186)

in which p(u) is the PDF of /, ,, is a given set of real variable u corresponding to J. Here, we
use u to denote a sample value of {.

Suppose {H({),i=0,1,2,...} are standard orthogonal functions in the space H in which
any arbitrary two functions satisfy

JQP((”)Hm(“)Hn(“) du = 8, (4.187)

where 6,,,, is the Kronecker delta and Q is the definition field of the real variable u.
If the inner product of two arbitrary stochastic functions in the space H is defined as (see
Equation 2.183)

(f.8) = Jgpg(u)f(u)g(u) du (4.188)

then, according to this inner product, the norm and the distance of the space H can be given by

1f ()| = Lpg(u) 2(u) d (4.189)
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d(f,g) = \/Jgpg(u)[f(u) —g(u)]’ du (4.190)

With the above definitions, if every Cauchy point sequence in the space H converges
(this means that the stochastic functions in the space H satisfy the condition of mean-square
convergence), then an arbitrary function in this space H can be expanded in terms of H({);
that is:

£ =) _aHi(?) (4.191)
in which
a = (f, Hy) = JQpAu)f(u)Hi(u) dx (4.192)

The expression of Equation 4.191 is called the orthogonal expansion of a function of a single
random variable.

The orthogonal expansion can be extended to the cases of independent random variable sets.
In this context, there exist two different approaches where the orthogonal polynomials as base
functions are generated in different ways. The first approach employs polynomial chaos as the
base functions, which has been well elaborated in the monograph by Ghanem and Spanos
(1991a) and, thus, will not be detailed hereafter. The second approach is the following
sequential orthogonal decomposition.

Consider a random vector

§:(§17§27"'7§n) (4193)

Noting the decomposition principle of random vectors as discussed in Chapter 2, it is
reasonable to assume the random variables {; and {; are mutually independent. Then, the
probability measure of the stochastic function space can be defined by

Pr{u e Q,} = JQ p¢(u) du (4.194)

where Q, is the given set with respect to u. In addition:

pe(w) = [ e (w) (4.195)
i=1

u= (ulaMZa"'7un) (4196)

in which p,(u;) denotes the PDFs of ;.
If there is a set of functions {H,({),¢ =0, 1,2, -} which satisfies the relationship

J py(w)H(w)Hy(u)du = 8y (4.197)

u
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in which Q, is the definition field of u, then it is possible to regard the space H as a Hilbert space
by introducing the inner product definition similar to Equation 4.188. An arbitrary function in
this space can thus be expanded in the form of

Y(l) = i xeHy (L) (4.198)
=0
where
Xp = J pr(w)Y(u)H(u) du (4.199)

This equation is called the orthogonal expansion with respect to the independent random
variable function set.

There are many ways to select the functions Hy({) in Equation 4.198. For instance, the
eigenvectors resulting from the correlation decomposition of the stochastic function Y({) can
usually be used as a set of basic functions if Y({) is known. However, it is apparent that
correlation decomposition cannot be implemented if this stochastic function is unknown.
Nevertheless, there is a possibility of using the independence of random variables in the set of {
to construct the stochastic functions H,() if we only need the decomposition expression with
undetermined coefficients. For this purpose, decomposition with respect to the random variable
{1 is first considered:

V) = X0 Gar o L) Hi (£) (4.200)
;=0

where

Xll (§2a§37 .- ~a§n) = <Ya H€1> - JQ P, (ul)Y(u1;§2v£37 ce 7§H)HZ] (ul) dul (4201)

is a stochastic function which is lower than ¥({) by one dimension, {Hy, ({,), ¢, = 0,1,2,---}
represents the orthogonal functions with respect to the random variable {; and ©,,, denotes the
definition field of the real variable u;.

Second, the decomposition of X, ({5,{3," -, {,) over random variable ¢, is considered:
Xfl (527 gSa R gn) = ZX[I/«Q (§3? g4a R gn)Hfz (§2) (4202)
52:0
where

XZ]({Z (4’37 547 e 7§n) = <X[1 3 H(’z> = J p§2 (MZ)XA (Z/lz, §37 e 7§)1)H(fz (MZ) duZ (4203)

U

is a stochastic function which is lower by two dimensions than Y(§), {Hy, ({,), ¢ = 0,1,2,- -}
are the orthogonal functions with respect to the random variable {, and, similarly, Q,, is the
definition field of the real variable u,.
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Obviously, the decomposition can be carried out in a similar way until it comes to ,,, then the
back substitution of the items leads to

= ZZ Z Xt,65- Z,,Hfl gl)H€2(§2) an<§n) (4204)
0,=0 =0 1,=0

in which Xx¢,¢,.., are a set of deterministic unknown coefficients; ¢,¢, - - - ¢, denotes the
subscript vector.
Equation 4.204 can be approximated by a finite series as

N, N,

Y(L) = Z > ZXMZ . He (§1)He, (82) -+ H, ()
=0 1,0
(4.205)
= Z RN HH/
Ty

The above decomposition process is called the sequential orthogonal decomposition of the
stochastic function Y({) (Li, 1995a, 1996a). Obviously, the essence of sequential orthogonal
decomposition is the series of orthogonal decomposition in corresponding subspaces of the
stochastic function space.

4.5.2 Order-Expanded System Method

The sequential orthogonal decomposition idea provides the possibility of establishing an order-
expanded system method (OEM) for stochastic dynamical analysis. In order to give a clear
description of the theory, this section first discusses the problem in the frame of the static
analysis of stochastic structures.

As shown in Section 4.4, the mechanical property matrices of stochastic structures can be
represented in a linear form or in the form of truncated series. When only one sort of
stochastic factor is considered, the structural stiffness matrix in static analysis can be
expressed as (see Equation 4.117)

n
K=K+ Z K.Z (4.206)

i=1

in which K; depends on the characteristic of the stochastic factors; that is, when the stochastic
factorisin alinear form, K;is the corresponding standard derivation coefficient matrix, while
K, is the first-order derivative matrix of K with respect to the stochastic factors when the
factors are involved in a nonlinear form.

By introducing the correlation decomposition techniques, Equation 4.206 can be converted
into (see Equation 4.137)

Nk
K=K+ > K (4.207)
j=1
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The corresponding governing equation of static analysis is (see Equation 4.48)

N
<K0 + Z Kjgj> Y=F (4.208)

Jj=1

The basic idea of sequential orthogonal decomposition is to expand sequentially the system
response in an abstract space as a series of orthogonal functions by utilizing the independence
of random variables ;. That is, the response can be expressed as

Ni
Y(C) = Z X0ty HHZ,-(;/) (4.209)
0<G<N; j=1
1<j<Ni

in which N; represents the number of basic functions with respect to the random variable {; and
H,(;) are the basic functions with respect to random variable {; and can be selected as
orthogonal polynomials in accordance with the probability distribution of the random variable.
For example, weighted Hermite orthogonal polynomials are selected for random variables with
a normal distribution, while Legendre polynomials are selected for random variables with a
uniform distribution, and so on (see Appendix B).

Substituting Equation 4.209 in Equation 4.208 and performing a series of derivations will
lead to the following equation (see the next section):

M
(@)% =t ((=1,2,....M) (4.210)

p=l1
where

Ni
(ak)g, = Kodey + ZKI(Y];,— 190 p T BiOep +aig 11804 ,p) (0 <k <N;)

J=1

(4.211)
1 forj = Ny
Ny —J
= 4212
H H(NNIFH']) forj <Ny ( )
i=1
Ny Ny
=1+ & [ ™i+1) (4.213)
=1 =t

in which «, B and 7y denote the recurrence coefficients of the orthogonal polynomials that are
discussed in Appendix B, and

Ni
M = (Ni—|-1) (4.214)

=1

Ni
£ =1ty =F]]80k, (4.215)

i=1
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Equation 4.210 can be rewritten in the following concise form:

AkX =P (4.216)
where
agi11 412 Ak Im
A = agn1  dgp2 AR 2M (4 217)
agmi Agm2 - AKMM
X" = (x,x5,- -, xy) (4.218)

It is noted that Equation 4.216 has been converted into a deterministic equation and can be
solved with the method for ordinary algebra equations. The degree of freedom of the original
system is n4, while that of the unknown variables in Equation 4.216 is enlarged to nq x M. This is
the reason why Equation 4.216 is referred to as the order-expanded equation of original system.

Note that

Xp = Xiylyty, (4.220)

Then, once X is obtained from Equation 4.216, it can be substituted back in Equation 4.209.
The mean and covariance of the stochastic system responses can thus be obtained easily
according to the characteristic of orthogonal polynomials. For instance, the mean of the system
response can be computed by introducing Hj\':", Hy({;) and noticing the following character-
istics:

Ho)=1 (=1,2,...,Np) (4.221)

Therefore, multiplying both sides of Equation 4.209 by Hi\l 1 Ho(g;) yields

Nk Ny
YO = > xupen, [[Ho&) [[H: (&) (4.222)
0<G2N; =1 =1
1<j<Ni

By taking the expectation operation on both sides of the above equation and considering the
relationship

E[Ho (&) Hy ()] = {(1) gﬁj ig (4.223)

it then follows that

ENY({)] = X00--0 (4.224)
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Meanwhile, the covariance matrix of the stochastic response is given by
cov[Y, Y] = E[YY'] - €]Y] - E[YY] (4.225)

where

N
YYT Z X4, 0,-- ZNkHHé g/ Z XZ.k2~~»ka HH](/({':/) (4226)
=1

0<(;<N; 0<k;<N;
l</<Nk 1<j<Ni

Since there exists

1 forl; =k;
|JHH5 () HHk s“j] {0 for[ #k (4.227)
Equation 4.226 becomes

EYY'] = D Xtty Xiypyty, (4.228)

0<G<N;
1</<N;

Considering Equation 4.224, substituting Equation 4.228 in Equation 4.225 yields

cov[Y,Y] = Z Xty 5y, X Mz ™ Xoo--»oxgo...o (4.229)

0<G<N;
1<j<N

It is noted that the above equation is a matrix equation in essence. The diagonal elements of
the matrix can give the response variance

2 2 .
VarlV] = Y Xy, ~Yooeo, 0= 120 (4.230)
Ogéngj
1<j<Nj

where x¢,¢,...y,,, (1=1,2,...,nq) is the ith component of Xy,,...¢, -

It is shown from the preceding derivation that the numerical characteristics of the stochastic
structural response can be obtained by implementing the characteristics of the orthogonal
functions once the orthogonal decomposition undetermined coefficients are obtained from the
deterministic order-expanded algebraic equation. The method is referred to as the OEM for
stochastic structural analysis in this book.

Some careful readers may have already found that the expression in Equation 4.213 is
relevant to the arrangement manner of the subscript vector elements. In fact, the expression is
based on the rule of ‘running over in an inverted order’ to arrange the subscript vector. That
means, if considering the arrangement order as the following matrix:

él 62 EN/C
11 1

]\]1 N2 e Nk
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then the order number of the corresponding subscripts can be determined in the following
way: {y,increases progressively while the other variables are assigned to be zero; after it is
run over {y,, with £y, _ = 1,1itis again run progressively over {y,. When running over £y, _ |
is finished, the number 1 is assigned to £y, —». The operation is continued in this progressive
way and an arrangement sequence of the x; and f, in the order-expanded system in
Equation 4.210 can be obtained. It should be particularly noted that x;, and f, herein are
vectors with ny elements, which is the degree of freedom of the original system, and ak is
similarly an n4 X ng matrix.

4.5.3 Proof of the Order-Expanded System Method

This section gives the proof of the order-expanded Equation 4.210 by implementing the
mathematical induction method.

First, the case N; = 1 is considered; that is, there is only one random variable involved in the
stochastic structure. Having applied the orthogonal decomposition over {; to Y, we have

Ny
Y = ZxélHél (gl) (4231)
£1=0

in which N; is the expansion order over the random variable ;.
Substituting the equation in Equation 4.208 with N, =1 yields

F = (Ko +Ki{)

lelelfl (gl)] = ZI(K0+K1§1)X/51H€1 (gl) (4232)

0,=0 06,=0

Multiplying the terms on both sides of the equation with Hy, ({;) and implementing the
recurrence relationship for {1 Hy, ({;) (see Equation B.15 in Appendix B) will yield

Ni
FH, (£1) = > Koxe, Hy, ({1)Hy, (1)
(=0 (4.233)

Ni
+ Zleé’lHkl (§1>[a41H€1 71(&1) +BZ|H51 (51) +’Y€|H€1 + 1({1)]
=0

Taking the expectation operation with respect to {; on both sides of the above equation (that
is, equivalent to the inner product of Equation 4.188), utilizing Equation 4.221 and the
following relationship

1 fort,—1=k
E[HHy, 1] = {0 Other'wise ! (4.234)
. 1 for 61 = k]
ElHiHy] = {0 otherwise (4.235)
1 forty+1=k
E[H Hy,y 1] = {0 otherwise (4.236)
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we are then led to

Foor, = Koxk, +Ki(ak, + 1%k, +1+ B, Xty + Ve, — 1%k, 1)
= ag, 4 1Kixx, 114 (Ko + By, Ki)xp, +74, - 1 Kixg, -1 (ky =0,1,2,---,Ny)

(4.237)

The equation can be expressed in a matrix form

Ny +1
> ag,x, =1y, (4.238)
=0
where
ag,p = Kodk,p + Ki (Ve — 18k, — 1 + B, Ok p + @k, 118k, 1) (4.239)

Note that the coefficient matrices of Equation 4.238 are tri-diagonal ones.

It is apparent that Equation 4.211 is equivalent to Equation 4.239 and the left-hand side of
Equation 4.237 is the same as Equation 4.215 when N, = 1. Therefore, the order-expanded
system equation is proved to be correct when only one single random variable is involved.

Now assume that the order-expanded system equation is correct when n — 1 independent
random variables are involved (n — 1 <Ny); that is, there exists the following order-expanded
equation:

> anx, =i, (4.240)
in which
n—1
M, = []i+1) (4.241)
=1
n—1
ar = KoSrs+ > Ky 18— iy +BrBrs + 2t 41814 4,) (4.242)
j=1
1 forj=n—1
I N
4 = H N,_i_1+1) forj<n—1 (4.243)
n—1 n—1
r—1+2k IT ™vi+1) (4.244)
i=j+1
Xy = XZ]ZZ»»Z,,,I (4.245)
n—1

frio ke = F [ ] S0k, (4.246)
Jj=1
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Then consider the case of the order-expanded system with n independent random variables,
in which the orthogonal decomposition of Y over the previous n — 1 random variables can be
expressed as

n—1

YO = Y Xoneo (&) [ He() (4.247)
0<G<N; =1
1<j<n—1

In accordance with Equations 4.240—4.246, the expansion yields the following order-
expanded equation

Mn—l
> anxi(&) = frkrok, (4.248)
s=1
in which
ﬁrs =a,t+ Kn(é’n)SrS (4249)
X‘Y(gn) = Xl{]/2“'1{n—l (gn) (4250)

The x,({,,) in Equation 4.250 can be further decomposed with respect to the nth random
variable by applying the idea of sequential orthogonal decomposition in the aforementioned
stochastic function space; that is:

Ivﬂ
X&) = ) Xzt 16, He, (£) (4.251)
£,=0

By substituting it in Equation 4.248 and multiplying both sides by Hy, (£, ), and implement-
ing the recursive relationship of {,Hy,({,) and the characteristics of the orthogonal basis
functions, the inner product operation similar to Equation 4.188 on both sides with respect to £,,
will give

My
£y, O0k, = E [ﬁrsxé‘llz---&, +Kn(akn+1X11€z-~€n71kn+1 (4 252)

=1
vi B, Xt102-6, 1k Yk, — 1X0165, 1y —1)Ors]
Noting that k,, runs from O to N, in the above equation, if the following notation is used
X010y by ky = Zm
and introducing
fi ki, S0k, = Fiiiy-, (4.253)
then Equation 4.252 can be expressed in the form of matrices:

N,+1
(a,-m)mzm = fklkz'“kn (4.254)

m=1
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in which

Mn—l
(aim)rs = Z [K()érsaim + Kn ('Yk” — 161'— 1,m + Bknaim + A, + 18i+ l,m)arx
5= (4.255)

n—1

+ ZK] (ij — 16r7 Ajss + Bkjﬁm + akj + 18r+lj,x)6im]
=

Let
ay, = (), (4.256)

Then according to the arrangement pattern of matrices, the following relationships exist:

C=(—1)(N,+1)+i (4.257)
p=E—-1DN,+1)+m (4.258)
It can be proved that
8158im = B4 (4.259)
In a similar way, let
S5 1drs = S0 p (4.260)
Bis1mOrs =804y p (4.261)
SimOr— s = 00— p (4.262)
8imOr +jys = O+ p (4.263)

Then, from the above equalities and Equations 4.257 and 4.258, there are

w, =1 (4.264)
1y = (N, +1) (4.265)

Thus, Equation 4.254 can be rearranged as

M,
> apx, =1 (4.266)
(=1

where

n
ap, = Kodgy+ O Ki(Ye 18— p +Brdip + iy 41804 ) (4.267)
=
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in which

_ j
K= H(Nn,,-—&—l) for j<n (4.268)

i=1

1 for j=n
n—

n

M, =[[i+1) (4.269)
i=1
(=14 "k [] ™i+1) (4.270)
J=1  i=j+1

When N =n, Equation 4.267 is equivalent to Equation 4.211 and Equation 4.253 is
equivalent to Equation 4.215. Therefore, it is demonstrated that the expressions of the
order-expanded matrices and the loading vector are also correct when »n random variables
are considered.

In view of the preceding process, not only the conclusion of the order-expanded system is
correct when N, = 1, but also the conclusion is proved to be correct when N, = n if we assume
the correctness of the order-expanded system when N,=n— 1. In accordance with the
principle of mathematical induction theory, the order-expanded system given in the last
section is correct.

4.5.4 Dynamic Analysis

When stochastic dynamic matrices are expressed in linear forms with respect to the basic
random variables and these kinds of expression are simplified by applying the correlation
decomposition technique, Equation 4.65 can be written as

Nm Nc¢ Nk
<M0 + _Z;Mfg)i? + (Co + ZC,;,)Y+ (Ko + _Z;K,{,)Y =F(r) (4271
= = j=

in which Ny, N¢ and Ng stand for the number of the independent random variables in the
stochastic mass, damping and stiffness matrices respectively. According to the relevant content
in this chapter, the other symbols in the above equation are not hard to understand.

For notational convenience, we introduce the following symbols

0 for s> Ny J=9 (4.272)

Ay, — {Mj fors < Nm
0 fors < Ny
Ay = Cj for Ny <s < Nm + Nc ] =5—Nm (4273)
0 fors>Nm+Nc
_JO0 for s<Nm+Nc .
Ay = { K, for s>Nm+ Nc J=8= (NM +NC) (4.274)
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and

A, =My Ag, =Co Ak, =K, (4.275)

0

Then Equation 4.271 can be further written as

R R R
<AM[J + Z AM@) Y + (Aco + Z Ac‘ré“s)Y + (AKO + ZAK.&) Y =F(t) (4.276)
s=1 s=1 s=1

in which R:NM + NC + NK-

According to the idea of orthogonal decomposition, if the structural response Y is
sequentially expanded as a set of series of orthogonal basis functions in a stochastic function
space, namely

YO= > xuu.od]]H () (4.277)

0<6, <N, 1<s<R =1

~.

then obviously the velocity and acceleration response can be depicted as

YO = > Xmu.e,e()H (&) (4.278)

0<(,<N,,1<s<R

.
—_

YO = > Fue®]][H, (&) (4.279)

0<6, <N, 1<s<R j=1

Note that Xp,¢, ¢, (£), X¢,0,...0,(f) and Xy, ¢, g, (¢) are all deterministic undetermined functions
of time.

According to the proof for the order-expanded system of static analysis, it can be testified that
through sequential orthogonal decomposition the following order-expanded system equation
can be derived from Equation 4.276 (Li, 1995b):

AmX +AcX +AgX = P(7) (4.280)

of which the component form is

Mg

Z[(aM)epip(l) + (ac) % (1) + (ak) 1, %, (1)] = £u(2) (4.281)

p=l1

If the subscripts M, C and K are skipped in the above equation, then the general expression of
the partitioned matrix will be

R
ap =Aodyy+ Y As(Vi 18-+ Bt ak 18iip,) (0<k <N (4282)
s=1
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where
1 fors =R
R—s
s = H Ng_j+1) fors<R (4.283)
J=1
and
R
Mg =[N+ 1) (4.284)
s=1
R R
C=1+Y k [] ™v+1) (4.285)
s=1 J=s+1
ff( ) - fk]kz kR - Ha()k (4286)
Xp(1) = X005, (1) (4.287)

The coefficients a, 8 and Y in Equation 4.282 are from the following recursive relationship of
orthogonal polynomials:

gst; (gs) = a&H& -1 (gs) + Bél,.H& (§3> + ’YZSHZ; +1 (53) (4288)

The relationship between the matrices in both the order-expanded system Equation 4.280
and the component expression Equation 4.281 can be written as (the subscripts of the items are
skipped)

A = (2] i1 _py pi-ag (4.289)
X = (%) p— - (4.290)
P=(f)]_i_y, (4.291)

The order-expanded system equation derived from the sequential orthogonal decomposition
is a dynamic equation with deterministic parameters. Using this equation, the problem of the
original stochastic structural analysis is converted into a deterministic system analysis, which
can be solved by any kind of algorithm for a deterministic dynamic equation. For instance, by
utilizing the linear acceleration algorithm, the displacement response X can be expanded with
respect to the time instants f;:

X([j) 2
TR

X(1)

X(t+1) = X(t;) + X(4)7 + T4 (4.292)

Differentiation of this expression with respect to t yields

X(44+7) = X(1) + X (1) + %X(zj)rz +.. (4.293)
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According to the linear acceleration method (Clough and Penzien, 1993), the acceleration
response over the time interval A7 =¢; | ; — t;is assumed to be a linear function with respect to
time t; that is:

X(t1) - X(1)

X(4) = — = constant (4.294)

Denote
X(t+1) = X4 (4.295)
X(4) = X; (4.296)

Substituting 1 =A¢ and Equation 4.294 in Equations 4.292 and 4.293 with a third-order
truncation of displacement response yields

. 1.. 1..
X1 =X+ X;Ar + ng(m)2 + EX]-H(AZ)Z (4.297)

. . 1.. 1.
X1 =X+ s Xart SX A (4.298)

Substituting the above two equations in Equation 4.280 leads to

AX. =B, (4.299)
in which
. At At)?
A=A+ SAc+t %AK (4.300)
- At .. . (Az)2 ..
Pir1 =P —C{ X+ —X; | + K| X; +AX; + ==X, (4.301)

Therefore, the original dynamic equation is converted into an algebraic equation at discrete
time instants. Combined with the initial conditions of the problem of concern, the acceleration
response can be obtained by applying the solution procedure of algebraic equations step by
step. Then the displacement and velocity responses can be further obtained by implementing
Equations 4.297 and 4.298.

If the initial conditions of the original stochastic system in Equation 4.271 are given by

Y(0) = Yo, Y(0) = Yo (4.302)

where Y, and Yo are deterministic vectors, then the initial conditions of the order-expanded
system in Equation 4.281 can be written as

R
%,(0) = Xt,12-.(0) = Yo [ [ 8o, (4.303)
s=1
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R
%,(0) = %¢,,-4,(0) = Yo [ [ Sor, (4.304)
=1

Once the responses of the order-expanded system are obtained, the numerical characteristics
of the original structural responses can be given in a way similar to the static analysis. For
example, the mean of displacement response is given as

E[Y(£)] = X00.-0(1) (4.305)

and the correlation function matrix of the displacement responses at two arbitrary time instants
can be obtained by

Ry(t,0) = D> Xpprote (11)X0 g, g, (12) (4.306)

0<L;<N;
1<s<R

The covariance matrix of the displacement responses at two arbitrary time instants can be
evaluated further through

Cy(ti,0) = )Xoyt ()X}, 1y g, (12) = X00-0(11)X5 o (£2) (4.307)

0<{,<N;
1<s<R

As t; =1, =, the covariance matrix is reduced to the variance matrix. In addition:

Z Xglgz...gk(Z)XZZZ_,,ZR(Z)—xoo..,o(t)xoTo,_,O(t) (4.308)

0<4,<N;
1<s<R

The equation is essentially an expression in a matrix form, where the diagonal elements give
the variance vector of the displacement responses for different degrees of freedom of the
original systems:

VarlVj = Y 57 (0 = X000 J=12,0000n (4.309)

0<{,<N;
1<s<R

where X, ¢,..4,; 1S the jth component of Xy,¢,...¢, (7).

Similar to Equations 4.305-4.309, the numerical characteristics of the velocity and accelera-
tion responses of the stochastic structures subjected to deterministic excitation can also be
obtained.

Example 4.2. Stochastic Response of a Two-DOF System Consider a two DOF system
subjected to deterministic excitations. The mass and stiffness are regarded as random variables
with means m1,9 = m»o =1 and ko = k9 = 39.48 and the coefficients of variation respectively
8, = 8,, = 0.1 and §;, = &, = 0.2. The damping ratio takes a deterministic value of 0.05.
Two types of excitation are considered. In the first case (Case 1), two sinusoid loads are applied
on the lumped masses; that is, f1(¢) = f>(¢) = sin(w,?), ®, = 3.1416. In the second case (Case 2),
the El Centrol accelerogram (N-S component) is applied.
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0.12

0.04

t(s) t(s)
(a) Mean of the response (b) Variance of the response

Figure 4.11 Comparison between OEM and MCS (Case 1). (Points: 5000 MCSs; solid line: fourth
OEM; dotted line: first OEM).

Stochastic response analysis of the system is performed by the OEM. Figures 4.11 and 4.12
illustrate the comparison between the means and variances of the responses by the OEM and the
MCS. It is seen that the mean response can be approached by the first-order OEM, whereas the
fourth order OEM is needed to approach the variance response.
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(a) Mean of the response (b) Variance of the response

Figure 4.12 Comparison between OEM and MCS (Case 2; annotations identical to Figure 4.11).

Figure 4.13 shows that the mean response of the stochastic structure is different from the
response of the system with mean parameters. The difference is enlarged with increasing
coefficient of variation of the basic random parameters. O]

4.5.5 Recursive Condensation Algorithm

The recursive condensation algorithm drives the dynamic order-expanded equations by
utilizing the approximate relationship among the displacement, velocity and the acceleration.
For this purpose, Equation 4.280 can be rewritten as

|:muu m,y :| {Xu }+ [cuu Cud :l {Xu }+ [kuu kuﬂ :l {Xu } — {Pu } (4310)
my, Mmyy | | Xy Cou Coo | | Xo ko, Koo | | Xo Py
in which

P, = f()()“.()(l) (4311)
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Figure 4.13  (a) Difference between the mean response and the response of the mean-parameter system (Case 1;
solid line: mean response of the stochastic structure; dotted line: response of the mean-parameter system). (b) The
difference when the coefficients of variation are different (solid line: COV =0.1; dotted line: COV =0.2).

X, = Xoo...o(l) (4312)

are the noncondensed loading vector and displacement vector. Py and x4 are the condensed
loading vector and displacement vector. The coefficient matrices are sub-matrices of the order-
expanded dynamic matrices and related to the above sub-matrices of the loading vector.
Considering Py =0, the second row of Equation 4.310 is given as

my, X, +MyyXy + €3,Xy + CooXy + KguXy +KooXxs = 0 (4.313)

The equation is obviously valid for each time instant. Therefore, utilizing Equations 4.292
and 4.293 and introducing the assumption of linear acceleration will give

3 3 At
(Xu)jJrl - A_(Xu)j+1 a A_(X“)f_‘_z(i{”)f + T(Xu)]
) 3[ IE t ] (4.314)
= E(Xu)j+] — Dy,
ulj+1 AR WL AR U AT I (4.315)
= A_tz(xu)j+1 — Ay
(Xﬁ)j-q-l = %(Xﬂ)j+] - |:% (Xﬁ)j—’—z(kﬁ)j—i_ %(Xu)/:| (4.316)
= A_t(xa)ﬁl — By,
) 6 6 6 . .
(%0);01 = 37(%0)1— [@(Xﬂ)JJFA_z(X")f’LZ(Xﬁ)f] (4317)

= F(Xﬂ)j"rl —A{}j

where At=1t;, | — t; is the given time step.
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After substituting these equations in Equation 4.313 at time /; , |, the following relationship
can be obtained:

KXy, + Koo, —E =0 (4.318)
in which
.6 3
kﬁu At2 my, + ECﬁu + kﬁu (4319)
K 6m +3c +k (4.320)
oo = 3 Mo T - oy + Koo .
Ej = mﬁuAu/ + ml‘)‘ﬂAﬁj + cﬁuBuj + cﬁl‘}Bﬁj (4321)

From Equation 4.318 it follows that

k197 l(E kguxum ) (4322)

j+]

On the other hand, the discretized equation of the first row of Equation 4.310 can be written
as

K, Xy, KXo, =Py, +F (4.323)
where
X 6 3
kuu = At2 MM + A cuu +kuu (4324)
'y 0 —myy + 3c +k (4.325)
wd AR ud At ud ud .
Fj = my Ay +mypAg; + cuByj + cuoBo; (4.326)

Substituting Equation 4.322 in Equation 4.323 will lead to a condensation equation with
respect to Xy,

l}uxu,url = ~jJrl (4327)

in which
k, =k, — K k;5 'K}, (4.328)
P =P, +F—Kkj;'E (4.329)

Obviously, the number of equations in Equation 4.327 is equal to the degrees of freedom of
the original system. Substituting the solution of Equation 4.327 in Equation 4.322 step by step,
the solution of the dynamic order-expanded system for the whole time history will be obtained.
It is noted that, for linear structures, k,, and k* 19k19 are constants for different time instants,
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Figure 4.14 Computational efforts against the number of the expanded order.

and F; and E; depend on the previous structural responses. Therefore, the condensed loading
term P, should be modified in every step according to the results of the former step. Because
the condensation equations are formed with the structural response of the former time instant,
this method is called the recursive condensation algorithm (Li and Wei, 1996). Some practical
calculation experiences indicate that this kind of algorithm can reduce the computational cost
of the dynamic order-expanded system to that of the corresponding deterministic system. An
example is shown in Figure 4.14. It can be observed that the computational cost will increase
exponentially with the increment of the expansion order when the order-expanded system
equation is solved directly, while the computational cost varies almost linearly with the
expansion order when the recursive condensation algorithm is applied.
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Random Vibration Analysis

5.1 Introduction

Classical random vibration theory, where the randomness involved in the excitations is taken
into account but the system parameters are assumed to be exactly known and regarded as
deterministic values, has experienced tens of years’ development since the 1950s (Crandall,
1958). Over the last half century, a variety of approaches have been proposed and investigated
extensively. These approaches can basically be classified into two categories, namely the
numerical-characteristics-oriented approaches and the PDF-oriented approaches, which are
logically in accordance with the two historical clues clarified in Chapter 1. The former family
of approaches tries to obtain the numerical characteristics of the stochastic responses by
establishing the transfer relationship from the numerical characteristics (such as the moments
or the PSD functions) of the inputs to those of the responses. Here, the concept of stochastic
differential equations and stochastic calculus should be introduced. For instance, the mean-
square calculus is used most often. A formal solution of the stochastic differential equation or
directly the stochastic differential equation is used to derive the transfer relationship or the
governing differential equations in terms of the moments. In contrast, the latter family of
approaches deals with the problem by transforming the random system equation to a
probability density evolution equation, which is usually a deterministic multidimensional
partial differential equation; for example, the Liouville equation or the FPK equation. This
chapter deals with the widely used approaches among the aforementioned two families. The
physical sense embedded in the approaches is particularly emphasized.

5.2 Moment Functions of the Responses

A linear transfer relationship from the moments of the inputs to those of the responses can be
established for the linear structural system. Through this family of relationships, the numerical
characteristics of the responses can be evaluated once the numerical characteristics, such as the
mean and the convariance functions of the inputs, are known. The physical essence of this
family of linear transfer relationships lies in the physical linear relationship between the
excitations and the responses, which holds for any sample.

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5
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5.2.1 Response of a Single-Degree-of-Freedom System
in the Time Domain

5.2.1.1 Impulse Response Function and Duhamel’s Integral

Consider the deterministic SDOF system shown in Figure 5.1 with mass m, damping ¢ and
stiffness k. If it is subjected to an excitation f(¢), now regarded as deterministic, then the
equation of motion is

mx +cx +kx = f(1) (5.1)

where x is the displacement response; the overdots denote the derivative with respect to time 7.
Let the initial condition be x(fy) = xo, X(ty) = Xo.

Figure 5.1 An SDOF system.

The properties of a linear dynamical system are embedded in the response of the system to
some types of special excitation, although the actual excitations are usually arbitrary and
irregular. One of the special excitations is the unit impulse 6(¢), which is a Dirac delta function;
another type of special excitation is the unit harmonic excitation, which can be expressed in a
complex function as ¢!, where i = v/ — 1 is the unit of the imaginary number. The advantage
of using these special excitations as testing excitations is that any arbitrary excitation can be
regarded as the linear superposition of a set of impulse functions. In fact, there is

£t) = Ji FOUGDL: (5.2)

In addition, the process f{(¢) can also be regarded as the linear superposition of a set of unit
harmonic excitations when employing

flt) = % J:, F(w)e do (5.3a)

which is nothing but the Fourier transform, where F(w) is the Fourier spectrum of f(7).
Therefore, although the unit impulse excitation and the unit harmonic excitation are both
special types of excitation, they are also the basis units of any arbitrary excitations (Figure 5.2;
see Appendix A). Hence, the response properties of the system to the excitations contain
adequate information for gaining insight into the problem and simultaneously for practical
computations of the response of the system to any arbitrary excitations. The impulse response
will be discussed in this present section and the response to the unit harmonic excitation will be
dealt with later.
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(a) Unit impulse function (b) Unit harmonic function

Figure 5.2 Two typical basis units.

Let the response of the SDOF system initially at rest to the unit impulse 6(¢) be /(¢); namely:
mh+ch+kh=8()  hg=0,hy=0 (5.4)

Dividing by m on both sides, Equation 5.4 becomes
i + 240k + wh = %5(1) h(0) = 0, (0) = 0 (5.5)

where @ = \/k/m is the natural circular frequency and { = ¢/2mw is the damping ratio.
Performing integration over a small time interval [0, t] on both sides of Equation 5.5, and
noting that

L h(e) dr =2 [(0) + h()] +o(x)  and J;%a(z) dr = % (5.6)
we have
h(t) — h(0) + 2Lw[h(t) — h(0)] + %w%[h(f) + h(0)] + o(1) = % (5.7)

Letting T — 0 and considering the initial conditions in Equation 5.5 together with (by the
mean value theorem in calculus)

lim /(z) = lim J h(r)dr = lim [(%)7] = 0 (5.8)

=Y%Jo

where 7 is some proper intermediate value over the interval [0, 7], it follows that

. 1
Thjr%)h(r) = (5.9)
This is essentially an initial condition for the velocity, which means that the effect of the
impulse is to make a sudden finite increment of the velocity. Therefore, the response of a system
initially at rest to an impulse is equivalent to the free-vibration response of the system subjected
to a nonzero initial velocity from the origin. Mathematically, the solution of Equation 5.5 is
equivalent to the solution of

h+2wh+o*h=0  h(0) =0, h(0) = (5.10)

1
m
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which is known as the impulse response function (Clough and Penzien, 1993)

1
h(t) = ——e " *sin(wat) >0 (5.11)

mawgq

and A(f) =0 for <0, where wg = /1 — *w.

The principle of superposition holds in linear systems. For the system in Equation 5.1, if the
response of the system to the excitation fi(?) is x;(#) and the response of the system to the
excitation f>(¢) is x,(#), then the response of the system to the linear combination c,f;(¢) +
cof2(f)is c1x1(f) + cox,(2). Thisis also true for any number of excitations. Further, if the system
is subjected to the excitation

N(I.A‘[) t
= Jim > A Ay = | Al (5.120)
max(At;) — 0 = 0
where g(¢,7) can be regarded as some type of modulation function, N(#, At) is the number
of partitioned intervals such that [0, 1] = UJN:O Atj, At N Aty = ¢, Vj#k, then the response of
the system is

N(t.At) t
X)) = lim Zxl(‘;/)g(l,‘rj)A‘CjzJoxl(f)g(l,f)df (5.12b)

max(At;) — 0 =

Introducing Equation 5.2 into Equation 5.1, the equation of motion of the system initially at
rest is

m}'c—i—cjc—l—kx:J 8(t—1)f(r) dr Xo=0,%=0 (5.13)

Note that the response of the system initially at rest to the impulse 6(¢ — 7) is (¢ — ), which
is given by Equation 5.11. Then, according to the principle of superposition shown in
Equations 5.12a and 5.12b, the response of the system initially at rest to f{f) reads

t 00 t

x(1) = J h(t—1)f(r)dr = J h(t—1)f(r)dr = J h(t)f(t—1)dr (5.14)
0 — oo 0

This convolution is the well-known Duhamel integral.'

To include the effects of a nonresting initial condition, the free vibration of the system

mX+cx+kx=0 x(0) = xp, ¥(0) = X0 (5.13)

should be considered. Again, using the principle of superposition, we know that the free
vibration response of the system in Equation 5.15 is equivalent to combination of the free

! Because of causality — that is, () = 0 for # < 0 — the lower integral limit in Equation can be 0 or —eo while the upper
integral limit can be ¢ or eo; the results are equivalent.
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vibration of the system with the initial conditions x(0) = x¢, X(0) = 0 and that of the system
with the initial conditions x(0) = 0, x(0) = Xo; therefore, the free vibration response of the
system in Equation 5.15 is given by

x() = xoe ~*“'cos(wqt) + ?efg“’tsin(wdt) = Age ““'sin(wat + @) (5.16)
d
where Ag = [x2 + (Xo/wq)?]"/? is the initial amplitude and @, = tan~'[xo/(%o/wa)] is the
initial phase angle.

Obviously, it follows that the response x(7) decays at an exponential rate and x(¢) — 0 as
t — oo, This indicates that the effect of the initial condition can be ignored when the time
duration is long enough.”

Again, using the principle of superposition, the total response in Equation 5.1 is the
summation of the response of the corresponding system initially at rest to the excitation
(given by Equation 5.14) and the free-vibration response of the system with non-resting initial
conditions (given by Equation 5.16), namely

x(1) = Age “lsin(wat + ¢p) + fot h(t—1)f(r) dr
= Age~ “lsin(wal + @) + —j e =40l =Isinug (1 — )] () de
mawq Jo
This formula establishes the linear relationship between the deterministic excitation f{f) and
the deterministic response x(f), which is illustrated in a block diagram in Figure 5.3a and
expressed by the linear operator

x(1) = L[ f(1)] (5.18a)

Now we consider the case that the input is a stochastic process &(7). In this case, the response
is undoubtedly also a stochastic process X(¢). However, from the point of view of the sample, or
in other words from the physical point of view, the relationship in Equation 5.18a still holds, as
illustrated in the upper part of Figure 5.3b, where the variable @ is embedded, representing the
randomness involved. It is well established that a stochastic process could be probabilistically
described by probabilistic information, say, a finite-dimensional PDF or moments of different
orders in the time domain. Therefore, the operator in the sense of the sample in Equation 5.18a
will definitely mean that a linear relationship exists between the probabilistic information of the
excitation, denoted by Z¢(;), and the probabilistic information of the response, denoted by )
(see the lower part of Figure 5.3b). Mathematically, this means that there must be some type of
deterministic operator %, ( - ) such that

Px) = L2(Pery) (5.18b)

One of the most important tasks in stochastic mechanics is to find the operator %5 ( - ) and
make it feasible for analytical or numerical implementation for certain metrics of probabilistic
information.

2 Actually this is a general feature of many dynamical/iterative systems if the systems are stable. For instance, we can
find the analogous feature in the iteration or evolution process of a Markov process (Lin, 1967; Gardiner, 1983), the
iteration process of the Bayesian estimate (Ang and Tang, 1984), the process of iteration of a matrix (Golub and von
Loan, 1996), and the Kalman filter (Stengel, 1994), and so on.
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Figure 5.3 The block diagram of linear systems.

5.2.1.2 Moment Functions of the Stochastic Response of SDOF Systems
in the Time Domain

Although it is more understandable to tackle the problem in a physical or sample sense as
discussed above, the mathematical manipulations for a stochastic system in the sense of sample
are not easy. On the other hand, to deal with the problem in the mean-square sense is more
convenient, particularly because the operations of the calculus that are well established in the
deterministic cases could be used directly in the mean-square sense without special revisions
(Lin, 1967; Astrom, 1970; Gardiner, 1983).

Denote the mean of the stochastic process £(¢) by ug(?) and the autocorrelation function by
Re(11,12) (see Equations 2.63 and 2.64):

pe(t) = Elé(m, 1)) = J (@, 1)P(dw) = J xpe(x; 1) dx (5.19)

Q Q.

Rf(tlth)

ElE(m, 1)é(m, )] = [oé(@, 1)é(m, 1) P(dw)

(5.20)
= fgxxlxng(xl, 1; X2, [2) dx; dx,
where P(dw) = Pr{dw} is the probability measure, p;(x,?) and pg(x, ¢,; X2, f,) are respectively
the one- and two-dimensional PDFs of the stochastic process £(¢) and & -] stands for the
ensemble average.
The response of the SDOF system to the excitation &(7), according to Equation 5.17 when the
effect of the initial condition is ignored because of the rapid attenuation, is’

X(1) = L h(t —7)&(7) de (5.21)

Taking the mathematical expectation on both sides and noting that the expectation and the
integral operators are commutable in the mean-square sense will yield the mean of X(?):

&
=
[

(1) = E[Jy h(r—1)é(x) dt] = [(h(t —D)EE(D)] de (5.22)

3 This integral can either be understood as a sample integral or as a mean-square integral. The physical sense of the
former is more direct, but the mathematical manipulation of the latter is more convenient. Fortunately, for the stochastic
processes encountered most they are consistent.
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Likewise, the autocorrelation function of the stochastic response X(7) can be computed by
Rx(t1, 1) = EX(1)X(1ry)] = EUS‘ h(t; —t)é(t)de - féz h(ty — 1)é(1) dr]
= Ot' (;2 h(ty —11)h(t2 — 12)E[é(T1)é(t2)] d7y dr2 (5.23)
= [ (;2 h(ti —t1)h(t2 — 12)Re(t1,12) dty d12

The variance of the response is then given by letting t; =1, =¢:

t ot
Var[X(1)] = E[X*(1)] = Rx(t,1) = J J h(t —t1)h(t —12)Re(t1, 12) dr) d72 (5.24)
0Jo

In the case where the excitation is a stationary process, the steady-state response is also a
stationary process. The autocorrelation function of this steady-state response is given by
Equation 5.23 through letting #; — oo and #, — oo and noting that Rg(t,, 1,) is replaced by
Rg(t| — 15). After the change of integral variables, we have

Rx(1) = Jio Jio h(up)h(u2)Re(t 4+ uy — uz) duy duy (5.25)

Equations 5.22-5.25 establish the relationship between the mean and the correlation
functions of the excitation and the response. We can see easily that the moments of the
response are linear functionals of the corresponding moments of the excitation. In other
words, the operators % ( - ) in Equation 5.18b and Figure 5.3b are linear; these are the expected
results as the mathematical reflection of the linear physical relationship shown in the system in
Equation 5.1.

Example 5.1. Response of an SDOF System to White Noise Excitation If the excitation
is a white noise with pg() =0, Re(t1, 12) = Rgod(t, — 1), then from Equation 5.22 it is known
that the mean of the response px(?) is zero, and from Equation 5.23 the correlation function can
be evaluated by

Rx(ll,lz) = (;l Otzh(ll—‘El)h(lz—fz)Rg()S(‘L’z—‘Cl)d‘Cl dz,

= Reo [y h(t1 —t1)h(t2 —11) dry

R [
= £0 . J e —{olhi+n 7211)sinwd(t1 —11)sinwg(t, — 1) dty
(mawqg)” Jo
_ Recoswg(t —11) |:e—{m(12—r1) o~ tol +12)}
4§w(mwd)2
R§0 loT) . = (t—1)
_ W[e (wasinwqti +fweoswqti)]; — (1) (5.26)

Letting 1 =1, — ¢, and ¢ = ¢, we then have

R
Ry(t,t+1) = M — ot _ g —lo(t+20)
4{w(mwy)
— (e (wgsinwgty +weoswgt)]Z (L, (5:27a)

40 (mwqg)*
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Further, as ¢t — oo, the correlation function of the steady-state stationary process is given by

Rgo

2

We’{‘” [coswgT — {wsin(wqT)] (5.27b)

Rx(1) = tan;Rx(t, t+1) =

From Equation 5.26 we can get the variance of the response Var[X(7)] = Rx(t,?), namely

ar[X(1)] = % (1 — e~ 2on
w (Mg
B ~{lw — e %" [fwcos(2wgt) — wgsin(2wqt)]}  (5.28a)
4w2(mwd)

In addition, letting ¢ — oo yields the variance of the steady-state stationary response:

,ILHL Var[X(#)] = Rx(0) = Wt

The dimensionless variance of the response with different damping ratios is shown in
Figure 5.4. It is seen that the larger the damping ratio, the faster the variance approaches the
steady-state variance. On the other hand, if { =0, then the system will be unstable because the
input energy cannot be dissipated by the system. In addition, from Equations 5.27a and 5.27b it
is seen that the response X(¢) is no longer a white noise. It is a filtered noise and often called a
colored noise, which will be discussed again later. O]

(5.28b)

1.0
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Figure 5.4 Variance function of the response to white noise (w = 0.2m).

5.2.2 Response of MDOF Systems in the Time Domain

An SDOF system not only can provide insights into the problem because of its simplicity and
relatively easy mathematical manipulation, but is also applicable to a large number of
engineering practical cases as a reasonable approximation, especially in the preliminary stage
of analysis and design. However, most practical systems, in a more accurate sense, should be



Random Vibration Analysis 141

considered with infinite degrees of freedom, or at least multiple degrees of freedom. In general,
with the concept of discretization, engineering structures can usually be discretized or
approximated by an MDOF system, of which the equation of motion in matrix form (see
Section 4.2) is

MX + CX + KX = BE(?) (5.29)

where X=(X,Xs,... ,X,,)T is the displacement of order 7, M = [M;j],,x,,, C =[Cjl,x, and

= [Kijl,ixn are the mass, the damping and the stiffness matrices respectlvely, = [Bjluxr1s
the input force influence matrix and £() = (&,(1),&(1), ..., &,(1))" is the stochastic excitation
vector of order r.

5.2.2.1 Direct Matrix Expressions

Denote the mean vector and the correlation function matrix of the stochastic process vector §(¢)
respectively by

we(1) = E[E(N] and  Re(11,12) = EE(1)E (12)] (5.30)

To obtain the moment functions of the response X(#) to the excitation §(¢), the idea used in the
SDOF system can be applied here directly, except for changing the scalar functions to the
corresponding vector and matrix functions.

Denote the unit impulse response function matrix by h(#) = [/;(#)],,x,» where the component
hy(t) of h(?) is the impulse response at the ith degree of freedom to the excitation acting on the
Jjth degree of freedom. Thus, if we let h;be the jth column vector of the impulse response matrix
h(7), then the column vectors h; satisfy

Mh; + Ch; + Kh, = L5(t)  h;(0) =0, h;(0) =0 (5.31)

forj=1,2,...,n Here,I; = (0,0,...,0,1,0,... ,O)T is the column vector with the compo-
nents being zero except for the jth component being 1.

According to the Duhamel integral (see Equation 5.14), ignoring the effect of the initial
condition of the system, we get the response of the system in Equation 5.29:

X(1) = L h(r — 7)BE(7) d (532)
Therefore, the mean of the response is given by
px (1) = EX(1)] = L h(r —7)BEE(r)] dr = Jo h(7 — 7)Bp(t) dt (5.33)

Simultaneously, the correlation function matrix can be evaluated through

Rx(t1,5) = EX(1)X"(12)] :5[ "h(ty — 1)BE(t) dt- [)* {h(t2 — 1)BE(T)}" dr]
= 5[ ! I2h(t1—Tl)BE(Tl)gT(Tg)BThT(tg—rz)drl dy]
= [ ] h(ty — 1)BEE(T)E (12) BT (1, — 73) dr dr
= Jo' Jo bty —71)BR¢(t1,72)BTh (1 — 15) dr dry
(5.34)



142 Stochastic Dynamics of Structures

In the case that the excitations are stationary stochastic processes, the steady-state responses
are also stationary processes. The autocorrelation function matrix of the responses can now be
obtained through letting #; — oo, £, — o and noting that Re(t;,7,) is reduced to Rg(t; — 12).
Therefore, similar to Equation 5.25, we have

Rx(1) = J:, Ji h(u)BRg(t — uy — u2)B h" () duy duy (5.35)

Equations 5.33-5.35 establish the relationship between the moment functions of the
responses, px(?) and Rx(7, 1), and those of the excitations, wg(f) and Rg(7y,7,). They are
just the matrix-form counterparts of the relationships in the case of SDOF systems in
Equations 5.22-5.25. The underlying physical sense is clear that, as shown in Figure 5.3b,
the operator #»( - ) in this case is still linear because of the embedded linearity in terms of the
inputs and the outputs in the physical system 5.29.

Practical applications of Equations 5.33 and 5.34, however, are not convenient because (a)
the closed-form solution of the impulse response matrix h(#) is much more difficult to reach
than is that of the SDOF counterparts and (b) the computational effort involved in the
implementation of Equation 5.34 is prohibitively large for the structural systems of practical
interest, where the degrees of freedom might be so large that the computations involved in these
equations are beyond present available computational facilities.

5.2.2.2 Modal Superposition Method

For linear systems, the modal superposition method could uncouple the original system to a set
of SDOF systems and then greatly reduce the computational effort. If the damping involved is
proportional damping, then the equation of motion as a second-order ordinary differential
equation could be uncoupled directly through a variable separation method which employs the
eigenvectors, referred to as modes, as the basis vectors (Clough and Penzien, 1993).
Consider the corresponding undamped free vibration of the system in Equation 5.29:

MX +KX =0 (5.36)

Assume the free vibration is harmonic; that is, X(7) =¢ e, Substituting this in Equa-
tion 5.36 yields

[K — o*M]pe’ = 0 (5.37)
Because €'’ is not always zero, this requires
K—o*M =0 (5.38a)

which is referred to as the characteristic equation. The condition ensuring a nontrivial nonzero
solution is

det(K — w*M) =0 (5.38b)

where det(-) is the determinant of the bracketed matrix. For general structural systems,
especially finite-element systems, since the stiffness K and mass matrix M are both symmetric
and positive-definite, it has been proved that there exist n solutions w;, j = 1,2,...,n, to
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Equation 5.38b; in turn, according to Equation 5.38a, each one possesses a corresponding
vector{y;, j = 1,2,...,n (Golub and van Loan, 1996). In other words, there exist n character-
istic pairs (w;, xpj),j =1,2,...,n, of which wjz is the eigenvalue and {; is the corresponding
eigenvector, usually referred to as the mode of the structure.

The modes are weighted orthogonal with respect to the stiffness matrix K and the mass
matrix M. In fact, replacing { in Equation 5.38a by {s; and pre-multiplying it by q:Z and then
replacing ¢ in Equation 5.38a by {, and pre-multiplying it by \leT, we can get

U [K— oM, = 0 (5.39a)

and
U/ [K— oMy, =0 (5.39b)

respectively. Noting that K = K" and M =M, taking the transpose of the latter equation and
then subtracting it from the former, considering that w; # w; for k#j, we have

UMy, = 8y (5.40)

where my, = l'Jlellk is the kth modal mass and &y; is the Kronecker delta. Introducing
Equation 5.40 into Equations 5.39a and 5.39b yields

WTK, = TV, = oPmidy = kidy (541)
Equations 5.40 and 5.41 show that the modes are weighted orthogonal. Therefore, the modal
vectors ¥, j = 1,2, ..., n, comprise a complete orthogonal basis in the n-dimensional Hilbert
space; then, the response X(¢) can be decomposed by
X(0) =D (1) = du(1) (5.42)
=1
where ¢ = (Y, ¥,,...,¥,) is the modal matrix and u = (u,u,...,u,)" is the modal

displacement vector.
Substituting Equation 5.42 in Equation 5.29 and pre-multiplying it by \IJ]-T on both sides
yields

W IM&ii(1) + Chia(r) + Kbu()] = yIBE()  j=1,2....n  (5.43)
Using the proportional damping, namely
&' Cod = diag[cy, ¢z, . . ., ¢ = diag[2f 0 my, 2 ,w0amy, . . ., 24w, (5.44)

where diag[-] denotes a diagonal matrix, and noting Equations 5.40 and 5.41, we have
n r
myity + cjiy + iy = WIBE(D) = > N " duBuéi()  j=1,2,...,n (5.45)
k=1 r=1

where ¢ is the kth component of §s; and By is the k x {-th component of B. Equation 5.45
contains 7 uncoupled SDOF systems.
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According to the elaboration in Section 5.2.1.1, the impulse response function of the system
in Equation 5.45 /(¢) is given by Equation 5.11, where 1, { and w are replaced by m;, {; and w;
respectively. Thus, it follows that (see Equation 5.14)

up = J; hy(t— r)\bjTBg(T) dr (5.46)

where the effect of the initial condition is ignored. Substituting this equation in Equation 5.42
then yields the response of the system in Equation 5.29, namely:

X(t) = ZJ hi(t — )b/ BE(7) de (5.47)

j=170

Again, this equation could be regarded as the linear operator #(-) which governs the
responses of the system to the excitations, as shown in Figure 5.3a or the upper part of
Figure 5.3b.

The mean of the responses can be given by taking the mathematical expectation on both sides
of Equation 5.47:

n

t
x(0) = EX(0) = 3 [ yto = p Bug(o) ar (5.48)
j=1
Likewise, the correlation function matrix can be evaluated through
Rx(11,12) = EX(1)X"(12)]

> J Uyt — 7 )W TBE(T) dey Y J (2 — )€ (42) BT dey

j=170 k=10

’ /1](11 - Tl)hk(tz - ‘Ez)l]ljll,l.;ng[g(‘L'l)gT(Tg)]BTlIJklIJz dty d7

1
M:
.M=
S—=
—

15
hi(ty — 1) hi(t; — 2l BRe (11, 72) BTy dry dey

[
M:
.M=
S
—

(5.49)

If the excitations are stationary processes, then the steady-state response processes will also
be stationary processes. In this case, Equation 5.49 reduces to

Rx(‘C) = ZZ J J /’lk l] (Zz)ll}klllkBRg( T+ 1) — tl)BTllJ/lllT dt; drp

Jj=1 k=1

.. <th(11)¢k¢;) BR¢ (7 + 1, — ;)BT (Zh,(rz)q;jq;}) dry db
k=1 j=1

(5.50)

Again, we reach a linear relationship between the moment functions of the responses of the
system and that of the excitations in Equations 5.48-5.50. However, in comparison with
Equations 5.33-5.35, this set of equations is more computationally convenient because the
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closed form of /() is known, whereas Equations 5.33—5.35 are more conceptually direct as
counterparts of the SDOF systems.

Actually, these two sets of equations are mathematically equivalent. This is clear if we apply
the modal superposition method to Equation 5.31 and then get

Zh AH (5.51)

Introducing Equation 5.51 into Equations 5.33 and 5.35 will immediately yield Equa-
tions 5.48 and 5.50.

When nonproportional damping is involved, the equation of motion can be changed to a state
equation and again the eigenvectors could be chosen as the basis vectors in a state space; but, in
this case, the eigenvalues and eigenvectors are now usually complex numbers and, therefore,
this is referred to as complex modal analysis. Such an analysis for random vibrations can be
found in Fang and Wang (1986) and Fang et al. (1991).

5.2.2.3 Notes on Computational Efforts

Equation 5.49 is the so-called complete quadratic combination (CQC) scheme because there
are n” terms in total being summed. In practice, the number of participant modes ¢ is usually
chosen such that ¢ < n for large structural systems and, therefore, the computational efforts can
be greatly reduced. However, for practical engineering systems, this is usually still too time
consuming. As an approximation, the cross-terms in the summation of Equation 5.49 are
sometimes ignored; therefore:

q H rh
Rx(tl,tz)zzj J hi(ty — 1) hic(£2 — T2l BRe (1, 72) BT, @) oy dry (5.52)

k=170 J0

This scheme is referred to as the square root of the summation of the square (SRSS). Usually,
it is believed that this approximation is acceptable when the frequencies are not densely
scattered. However, it cannot be guaranteed and actually it is not the case for many large
complex structural systems (Der Kiureghian, 1980).

The prohibitive computational effort of Equation 5.49 is essentially one of the greatest
hinderances to the application of classical random vibration theory to problems of practical
interest, since the basic theory was developed about four decades ago. Interestingly, a simple
further step, although always ignored, can greatly reduce the computational effort when we
rearrange Equation 5.49 by

Rx(ll,lz) = ZZJ J h/ 31 —‘El)hk(lz —‘L'z)ll!]lp BR&(T[,TZ)B l'.lklpk dty dtp

1j=1

_ t1 153 {Z }}BR&(‘C],Tz)BT{Z[hk(fz TZ)"’kq’i]} dr; dr,

k=1

(5.53)

We find that Equation 5.53 is in a form identical to the equation resulting from introducing
Equation 5.51 into Equation 5.34. However, from the point of view of computation, the double



146 Stochastic Dynamics of Structures

summation in Equation 5.49 (i.e. the CQC) has been changed to two single summations; that is,
the multiplication of two summations. We can view the effect of the change by examining a
simple example:

s=) quafb/ = ( ql a,») (}Z:: b./) (5.54)

i=1 j=1 i=

Mathematically, the two equalities are equivalent. However, in the computation of the first
entity > 7, ZJ‘I: 1 aib;, ¢ multiplication operations and ¢> summation operations need to be
performed, whereas only one multiplication operation and 2¢g summation operations are
needed in the computation of the second entity (37, @;)(3_7_, b;). Note that the multiplica-
tion operation is much more time consuming than the summation operation is. Compared with
the first entity, the computational efforts in the second entity is reduced from ¢*wp, + ¢*w; to
Wm + 2gws, where wy,, and wy are respectively the workload of one multiplication operation and
one summation operation. If ¢ is in the order of 10, then this might make the computation more
efficient by times in the order of 10°~10. The difference between the computational efforts of
the first and second equalities in Equation 5.53 is just analogous to the situation in Equation 5.54
as discussed above. This is also true for the computation of Equation 5.50.

We will come back to this issue when the pseudo-excitation method is elaborated later.

5.3 Power Spectral Density Analysis
5.3.1 Frequency Response Function and Power Spectral Density
5.3.1.1 Response of SDOF Systems in Frequency Domain

Frequency Response Function of SDOF Systems

As discussed in Section 5.2.1.1, apart from the unit impulse, the other widely used testing
excitation is the unit harmonic excitation. In this case, the response of an SDOF system,
denoted by /(¢), satisfies

mh+ch+kh = xp=0, % =0 (5.55)
Using Equation 5.14, replacing f(#) by the harmonic excitation e'*’, we have
h(1) = J h(t,7)e“l =" dr = ei“”J h(t,7)e ™" dt = H(w, 1)el’ (5.56)
where
H(w,t) = h(t,t)e” " dt (5.57a)

— oo

and /i(¢,7) is the impulse response function of a time-variant linear system. If the system is time
invariant, then /A(z, 7) is the function given by Equation 5.11. In this case, H(w, t) reduces to

oo

Hw)=| h(t)e " dr (5.57b)

— oo

The function H(w) is referred to as the frequency response function. Evidently,
Equation 5.57b shows that the frequency response function is the Fourier transform of the
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impulse response function. In turn, this indicates that the impulse response function /() must
be the inverse Fourier transform of the frequency response function:

_1
T on;

h(t) fm H(w)e' do (5.58)

If we introduce Equation 5.56, in which A (w, 1) is replaced by H(w), into Equation 5.55, it
follows that
1 1 1

_ I : - 5.59
k—mo? +ico  m(of —w? +i2wow)  mo[l — (o/wy)’ +i2{w/w] (5-59)

H(w)

where { and wg are the damping ratio and the circular frequency of the SDOF system
respectively.

Furthermore, according to the principle of superposition, multiplying both sides of the
equation of motion of the SDOF system subject to an arbitrary excitation f(¢) by e =1/

mx +cx +kx = f(1) (5.60)

and integrating with regard to ¢ yields

oo

mJ X(t)e 1! dt—i—cJ

— oo

jc(t)e*i‘"‘dtJrkJ x(z)e*i“”dz:J f(te " dr (5.61a)

Denoting the Fourier transforms of X(¢), x(¢), x(¢) and f(¢) by X(w), ¥(w), x(®) and F(w)
respectively, Equation 5.61a is rewritten as

mX(w) + cx(w) + kx(w) = F(w) (5.61b)
Note that X(w) = iwx(w) = — w?x(w). It follows that
x(w) ! F(w) = H(w)F(w) (5.62)

 k—me? +icw

This equation establishes the linear relationship between the input and the output in the
frequency domain. We can see that all the properties of the SDOF system are contained in the
frequency response function H(w), which is irrelevant to the excitation and completely
characterizes the system properties. This is one of the reasons why the unit harmonic excitation
is chosen as the testing excitation. From Equation 5.62, we have the impression that the
linearity embedded in the system is reflected more clearly in the frequency domain than in the
time domain.

Power Spectral Density of Response of an SDOF System to Stochastic Excitation

If the excitation is a stochastic process &(7), then the response X(7) is also a stochastic process. In
this case, Equation 5.62 could be interpreted in a sample sense which conforms to the physical
sense; namely:

X(o,0) = Hw)é(o,w) (5.63a)
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where @ is the variable characterizing the embedded randomness and X(@, w) and é(@, w)
should be understood as the Fourier spectrum of the stochastic processes X(@, ¢) and &(@, ?),
respectively.

Taking the complex conjugate of Equation 5.63a:

X' (@, 0) = H (0) & (@, 0) (5.63b)

Hereafter, the asterisk superscripts denote the complex conjugate.

Multiplying the left-hand side of Equation 5.63a with the left-hand side of Equation 5.63b
and doing the same thing for the right-hand sides of Equations 5.63a and 5.63b, taking
mathematical expectations and dividing by the duration T as T — oo, we have

lim > EX (@, @)X (,0)] = fim - [H()el(@,0)¢ (.0)] (564

T — oo
In fact, the left-hand side of Equation 5.64 is nothing but the PSD of X(z), provided it is a
stationary stochastic process (see Equation 2.89a and Appendix C); namely:

Sy(w) = lim %S[X(w, ®)X* (@, )] (5.65a)

Likewise, the terms contained on the right-hand side of Equation 5.64 involve the PSD of
&(1), provided it is a stationary stochastic process:

Se(w) = Jim o E[E(w, )€ (@,0)] (5.65)

Then, from Equation 5.64, it follows that
Sx(0) = |H(w)*S¢(w) (5.66)

where |H(w)I* is given from Equation 5.59 by

1 1
2
H(w)|” = > B (5.67)
(mad)* [1 = (@/wo)’]” +4L%(/wo)
which is illustrated in Figure 5.5.
Some characteristics of IH(a))I2 are:

(a) |H(w )| = 1/(mw0) or |H(w)|* (mw(z)) = 1, for w/wOfO

(b) |H(w )| = [1/(mw})?][1/(4%)], or |H(w)*(mw})* = 1/(42%), for wlwy=1;

(¢) |H(w)\ — 0, as w/wy — o

(d) |H(w)|? reaches its maximum as /wo = (1 +¢*)"/? — 2. Itis seen that w/w, maximizing
|H((u)|2 varies from 1 to v/2 — 1 monotonically as ¢ varis from 0 to 1.

(e) Half-power bandwidth: for light damping, the maximum value of |H(w)I occurs approxi-
mately at w/wo = 1 as shown in (d). In this case, |H ()| (mwo) = 1/(4%). Consider the
point w; where

\HwOV:;waV (5.68a)
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104

102

wlw

Figure 5.5 Frequency transfer function.

Thatis, the PSD at w, is half of the maximal PSD when the excitation is a white noise; therefore,
w is referred to as the half-power point. Note from Figure 5.5 that there are two half-power
points w; and w, scattered over two sides of wg, w; < w( < w,, and the differences between them
are small when ¢ is small; that is, Aw = w, — | < wy. Through some manipulations we have

N Aw
- 2(00

(5.68b)

where Aw is referred to as the half-power bandwidth.

Equation 5.68b indicates that the damping ratio can be obtained easily if the bandwidth and
natural frequency can be measured through vibration testing techniques. This is the so-called
half-power method for identification of damping (Clough and Penzien, 1993).

Equation 5.66 establishes a linear relationship between the PSD of the response and that
of the excitation. Again, this can viewed as the linear operator Z»( - ) in the lower part of
Figure 5.3b. Obviously, the linearity exhibited here is more direct than that exhibited in the time
domain, as discussed in Section 5.2.2.

Further, it is easy to get the correlation function from Equation 5.66 by the Wiener—Khintch-
ine theorem:

_1
Y

oo A 1 [ ,
J Sx(w)e'" dw = —J H(0)]S¢(0)e" do (5.69a)

Rx(7) 21

While the variance of the response can be given by

Var[X()] = Ry(0) = —— Jl Sy(@) doo = — Jl IH ()2 (w) do (5.69b)

The derivation in Equations 5.63a-5.66 looks more intuitive than rigorous, because the
Fourier transform of a stationary stochastic process does not exist when the stochastic process
does not tend to zero as |/l — co. However, this problem can be overcome by defining a Fourier
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transform over a finite time interval; that is (see Appendix C):
T .
Xor(@, ) = J X(w, )e— " dr (5.70a)
-7

Then the Fourier transform of the derived process over the time interval reads

Xir(mo) = [[ X(@,0e " dt=X(a,T)e ' —X(@, —T)e +(iw) [T X(@,1)e ' dt

= X(@,T)e @ —X(w, —T)e + (iw)Xir(w, o)

(5.70Db)
Replacing Equation 5.63a by
Xer(®,0) = H(@)E.1(@,0) + H(w)¥(o,T) (5.70c)
where
Y(T) = —cX(w,T)e T —X(w, — T)el“T)

= —m{X(w,T)e T —X(w, — T)e"" +iw[X(w,T)e " — X(@, — T)e*T]}

Multiplying Equation 5.70c on both sides by its complex conjugate, dividing it by 7" and
letting T — oo, we find the effect of W(@,T) vanishes because the mean and the variance of
X(w,T) are finite; thus we get Equation 5.64. Therefore, the above derivations will lead to no
problems, but will provide a much simpler and intuitive perspective. For this reason, we will use
the technique extensively in the following sections.

Power Spectral Density of Derived Stochastic Processes
Sometimes we may be interested in the PSD of its derived processes, say X(k)(t) = de(t)/dtk.
We have given some commonly used formulae which can be proved starting with the definitions
in Section 2.2.4. However, we can achieve them in a more straightforward way as shown in the
preceding subsection.

Let us consider the nth derived process of X(7), denoted by X"”(7). Its Fourier spectrum is
given by

X" (w) = (i0)"X (@) (5.71a)
of which the complex conjugate is
X" ()] = [(i0)"]" - X" (w) (5.71b)

As with Equations 5.63a and 5.63b resulting in Equation 5.64, multiplying the left-hand side
of Equation 5.71a with the left-hand side of Equation 5.71b and doing the same thing for the
right-hand sides of Equations 5.71a and 5.71b, dividing by T and letting T — oo, we get

Sy () = 0*"Sx(w) (5.71c)

which is nothing but Equation 2.104.
The same idea can be applied to Equation 2.105 and is left to the reader.
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Cross-Power Spectral Density Function
Sometimes we want to get the cross-PSD, say of the response and its derived process or of the
response and the excitation. Direct employment of the basic idea in the preceding section will
make it quite straightforward.

First we take Syy(w) as an example. In this case we replace Equation 5.63b by

X' (@,0) = (—iv)H (0)- & (@, 0) (5.72a)

where X(@, ) is the Fourier transform of the derived process X(w, ¢). Noting that (see
Equation 2.89b and Appendix C)

Syx(w) = lim 2i5[X(w, )X (@, )] (5.72b)
then correspondingly, Equation 5.66 becomes
Sxi(@) = (—iw)|H(0)"S¢(w) (5.72¢)
If we compare this formula with Equation 5.66, then we have
Syx(©) = (—i0)Sx(@) (5.72d)

Recalling that in harmonic motion the phase angle of the displacement is 7/2 lag behind that
of the velocity, the physical meaning of this relationship is quite clear.

Likewise, let us consider Syz(w). In this case, replacing Equation 5.63b by an equality
£ (w, w)=¢ (@, w), and noting that (see Equation 2.89b)

Sye(w) = TnmmiTg[x(w, )& (@, )] (5.73a)
we immediately obtain
Sxe(w) = H(w)S¢(w) (5.73b)

Actually, in general, if X(¢) and Y(¢) are two stationary stochastic process determined through
linear transfer operators from the input &(¢); for example:

X(1) = L1[4(1)] (5.74a)
Y(1) = Lo[£(1)] (5.74b)
then their Fourier transform gives
X(w) = Li(w)é(w) (5.75a)
Y(0) = Ly(0)é(w) (5.75b)
Thus, it follows that
lim iS[X((;))Y*(w)] =Li(0)Ly"(w) lim LS[f(ou)f*((u)} (5.76a)

T—e2T T—ew2T
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That is:
Sxy(w) = Li(w)Ly" (0)S¢(w) (5.76b)

5.3.1.2 Response of MDOF Systems in the Frequency Domain

Direct Matrix Expression

IFE(1) = [£,(1),& (1), ..., &(1)]" is a zero-mean weakly stationary stochastic process vector,
of which the PSD matrix is S¢(w) = [Sg¢ (w)],,. then the correlation function matrix
Re(t) = [Rgg (7)],, is determined by the Wiener-Khintchine formula:

2 . 1 .
Se(w) = J Rg(t)e " dr Re(7) = EJ Se(w)e'" dw (5.77)
In addition, according to Equation 5.65b, we have
1
Se¢(w) = lim ——E[§(o,w)E (o, 0)] (5.78)

T—w2T

Here, the asterisk denotes the transpose of the complex conjugate.
Extending the cases of the SDOF system in Section 5.3.1.1 to the MDOF system
(Equation 5.29)

MX + CX + KX = B§(a, 1) (5.79)
we can get the frequency-response function matrix
H(w) = (K — 0’M +i0C) ' (5.80)
such that the Fourier transform of the responses, X(@, w), is determined by
X(w,0) = H(w)B(@, 0) (5.81a)

where &(@, w) is the Fourier transform of the excitation §(a@, ).
Taking the complex conjugate of both sides of Equation 5.81a yields

X*(@,0) = £ (o, 0)BTH (0) (5.81b)

Post-multiplying both sides of Equation 5.81a by the corresponding sides of Equation 5.81b,
taking the mathematical expectation, then dividing by the duration 27 and letting 7 — oo, it
follows that

. . o1 . Ty
Jim = EX (o)X’ (0)] = lim £ [H(@)BE(, )€ (m,0)B'H (@)]  (582)
Noting Equation 5.78 and that the PSD function matrix of X(?):

Sx(w) = lim %E[X(w, 0)X' (@, 0)] (5.83)

we reach
Sx(w) = H(w)BSg(0)B™H* () (5.84)
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Equation 5.84 is the counterpart of Equation 5.66 in the case of MDOF systems. This shows
that the PSD matrix of the responses is a linear transform of the PSD matrix of the excitations.
The linearity embedded here is, again, reflection of the physical linearity of the MDOF system
(Equation 5.79).

The relationships in Equations 5.66 and 5.84 are algebraic, while the transfer relationships
from the moments of excitations to those of the responses are integrals (see Equations 5.25
and 5.35 in the time domain); therefore, the transfer relationships in the frequency domain are
more straightforward, compact and simple.

However, direct implementation of Equation 5.84 is not so easy because the computation of
H(w) by Equation 5.80 might be very time consuming. This can be relieved by employing the
modal superposition method.

Modal Superposition Method
According to Section 5.2.2, when employing the modal decomposition technique, an MDOF
system can be uncoupled to a set of SDOF systems (see Equation 5.45):

m/i't/—l—cjit/—i—kjuj :ll.leBg(l‘) j=12,...,n (585)
of which the frequency response functions are given by (see Equation 5.59)
1

Hi(w) = . j=1,2,...n (5.86)
’ mwi[1 — (w/wy)’ +i24;0/wy]

where m;, {; and w; are the jth modal mass, the modal damping ratio and the modal circular
frequency respectively.
Using modal decomposition, Equation 5.42, the Fourier transform is

w) =Y (@, 0) (5.87a)

j=1
in which u; (@, w) is the Fourier transform of the modal displacement u; (@, ) and given by
(@, 0) = Hy(w)¥! BE(w) (5.87b)

Employing Equation 5.83 and substituting Equation 5.87a in it, we have
[Z“j*(?ﬂ, w)ll!jT} }
=1

.1

_ ZZ¢k¢sz(w)B{Tliinw%5 [E(0)E ()] }BTI#*(M)‘I’]'"’/T

J=1 k=1

Sx(w) = Tlgnwﬁé'{ Lzllljjuj(w, o)

(5.88)

= ZZHk @) 05 BSg (@ )BTq’jll’jT

Jj=1 k=1
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Compared with Equation 5.84, the implementation of Equation 5.88 is more convenient
because here the closed form of Hjw) is known as Equation 5.86.

On the other hand, mathematically, Equation 5.88 is equivalent to Equation 5.84. Actually, as
an extension of Equation 5.62 to the matrix form, the frequency-response function matrix H(w)
is the Fourier transform of the impulse-response function matrix h(7) (see Equation 5.31):

H(w) = Jimh(t)e*iwf dr (5.89)

Introducing Equation 5.51 into this and noting H;(w) is the Fourier transform of /%)
yields

H(w):fmh(z)e*iw’dt J Zh e @ di = ZH )T (5.90)

Replacing H(w) in Equation 5.84 by the expression in Equation 5.90 immediately leads to
Equation 5.88.

Notes on Computational Effort

It is seen that Equation 5.88 is a CQC scheme. Its computational workload is in the order of
n* (or in the order of ¢* when ¢ modes are chosen). The computational effort for a general
large structural system is still prohibitive. An alternative scheme is to compute Equation 5.88
by

Sx(w)

ZZHk @)U BSg(w)B g}

j=1 k=1

le k(@)W

(5.91)

BS¢(w)B"

D> _H; (@) ]
j=1

Although the two equalities in Equation 5.91 are mathematically equivalent, the computa-
tional effort of the second entity is much less than that of the first entity. The reason is analogous
to the discussion in Section 5.2.2.3.

Example 5.2. Response of an MDOF System to White Noise Excitation Consider an
MDOF structural system subjected to earthquake ground motion modeled by a white-noise
process with the PSD function Sg(w) = So. Here, B = —M{1}, where M is the mass matrix and
{1} is a column vector with all components 1. According to Equation 5.91:

= So [Z AR

For simplicity, we assume a diagonal mass matrix M = diag(/)), then the component form of
Equation 5.92 reads

MB{1}{1}"M" [ZH q,Jq;T] (5.92)
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Sxx,(®) = (ZZ%%MH,C )(Zstcbk,MHk (w))

k k=1 j

Sozzzzcbkrd’psd’ki bpgMiM  Hy (w)H," (w)

q=1p=1k=1 j=1

(5.93)

where ¢y; is the jth component of the mode shape vector Y, ¥ = (051, dras - - - o)
In the case r =, we have

=]

k=1 k

So lZBk,Hk ] [Zﬁk Hi' (w0 ]
where Bk,r = Zj:l (bkr(bkjle
Equation 5.94 can also be expanded by

Sy, (@) = so{iﬁz,wkw n
k=1

Here, Re[-] represents the real part of the bracketed complex number.
To give a more illustrative recognition, we examine a two-DOF system with the mass, the
damping and the stiffness matrices given respectively by

M_[lOO o}k C:[5.758 4.081}N.S/m ond K:[zoo —100}1\1/m

SX’,(Q))
(5.94)

n n

1k#j J

k=T =1

Bi.,B; Re[Hy(w)H;" (w)] } (5.95)

0 100 4.081 9.839 —100 100
(5.96)
The modal matrix and the modal mass matrix are respectively
1 1 v 361.8 0
¢ = {1.618 0.618} and M= [ 0 138.2]kg (5:97)

The modal damping ratios are {; =0.10 and {, = 0.01; the frequencies are w; =0.618 and
w, = 1.618. Therefore:

1 1 1 1

Hi(w) = mw? [1- (w/wl)z] +2if ) (w/w1) 1382 (1 - ?/0.382) +0.324iw

(5.98)

1 1 1 1
C o3 [ — (w/w)?] + 2, (w/wy)  361.8 (1 —w?/2.618) 4 0.0124iw

H(w (5.99)

2 2
Bii= Zd’lld’lej = 200 Bai = Zd’zld’szj =161.8 (5.100)
J=1 Jj=1
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Introducing these quantities into Equation 5.95 we have
Sx, (@) = Sp{40 000|H; (w)|* 426 179.2|Hy(w)|* + 64 720 Re[H, (w)H} (w)]}  (5.101)

The three terms in the above equation represent the effect of the first mode, the effect of the
second mode and the cross effect respectively.
The half part of Sy,(w) as w >0 is plotted in Figure 5.6.
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Figure 5.6 The PSD of the response of a two-DOF system.

From Figure 5.6 we see that, in the vicinity of the natural frequencies, the effect of the
corresponding mode dominates the PSD of the response. While the cross effect is much smaller
than the effect of the modes itself, there are points near the natural frequencies at which the
cross effect is zero; the sign of the cross effect changes regularly in different intervals cut by
these zero-cross-effect frequencies. Therefore, if a structure is subjected to a white noise on the
base, then the natural frequencies can be easily identified and the corresponding damping ratio
can also be identified by the half-power method. This is why in the shaking table tests the case of
base white-noise scanning should be tested. O]

5.3.2 Evolutionary Spectral Analysis
5.3.2.1 Evolutionary Stochastic Process

The correlation function and the PSD function of a weakly stationary stochastic process are
Fourier transform pairs known as the Wiener—Khintchine formulae. However, for a nonsta-
tionary stochastic process, the traditional PSD does not exist. As mentioned in Section 2.2.3, a
double-frequency PSD function and a pair of extended Wiener—Khintchine formulae exist for
some kinds of nonstationary processes (see Equation 2.90). But this does not hold for all
stochastic processes. In particular, it does not exist for stationary processes. In addition, the
physical sense of such formulae is not as clear as the traditional PSD function.
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A possible approach to modeling a nonstationary stochastic process is toregard it as a filtered
stochastic process. This concept was first proposed by Priestley (1965, 1967) and then studied
by a number of investigators (Liu, 1970; Fan and Ahmadi, 1990; Lin and Cai, 1995; Fang and
Sun, 1997; Fang et al., 2002). Let é () be a stationary stochastic process with correlation
function

Reln 1) = E[EE®)] =2 | Sew)e™ ) do (5.102)

Consider a linear time-dependent filter A with &(¢) as an input. The output of the filter, £(¢),
will be a nonstationary stochastic process and can be obtained by

(m,t) = J"i a(t,0)é(w,t—1)dr (5.103)

where a(¢, ) represents the impulse response function of the filter, namely the output of the
filter A at the time instant ¢ due to a unit impulse input at the time instant # — 7. For a time-
invariant system, this is 4(¢ — 7) as given in Equation 5.11. Obviously, Equation 5.103 is an
extension of the Duhamel integral in Equation 5.14.

Analogous to the treatment in Section 5.2.1.2, the correlation function of &(7) is then

Re(t1, 1) = E[E(11)é(1)]
= f f— Z‘17‘[1 IZ;TZ) [é(w7 51 *ﬁ)é(tﬂ, l‘zf‘Ez)] d'L'l d’L’2
o |
- %Jﬂo J ~ me a(ty, ma(ty, Tz)Sg(w)elw(tz “nohtn) 4y dry do
1 [~ ° ) o ) '
= %J |:J a(ty,y)e ™ df1:| [J a(ty,ty)e @™ dr, Sg(w)elw(lzfn) dow
1 (" )
= EJ A(wa 11 )A* (w7 ZZ)Sg(w)elw(tz —n) dw (5 104)
in which
Alw, ) :J a(t,7)e de (5.105)
We can then get the variance of the response:
1
EE0] =5 | M@0PSsiw) do (5.106)

Certainly, Equation 5.105 is an alternative form of Equation 5.57a when A(z, t) and H (w, 1)
are replaced by a(f, 1) and A*(w, t) respectively. If the filter A is time invariant, then
Equation 5.105 reduces to Equation 5.57b, with A*(w, f) being essentially the frequency-
response function H(w). In this case, Equation 5.106 in turn reduces to Equation 5.69b.
Considering this analogy, we define the evolutionary PSD by

Se(w,1) = |A(w, )]’ Sg(w) (5.107)



158 Stochastic Dynamics of Structures

Therefore:

E[E()] = ! r S(w, 1) do (5.108)

o) ..

This is an extension of Equation 5.69b when the process is an evolutionary stochastic
process. We can see that, if A(w, ¢) = 1, the stochastic process is not modulated and, therefore,
&(1) is just the stationary stochastic process &(). Besides the conceptual simplicity, in an
evolutionary stochastic process, A(w, ) modulates the intensity and frequency content
simultaneously, which is phenomenologically the case of many stochastic processes of
engineering interest, such as the ground motion of an earthquake (Liu, 1970; Fan and Ahmadi,
1990).

5.3.2.2 Evolutionary Spectral Analysis of SDOF Systems

Consider an SDOF system, when the excitation &() is an evolutionary stochastic process with
the evolutionary PSD in Equation 5.107:

mX +cX + kX = £(1) (5.109)

According to Equation 5.14 we have the response
X(w,t) = J h(t—1)é(w, 1) dt (5.110)
The correlation function, therefore, is given by
Rx(11,12) = E[X(11)X(12)]
~ (5.111a)
= [T Dokt —t)h(t — )€l (@, 71)é(m, 12)] dry dry

Substituting Equation 5.104 in this yields

1 .
tl,lz f J hl‘l—‘El (l‘z—‘[g)(ﬁj A(w771)A*(w;U)Sg(w)e“”(”_“)dw)d‘L’ld‘Eg

—oo

_ % J:OH(w,tl VH (@,12) S5 () dao (5.111b)

where we define

H(w,1) :JlA(w,r)h(t—r)e—Wdr (5.112)

which is referred to as the evolutionary frequency-response function. Then we can get the
variance of the response:
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E[X*(0)] :$JTM|H(w,I)\2SE(w)dw (5.113)

Therefore, the evolutionary PSD of the response is given by
Sx(w,1) = |H(w,1)]*S¢(w) (5.114)

This is obviously the extension of Equation 5.66. Clearly, if the excitation itself is a
stationary process — that is, A(w, ) = 1 — then Equation 5.114 reduces to Equation 5.66, since
Equation 5.112 reduces to Equation 5.57b.

Equation 5.114 shows that, when subjected to an evolutionary stochastic excitation, the
response of the system is also an evolutionary stochastic process with time-variant intensity and
simultaneously time-variant frequency content.

5.3.2.3 Evolutionary Spectral Analysis of MDOF Systems

The above principle can be extended to the case of the MDOF system:
MX + CX + KX = B¢(a@, 1) (5.115)

where (@, ?) is an evolutionary stochastic process vector with the evolutionary PSD matrix
Se(w, 1) = A(w, 1)Sg(0)A™ (@, 1) (5.116)

which is the matrix counterpart of Equation 5.107. Here, A is the modulating matrix and A is
the transpose of the complex conjugate of A.
Using Equation 5.32a we get

t

X(1) = J

0

h(t —7)Bg(1) dr = Jo;o h(¢ —7)Bg(7) dt

and the similar idea in Equations 5.111a and 5.111b, the covariance function matrix is
given by

Rx(11,1) = EX(11)X"(12)]

J J h(t; —1y) Bs[g(w,r])f*(w,rz)]BThT(l‘z—rz)drl dt,
= J J l| —T1 [211tJ A(w,rl)Sg(w)eiwmn)A*(w,Tz)dw} BThT(Zz—Tz>drl d’Ez

LnJ U t1n)BA(w,n)eiwrldn]Sg(w)U A (0,1)BThT (1, —15)e“ d1, | dw

LTEJ H(w,11)Sg(0)H" (0,12) do (5.117)
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where
H(w,?) :J h(1—1)BA(w,7)e “"dr (5.118)

Therefore, we can get the covariance function matrix by

EX(nX"(1)] = % J:o H(w, 1)Sg(0)H (0, 1) dw (5.119)

and the evolutionary PSD matrix by
Sx(w, 1) = H(w, 1)Sg(w)H" (0, 1) (5.120)
such that

EX(nX"(1)] = %[m Sx(w, t) dw (5.121)

When A(w, #) is a unit matrix of appropriate order, Equation 5.120 will coincide with
Equation 5.84.

5.3.2.4 Physical Interpretation of Evolutionary Spectral Analysis

As discussed in Section 5.3.1.2, we know that, physically, the frequency-response function
H(w) reflects the embedded properties of the structural system itself. However, the evolutionary
frequency-response function H(w, t) as defined in Equation 5.112 (or in matrix form in
Equation 5.118) does not characterize the properties of the structure itself. In fact, it also
includes the properties of the evolutionary stochastic excitation, since the modulation function
A(w, t) is involved.

Viewing Equation 5.112, we find that the evolutionary frequency-response function H(w, t)
is a deterministic response if the excitation in the system in Equation 5.109 is replaced by the
deterministic process A(w, t)e ~*“’. From this point of view, the physical meaning of the
modulation function A(w, ?) is clearer: it is just a filter of excitation. In other words, A(w, ?)
modulates the intensity (amplitude) because A(w, ?) is time variant; simultaneously, it also
modulates the frequency content because A(w, ?) is variant in terms of w. In fact, with this
understanding in mind we can develop a set of deterministic algorithms for the PSD analysis of
random vibration (Fang and Sun, 1997). This is just what the pseudo-excitation method does,
and will be elaborated in the following sections.

5.4 Pseudo-Excitation Method

According to the physical interpretation in Section 5.3.2.4, we have approached the position
that a set of possible algorithms may be feasible for the PSD analysis of random vibration. The
thoughts, referred to as the pseudo-excitation method, were first proposed by Lin in 1985, and
since then the method has been systematically developed by him and his co-workers (Lin et al.,
1994a, 1994b, 1997; Zhong, 2004).
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5.4.1 Pseudo-Excitation Method for Stationary Stochastic
Response Analysis

Let us revisit the derivation in Section 5.3.1. If an SDOF system is excited by a deterministic
unit harmonic excitation ¢'“’, then the deterministic steady-state response reads

X(w,1) = H(w)e"! (5.122)

Here, we explicitly write the arguments w, ¢ in x(-) to show the dependency of the response on
the frequency of the excitation and the time.

A general deterministic, absolute integrable time history can be expressed by the superposi-
tion of harmonic components, as shown in Equation 5.3b by the inverse Fourier transform

_l
T 2n

£(6) J £(0)e" do (5.3b)
where {(w) dw/(27) is the amplitude of the harmonic component of frequency w. When &(7) is a
stationary stochastic process, however, the inverse Fourier transform in Equation 5.3 does not
exist. Nonetheless, the following relationship does hold (see Equation 2.89a):

Se(@) = lim —— El¢(@, )€ (@,0) (5.65b)
T—e2T
which shows that the PSD, which reflects the frequency contents of the stationary stochastic
process, is in the dimension of the square of the amplitude spectrum of the sample (divided by
time). Thus, it is reasonable to consider a harmonic excitation with an amplitude of
& = \/Se(w), namely £’ = \/S¢(w)e". If we use this excitation, then the steady-state
response of the system will be

X(w,1) = H(w)/Se(w)e™! (5.123)

Because the excitation contains a relationship in terms of the frequency contents of the
excitation — that is, the excitation /Sg(w)e'*’ is related to the square root of the PSD, and the
excitation multiplied by its complex conjugate \/Sg(w)e ~ '’ will yield exactly the PSD of the
excitation — we expect that the response, Equation 5.123, may be intimately related to the
frequency contents of the response. This is actually the case, since when we multiply on both
sides of Equation 5.123 by its complex conjugate

X (w, 1) = H (w)4/Se(w)e ' (5.124)

we immediately have
X, )" (@, 1) = |H(0)*S¢(w) (5.125)
Comparing with Equation 5.66, we find that
Sy(w) = x(w, 1)x"(w, 1) (5.126)

This is an elegant formula, showing that the PSD of the response can be obtained by
multiplying the deterministic response of the system to a harmonic excitation by its complex
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conjugate, while the excitation has an amplitude which is identical to the square root of the PSD
of the stochastic excitations. Noting that the deterministic excitation used here is, in a sense, a
pseudo-excitation rather than an actual excitation, the above approach is called the pseudo-
excitation method (Lin, 1985).

The physical meaning of the pseudo-excitation is embedded in the fact that a relationship
exists in the frequency contents of the sample and the ensemble properties, namely the PSD
function, as shown in Equation 5.65b. Therefore, the pseudo-excitation method is essentially
the embedment of the relationship between the sample and the ensemble properties.

The great advantage of the pseudo-excitation method is exhibited in random vibration
analysis of MDOF systems. Actually, the preceding discussions can be extended to their matrix
counterpart when an MDOF system is considered.

The PSD matrix of the stationary stochastic excitation has a relationship with the sample
Fourier spectrum:

S¢(w) = Jim 51 £[E(@, W)€ (@,0)] (5.127)

Therefore, we can expect the frequency contents of the excitation can be characterized by a
set of excitation &(w)e'’ of which the r x r amplitude matrix &(w) satisfies

E()E () = Sg(w) (5.128)
Replacing the excitation in Equation 5.79 by &(w)el’ yields
Mx + Cx 4+ Kx = B(w)e’ (5.129)

Clealy, the n x r steady-state response matrix is given by (see Equation 5.81a)

x(w, 1) = H(w)BE(w)e'' (5.130)

Post-multiplying it by its complex conjugate yields
x(@, )% (@, 1) = [H(w)BE(w)e™] [H(w)BE(w)e"]
~ H()B[E()E ()| BTH' () (5.131)
= H(w)BS¢(w)B"H ()

Here, use has been made of Equation 5.128.
Comparing with Equation 5.84, we immediately find that
Sx(w) = x(w, 1)x*(w, 1) (5.132)

Again, we see that the PSD matrix of the response of an MDOF system can be obtained by a
set of deterministic dynamical response analyses.

If the modal superposition method is used, noting Equation 5.90 and assuming ¢ modes are
employed, then Equation 5.131 becomes

Sx(w) = x(w,1) x"(w,1) *
[ZH l'lllllTBg o) 1w‘| [Z[ﬂ(w)¢j¢}B£(w)eiwt (5.133)
=1
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As is known, the PSD matrix is usually evaluated by employing Equation 5.91 (for example,
see Lutes and Sarkani (2004)). It is seen that Equation 5.133 is essentially a CQC scheme, but,
according to the discussion in Section 5.2.2.3, the computational effort in Equation 5.132 is
greatly reduced in comparison with Equation 5.91. Hence, the pseudo-excitation method can
greatly improve the efficiency of PSD analysis and makes possible the random vibration
analysis of large, complex structural systems.

In addition, modal superposition is not essential in the deterministic analysis of the system in
Equation 5.129. General time integration methods can also be applied. Thus, the proportional
damping matrix, which is necessary for the real-mode method, is not necessary in the time
integration method.

5.4.2 Pseudo-Excitation Method for Evolutionary Stochastic
Response Analysis

In the case that the excitations §(¢) are an evolutionary stochastic process vector with the
modulation function matrix A(w, ¢) and the original stationary stochastic process &() whose
PSD matrix is Sg(w), the pseudo-excitation corresponding to E(l) is similarly chosen according
to the principle discussed in the preceding section as §(w)e™’ of which the r x r amplitude
matrix satisfies

Ak

£(0)€ (0) = Sg(w) (5.134)

Then it is modulated by A(w, ) such that the pseudo-excitation could be given by
A(w, 1)ge'". The response of the system

Mx + Cx 4+ Kx = BA(w, 1) &(w)e'’ (5.135)

is thus
x(©, 1) = J; h(1 — 7)BA (0, 7)E(0)e" dr — H(w, 1)&(w) (5.136)

Multiplying by its complex conjugate on both sides and noting Equation 5.134 yields

x(w, )X (w,1) = H(w, Z)?;(a))g* (w)H" (0,1) = H(w, 1)S¢(0)H" (w, 1) (5.137)

Comparing this with Equation 5.120 immediately yields
Sx(w, t) = x(w, 1)x" (w, 1) (5.138)

In Equations 5.136 and 5.137, use has been made of Equations 5.118 and 5.128 respectively.

We can see here that the evolutionary PSD matrix can also be obtained by a set of
deterministic analyses with the deterministic excitation related to the evolutionary PSD matrix
of the excitations. Recalling the discussion in Section 5.3.2.4, we can further understand how
the modulation function modulates the intensity and the frequency contents of the excitations
simultaneously. In the pseudo-excitation method, this modulation is embedded in modulating
the deterministic harmonic excitations.
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5.4.3 Notes on Sections 5.2-5.4

We note that the main results in Sections 5.2-5.4 are derived starting with a formal solution
expression of the response to the excitation. In other words, we start with the linear operator
bridging the functional of the excitation as a time history or Fourier spectrum and the functional
of the response as a time history or Fourier spectrum, to establish the linear operator bridging
the functional of probabilistic characteristics of the excitations and the functional of probabi-
listic characteristics of the responses. In the derivations, the physical solution is used
considering the system behaviors. However, the description of the stochastic processes is
phenomenological.

By the way, all previous treatments are based on describing the physical relationship by
second-order differential equations. An alternative family of corresponding results can also be
derived by transferring the second-order differential equations to the corresponding state
equations (e.g. in Astrom (1970)). Actually, in the latter description, there are some special
advantages. However, this will not be elaborated in the present section, considering the aim of
the book.

Besides the approaches starting with the formal solutions as elaborated in the preceding
sections, we can also commence by directly tackling the random differential equations with a
stochastic nonhomogeneous input to obtain the deterministic differential equations establish-
ing the relationship between the moments of the responses and the moments of the excitations
(e.g. refer to Lutes and Sarkani (2004)).

5.5 Statistical Linearization

As discussed earlier, in the analysis of linear systems, the physical solution can be obtained
and used as a basis to track the propagation of the moment characteristics from the source of
the randomness to the response. This, however, does not work for most nonlinear systems
because the formal solutions to nonlinear systems are unavailable except some special
simple cases (Nayfeh and Mook, 1995). In the analysis of deterministic nonlinear systems,
one of the effective methods, mainly suitable for lightly nonlinear systems, is the
perturbation method, which is first proposed by Poincare and has been extensively studied
(Nayfeh, 2000). The counterpart in random analysis of nonlinear systems has also been
studied by investigators (Lin, 1967; Skorokhod et al., 2002) and some basic ideas have been
treated in Chapter 4. On the other hand, an alternative approach is the statistical lineariza-
tion method, also referred to as stochastic linearization or equivalent linearization in some
of the literature (Lin, 1967; Roberts and Spanos, 1993; Crandall, 2006). This technique was
first proposed independently almost simultaneously by Booton (1954), Kazakov (1954) and
Caughey (1963).

5.5.1 Statistical Linearization Approximation
5.5.1.1 Nonlinear SDOF Systems

Consider the nonlinear SDOF system

mX +g(X,X) = &(1) (5.139)
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where m is the mass, g(X, X ) includes the nonlinear damping and restoring forces and &(7) is the
stochastic excitation. The basic thought behind a statistical linearization approximation is to
replace Equation 5.139 by an equivalent linear system:

mY + ceqV + keq¥ = &(1) (5.140)

where c¢.q and k.q are the equivalent damping and stiffness respectively, such that the error
between the solutions of the two systems is minimized, say in the sense of the mean-square.
Comparing Equations 5.139 and 5.140, the difference is

e =mX +g(X,X) — (mY + ceq¥ +keqY) (5.141)

Strictly speaking, if we approximate the solution to Equation 5.139 by that of Equation 5.140,
then the error should be defined by Equation 5.141 when Y is replaced by X. However, the
response X of the nonlinear system is unknown; therefore, the error so defined will be
intractable. In contrast, to obtain the equivalent response Y in Equation 5.140 is much easier.
Therefore, Equation 5.140 is solved instead of Equation 5.139. The error can then be defined by
Equation 5.141 when X is replaced by Y; namely:

e=g(Y,Y) —ceq¥ —keq¥ (5.142)

To choose the equivalent damping c.q and the equivalent stiffness k., optimally, we should
minimize the error in a statistical sense. Actually, the error defined in Equation 5.142 is a
stochastic process, we naturally expect that £[e] = 0, and the second-order moment, namely
the mean-square error

Ele?] = E{[g(Y,T) — ceq¥ — keg¥]*} (5.143)
is minimized. This requires
0€[e?]
. = 144
Dceq 0 (5 a)
and
0€[e?]
=0 5.144b
Ohkeq ( )

Equations (5.144a) and (5.144b) yield two linear equations and, therefore, give the optimal
values of c.q and k.q by the solution:

Elg(v, V)YIE[Y?] - E[g(Y, V)YIE[YY)
E[V)EY?) — E2[YY]

Ceq = (5145&)

Elg(v, V)YIEV'] - Elg(Y, V)VE[YY)

2

keq = . .
E[Y)E[Y?] - £2]YY]

(5.145b)

Interestingly, if c.q is replaced by keq, and simultaneously Yisreplaced by Yand in turn Yis
replaced by Y, then Equation 5.145a becomes Equation 5.145b, and vice versa. The
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symmetry exhibited here lies in the fact that the terms ceq)" and k.Y are commutable in
Equation 5.143.

We see in Equations 5.145a and 5.145b that, to obtain the optimal values of c.q and keg, the
joint PDF of Y and Y is needed; in turn, to solve the linear random vibration system in
Equation 5.140, the values of ¢.q and k.4 are needed. A circular interdependency is then formed
here; therefore, an iterative algorithm is needed to break the loop. Generally, the solving flow
starts with the estimated initial values of c.q and k.q. A cycle is illustrated in Figure 5.7, where
the superscripts represent the steps of iteration and W(Y@, Y ) represents the probabilistic
information (e.g. the joint statistics or PDF of Y and Y at step j). The iteration could come to an
end if the error is limited within the tolerance, say by the error of c.q and kg

I P R U T (5.1460)
or by the error of the probabilistic characteristics of ¥ and Y:
D — €DV <e NEFD - EF N I<e  (5.1460)

where ¢; and ¢, are the corresponding error tolerances.

© 20
Ceq” keq)7 J= 0
I
v
=i+l

l

F(YD, YY) by Equation 5.140

l

) ) F Fauations. 5 14 5:
Cos kg by Equations. 5.145a, b

End

Figure 5.7 Solving flow.

We should note that such determined optimal values of c.q and k.4 are time variant if the
response is a nonstationary process; therefore, the equivalent system in Equation 5.140 is a
time-variant linear system. In the case of the steady-state, stationary stochastic response,
considering that £[YY] = 0, Equations 5.145a and 5.145b can be simplified to

o SRV

2 — s (5.147)
EYIEY?] EYTIEY?
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More specifically, if the damping term is linear and the nonlinearity only occurs in the
restoring force — that is, g(X,X) = ¢X + g1(X) — then following Equation 5.147 we have
Ceq=C.

5.5.1.2 Statistical Linearization Method for MDOF Systems

The same concept can be applied to MDOF nonlinear systems. Consider an MDOF system with
the equation of motion

MX + G(X,X) = L§(7) (5.148)
where M is the n x n mass matrix, G(-) = (G1,Ga,...,G,)" includes the damping and
restoring forces, L=[Ljl,., is the nxr input force influence matrix and
£(1) = (£,(1),&(1),...,&(1)" is an r-dimensional stochastic process vector.

Assume the system in Equation 5.148 can be replaced by the linear MDOF system
MY + CeqY + K Y = LE(1) (5.149)

where C.q and K4 are the n x n damping and stiffness matrixes respectively. Analogous to
Equation 5.142, the error vector can be defined by

e=G(Y,Y) — CeqY — K Y (5.150)

The optimal values of C.q and K.4 should minimize the covariance matrix of the error;
therefore:

OEee’] OEeeT]
- = 151
9Cu 0 and Ko, 0 (5.151)
This gives the equations
Ceif VY |+ K E[YY'] = E[G(Y, Y)Y (5.152a)
CeoE[YYT] + Ko E[YYT] = E[G(Y, Y)Y (5.152b)

These equations can be solved to give C.q and K4 as long as the joint PDFs of the responses
are known. Likewise, a loop is formed here. Hence, an iterative algorithm should be used to
solve the problem. The procedure analogous to that shown in Figure 5.7 can be used as well.

5.5.2 Random Vibrations of Hysteretic Structures

The restoring forces of structures in practical engineering are usually quite complex.
Experimental studies showed that the restoring-force curves may exhibit hysteresis, degrada-
tion of strength and stiffness, and pinching and so on. The differential equation model first
proposed by Bouc (1967) and Wen (1976), and then extended by other investigators
(Baber and Wen, 1981; Baber and Noori, 1985, 1986), can describe the above features
phenomenologically.
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Figure 5.8 Partition of hysteretic restoring forces.
Consider the nonlinear SDOF system in Equation 5.139, where the damping is linear and the
nonlinear restoring force is partitioned to the linear part and the hysteretic part; namely:
g(X,X) = X +akX + (1 —a)KZ (5.153)

where « is the ratio of the post-yield stiffness to the pre-yield stiffness (Figure 5.8).
When no effects of degradation and pinching are considered, the hysteretic component Z(¢)
is governed by the differential equation

Z =AX—BIX||z]" 'z —yx|zZ|" (5.154)

Without loss of generality, we can set A= 1.
If the degradation of strength and stiffness is taken into account (Figure 5.9), then this model
can be extended to

AKX - v(BIKlIZ" 'z +vXi2]")
Ui

z

(5.155)

in which v and 7 are the factors characterizing the degradations of strength and stiffness
respectively. Itis seen thatif » = 1 and = 1, then Equation 5.155 reduces to Equation 5.154. In
contrast, if v > 1, then the peak of Z(¢) will decrease and this exhibits the degradation of
strength. Likewise, if 1 > 1, then the ratio of Z to X will decrease and this exhibits the
degradation of stiffness. According to the preceding analysis, considering that the degradations
of strength and stiffness will increase monotonically against increasing degree of nonlinearity,

|

/]

(a) Degradation of strength (b) Degradation of stiffness

Figure 5.9 Degradation of hysteresis.
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it is reasonable to assume that degradations of the strength and the stiffness are proportional to
the dissipated energy; namely:

v=1+d,e and n=1+d,e (5.156)

where d, and d,, are parameters and ¢ is the dissipated energy index:

e(t) = J; ZX dt (5.157)

Evidently, the hysteretic dissipated energy in an element reads
E(t) = (1 —a)Ke(r) (5.158)

Letting dZ/dX = 0, from Equation 5.155 we can get the ultimate hysteretic component
A 1/n
Z,=|——— 5.159
=~ e 513
Therefore, the ultimate restoring force is
R, = aKX+ (1 —a)KZ, (5.160)

To take into account the effect of pinching further, Equation 5.155 can be modified by
something like modulation to

AX —v(BIX|1ZI""'Z +vX|2|")

Z=h(Z) .

(5.161)

If the appropriate shape is taken for /(Z), then the effect of pinching will occur. For instance,
we can use

Z sgn(X) — qZ,

h(Z)=1.0-¢exp| — 2
2

(5.162)

where
L) =L —e ™) and  L(e) = (b+due) G+ {1 (2)) (5.163)

in which {, p, g, ¢, dy, and / are parameters.

In total there are 13 parameters involved. Actually, further investigation demonstrates that
only 12 of the 13 parameters are independent (Ma et al., 2004). If the parameters take
appropriate values, then the model can phenomenologically characterize the effect of
hysteresis, the degradations of stiffness and strength and the pinching. Typical hysteretic
curves are shown in Figure 5.10.

Substituting Equation 5.153 in Equation 5.139 yields

mX + X +akX + (1 —a)KZ = &(1) (5.164)
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Figure 5.10 Typical hysteretic curves of the Bouc—Wen model.

Introducing an augmented state vector (X, X, Z)T, we can change the equation set Equa-
tions 5.164 and 5.161 into a multidimensional state equation:

c . K K
——X—-a—X-(1l-a)—Z 1
da X m m m —
Sdxp=4x T R (5169)
)| ez z ez (]

n
Thus, by letting X = (X, X,Z)" and L = (1/m,0,0)", we have
X = G(X) +L&(¢) (5.166)

The statistical linearization technique can then be applied (Schenk and Schuéller, 2005).
Actually, this nonlinear equation can be linearized through letting M = 0 in Equation 5.148.
Alternatively, it can also be approximated by the linear equation

Y = AeqY + LE(7) (5.167)
Thus, the error is given by

e=G(X)-A,Y (5.168)
When X is approximated by Y, Equation 5.168 can be replaced by

e=G(Y)—A, Y (5.169)

Consequently, the optimal value of the coefficient matrix Aq can be determined by letting

9Elee”]  OE{[AX — G(X)][AcgX — G(X)]"}
OAeqg OAeq

=0 (5.170)

Again, this problem can be solved by an iteration method. For nonlinear MDOF systems, the
same idea can be used.
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5.5.3 Notes on Arguments and Some Special Issues

5.5.3.1 Probability Density Function of the Response of Statistical
Linearized Systems

For simplicity, consider the steady-state, stationary stochastic response where the equivalent
linearized damping and stiffness are given by Equation 5.147.

In general, when the excitation is Gaussian, the response of the linear system in Equa-
tion 5.140 is also Gaussian; namely, Y(¢) is Gaussian and can be characterized by the mean
My and the standard deviation oy. Let us introduce a stationary process Z(¢) and its derivative
process Z (1) as subsidiary processes. If they are both Gaussian and the respective means and
standard deviations are wz, oz and w;, o, then the PDFs are

1

- — (2= pz)/207
z) = e z 5.171a
Pale) = (5171a)
and
1 () /202
(E=pz)/203 (5.171b)

pz(2) = \/ﬁaze

respectively. Replacing ¥ and Y by Z and Z respectively and introducing the PDF
(Equation 5.171a and 5.171b into Equation 5.147, we get the expressions of c.q and k4 in
terms of u,, oz and u;, 07, denoted by ceq(pty, 07, 5, 0) and keq(ptz, 0z, ., o) respec-
tively for clarity. In sequence, substituting them in Equation 5.140 will then get uy, oy, wy and
oy, which are functions of ceq(z, 0z, 1y, 07;) and keq(py, 07, ., 0;); namely, they are also
functions of u,, oz, u; and o,. Because Y and Y are replaced by Z and Z respectively, certainly
we require

My(Mz, 07, Ly, O-Z) = Mz
UY(MZ70-Za/J’Z’O-Z') =0z (5_172)
mi(z, 0z, 1y, 07)
oy(mz,02,17,0;) =0y

Solving these equations we will get w,, oz, u;, and o, and simultaneously wy, oy, u;
and oy.

The steady-state, stationary response of the nonlinear system in Equation 5.139 to the
Gaussian excitation, however, is usually non-Gaussian; therefore, employing the normal
distribution (Equations 5.171a and 5.171b) will undoubtedly induce errors. Actually, this is
one of the major sources of error in the statistical linearization method (Crandall, 2006).
According to Caughey’s theorem, which was stated in Caughey (1960) and proved in Crandall
(2006), if the true distribution shape of the response is employed instead of Equations 5.171a
and 5.171b, then solving Equation 5.172 will give accurate values of u,, oz, u, and o ;. For this
purpose, possible shapes of PDF are suggested; for example:

el (el )
P22 = ol (2l/a)"] &z (5.1734)
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Figure 5.11 Different shapes of the PDFs.
exp[—b(z*/a?) — (z* )a*
() — P BE ) fa)] 5.1730)

I~ exp[—b(z2/a?) — (z*/a*)] dz

the shapes of which are shown in Figure 5.11. For the Duffing oscillator, using the shape in
Equation 5.173b will yield accurate results.

5.5.3.2 On Error-Free Linearization and Different Criteria

After the standard statistical linearization techniques as discussed in the preceding sections has
been developed for nearly 40 years, Elishakoff and Colajanni (1997) thought that there were
something wrong.

The problem, as pointed out, essentially lies in the deduction from Equations 5.144a—
5.145b, where it was thought that the responses Y and Y are independent of Ceq and Keq. The
‘error-free’ linearization, therefore, should consider Equations 5.144a and 5.144b more
carefully. Because Y and Y, and therefore the PDF of Y and Y, are functions of Ceq and kg,
Equation 5.143 should be first computed to give the expressions of £[e?] in terms of Ceqand kg,
then the partial derivatives in Equations 5.144a and 5.144b can be computed to yield a
nonlinear equation set with ¢.q and k.4 being the unknowns. Solving this equation set will give
the values of ¢.q and k.q and then the statistics of Y and ¥ can be obtained from the equivalent
linear system in Equation 5.140.

Although the above analysis is reasonable, the effect is not as good as expected. First, the
deduction is much more difficult and might be impossible for complex or multidimensional
problems. Second, even for simple problems, it was shown that the accuracy of the ‘error-free’
linearization is sometimes lower than that of standard linearization (Elishakoff and Colajanni,
1997).

The reason lies, perhaps, in the fact that in standard linearization techniques some types of
iteration algorithm are used, whereas no iteration is needed in ‘error-free’ linearization.
Actually, the iteration algorithm is one of the most effective approaches to make the loops
uncoupled.

Another important issue is the criterion used in the equivalent linearization. The above
criterion was usually referred to as the Kazakov Il criterion (Kazakov, 1954). The major criteria
include Kazakov I, Kazakov II and the energy criterion (Crandall, 2006). Research examples
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show that when Kazakov Il is employed, Caughey’s theorem described above holds, while the
accuracy of the energy criterion is usually lower than that of the Kazakov II criterion.

5.5.3.3 Equivalent Stochastic Damping and Stiffness

In the statistical linearization method, the most reasonable start point might be to consider the
equivalent stiffness and damping as random variables; that is, using MeCoy> O Cegs Mk, and o, as
the unknowns. Actually, for a nonlinear system, the stiffness is varying against the stochastic
responses and, therefore, is essentially a stochastic process.

Set the equivalent linearized system of Equation 5.139 as

mY + CeqY + KoY = &(1) (5.174)

where C,qand K. are random variables with means and standard deviations w¢, , o, and g, ,
ok, respectively. The error (Equation 5.142) is now changed to

e=g(Y,Y) — Ceq¥ — KeY (5.175)
Then the variance of the error is given as
Ele?] = Elg(Y, V) — Ceq¥ — KegYI*}
= &[GV, V) + C V7 + K2,Y? —2Ceqg(V, V)Y — 2Keqg (Y, V)Y +2CeqKe Y Y}
(5.176)

Of course, this is a function of MeCeys O Cegs Mk, and OKyy Thus, the optimal values of Koy OCogs
kg, and ok, should minimize & [¢]; that is:
OE[e?] 0€[e?] €% OE[e?]

Onc,, doc,, ., dok,, ( )

To achieve the expression of £[¢?] with regard to Be,» TCos MK, and og,,, the stochastic
structural system (Equation 5.174) should be solved by, for example, the approaches elaborated
in Chapter 4.

5.5.3.4 On Applicability

With regard to applications of the statistical linearization method to problems of practical
interest, we should note that:

(a) The equivalence between the original system and the linearized equivalent system is in the
sense of variances; therefore, the errors in the correlation function and the PDF may be
much larger. For instance, the PDF of Yin Equation 5.140 is Gaussian when the excitation is
Gaussian; however, the PDF of X in Equation 5.139 might be far from Gaussian, as shown
in Figure 5.11 for example.

(b) Because of the preceding reason, the statistical linearization method is usually not suitable
for reliability assessment.

(c) The statistical linearization method does not work in the case where essential nonlinearity
occurs, as in bifurcation, jump and limit circles for example.
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5.6 Fokker-Planck—-Kolmogorov Equation

The moment-characteristics-oriented approaches capture part of the probabilistic information
of stochastic systems. However, this is not enough, particularly for nonlinear systems, where
the probability distribution of the responses might deviate far from the normal distribution. As
discussed in Chapter 1, to capture the evolution of probability densities is a dream of
investigators which can be dated back to Einstein. Through the studies of Fokker and Planck
and mathematically manipulated by Kolmogorov, the FPK equation governing the evolution of
the joint densities of system states was established. Then the relationship between the
stochastic differential equation and the FPK equation was clarified when the It6 and the
Stratonovich stochastic calculus was established. These form the second thought stream in
stochastic system analysis: the family of PDF-oriented approaches.

5.6.1 Stochastic Differential Equation
5.6.1.1 Ito Integral and It6 Stochastic Differential Equation

The MDOF nonlinear system in Equation 5.148 can be written alternatively in the form of
the state equation

Y = A(Y, 1) +B(Y, )&(1) (5.178)
where

X -M~! M~'L
Y:(Yl,Yz,...,Ym)T:{i} A:(Al,Ag,...7Am)T:{ % G} B:[B,-,-]Wz[ ) }

To consider more general situations, we regard B;’s as functions of Y and ¢
E(t) = (£,(1),&(1),...,&(1))" is an r-dimensional stochastic process vector.
We now consider the case that §(¢) is a Gaussian white-noise vector such that

EEN] =0 E[En)E (1)) =Dd(11 — 1) (5.179)

where D = [D], ., is an r X r positive definite matrix.
The solution to Equation 5.178 is given by the integral

Y1) =Y(t0) + Jl A(Y, 1) dr + Jr B(Y, 1)&(¢) dt (5.180)
or in a differential form
dY(r) = A(Y,t) dt +B(Y, 1)&(¢) dr (5.181)
Clearly, the mean can be obtained by
EAY ()] = E[A(Y, )] dt+ EB(Y, 1)&(7)] dr = E[A(Y, 1)] dt (5.182)

and the covariance matrix can be evaluated through
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EHAY (1) —E[AY (1) HAY (12) = €AY ()]} '] = E{[B(Y,11)&(11)d1y][E" (12)BT (Y, 12) dta]}
= EB(Y,1)|E[E(1)E (12)IEBT(Y,12)]drr dry
= EB(Y,1))|DEBT(Y,1,)]8(t; —1,)dt, dt,

(5.183a)
In an alternative form, this is
E{AY(2) — E[AY ()] H{dY(¢) — E[dY(t)]}T] = E[B]DS[BT] dt (5.183b)

The arguments in B are omitted for notational simplicity. Here, we use the assumption that B
(Y, ) and &(¢) dt are mutually independent, the rigorous meaning of which will be clarified
later.

Let A =0and B =1, where I is the unit matrix. Then, from Equations 5.180-5.183b, we find
that if we define the integral process

t

Z(1) = Zito) + J £(1) dt (5.184)

to
then Z(¢) is a Brownian motion process vector because the means are zero and the variances are
proportional to time duration (Gardiner, 1983). However, Brownian motion is continuous but
not differentiable.
The paradox that appears here can be solved in a mathematically consistent form by the

Riemann-Stielgjes integral instead of Equation 5.184. By doing so, Equation 5.181 can be
rewritten as

dY(r) = A(Y,t)dt +B(Y, 7)) dW(?) (5.185)

where Y, A and B are as defined in Equation 5.178 and W(z) = (W, (1), Wa(1), ..., W.(1))" is
an r-dimensional Brownian motion process vector (sometimes we will also use the terminology
Wiener process later) with

EdW(H)] =0  E[dW(7) dWT(¢)] = D d¢ (5.186)

in which D = [D;]
rewritten as

<, 1s the same as in Equation 5.179; correspondingly, Equation 5.180 is

t t

A(Y,r)dt+ J B(Y,?) dW(7) (5.187)

to

Y(r) =Y(t)+ J
I
The first integral here is the common mean-square integral, while special attention should be
paid to the second integral heuristically because of the highly irregular nature of the trajectory
of W(2).
As usual, we replace the second integral by a limit of summation:

o

7= Jf B(Y, 1)dW(1) = nli_I}LiB(Y, ) W(t) — W(t;_ )] (5.188)



176 Stochastic Dynamics of Structures

where 7;is some value over the interval [t;_,, 7;]. In the common integral, it is known that t;can
be anywhere over the integral [t;_,, 7;] and the limit in Equation 5.188 is invariant, and this
invariant value is defined as the value of the integral. In the case W(#) is a Wiener process vector,
however, this is not the case.

To make the concept clear, we first consider the expectation of a scalar integral with respect
to a Wiener process W(7), of which the mean and variance of increment are given by
E[AW(7)] = 0 and E{[dW(1)]*} = D dr respectively:

e[ wioraw }—hmZE{w@ W) - Wi O} (5.189)

f n— oo

Note that
EW(r)W(t)] = E{W(z))[W(t;) — W(z;) + W(1))]}
= E{W()[W(5;) — W(r))]} + E[W(r))W(1))] (5.190a)
= D’L'j

where use has been made of
EW()[W(y) - W(y)]} =0 (5.190b)

due to the independence of increments of the Wiener process. Likewise, E[W (t;)W(t;_1)]
= Dt;_. Thus, we can get

SUZ W(t)dW(z ]_HIEILDZ —t1) (5.191)

)

Somewhat surprisingly, this value is varies with different positions of t;. For instance, if we
choose for all j

g=ai+(l-a)j1  (0<a<l) (5.192)

it follows that

& Ut 40! dW(t)} = (t—to)aD (5.193)

[}

Evidently, this indicates that the expectation of the integral depends on the position of the
intermediate points.
This issue can be further understood. Supposing « =0, Equation 5.189 becomes

5Ut W (1) dw(r) } = lim Zg{w CD[W(E) — W)} (5.194a)

t n— oo

Owing to the independence of increments, we have E{W(t, _D)[W(t) —W(ti_1)]} = 0for
all j. Equation 5.194a immediately yields £| ff t) dW(¢)] = 0, which is consistent with
Equation 5.193 in the case a =0.
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Now suppose a = 1; Equation 5.189 then becomes

EUI W(1)dW (z ] = lim ZE{W W(t) —W(t_1)]} (5.194b)

fo n— oo

In this case, W(#;)) = W(¢;_,) + [W(Z;) — W(i;_1)]; therefore, W(z)) is not independent of the
increment [W(z;) — W(¢;_,)] because

EW(HW(G) =W(g-)]} = EQW(EG-1) + W) =W )IHW () —W(E-1)])
= f{[W(t))D (G- DIW(5) = W(t;-1)]}
= =1t

(5.19%4c)

Thus, we now have E[Lto W(t)dW(¢)] = (¢ — to)D. Again, this is consistent with Equa-
tion 5.193 in the case a = 1.

Likewise, if we use a=1/2 and W[(t;+1t_1)/2] = [W(t}) + W(t;—1)]/2, then Equa-
tion 5.189 is now

SUt W (1) dW ] ,}E{,ZE{MM [W(tj)w(tjl)}} (5.194d)

to

Here, W(z;_;) is independent of the increment of [W(t]) W(¢;_1)] but W(z)) is not. Combining
Equations 5.194a and 5.194b, we now find &[ L )dW(¢)] = (¢ — to)D/2, which is consis-
tent with Equation 5.193 in the case a = 1/2.

The preceding discussions from Equations 5.194a—5.194d show the reason that the limit of
the summation in Equation 5.189 depends on the intermediate point lies in the fact that different
positions of the intermediate points means different correlations between the increment
AW; = W(t;) — W(t;_) and the integrand. This is also true when the integrand is other types
of function, say denoted by G(Y(¢),t), where Y(¢) is a stochastic process determined by a
stochastic differential equation, provided at any arbitrary time ¢, the value of G(Y(#),t;) is
independent of the value of W(¢) at the times ¢ > #;. Such a function G(Y(¢),?) is a non-
anticipating function. Now it is obvious that, because of the nonanticipating feature, the
integral defined by

| srtonaw fnlgI}OZG W) W)l (5199)

fo

is the mathematically simplest treatment, since G(Y(#;_1),f;) is independent of the increment
AW;, which will make the further mathematical manipulations much simpler than other
intermediate values as demonstrated above. The definition in Equation 5.195 is the renowned
It6 integral. Accordingly, the stochastic differential equation (Equation 5.185), when under-
stood in this sense, is referred to as the It6 stochastic differential equation (we can now go back
to Equation 5.183a, where essentially we assume that the B;(Y, f) are nonanticipating
functions).

Here, we find that the fact of causality (that is, a present event is independent of the future
events) is of critical importance in It6 calculus.
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In the manipulation of Itd stochastic differentiation, because the second-order moment
E{[dW(1)]*} = D drisin the order of dz, if / is a random variable with mean value £[4] = 0 and
variance £[1*] = D, then we can let dW(¢) = Av/dz. Thus, dW(z) is in the order of v/d;
therefore, rather than being ignorable, the terms with regard to dW(¢) will play important roles
in computation of the second-order moments. Thus, in contrast to common differentiation, the
terms of second order in the Taylor expansion should remain in It6 stochastic differentiation.
For instance, for a function f(Y(#)) where Y(¢) is the solution of the It6 stochastic differential
Equation 5.185, the differentiation of f(Y(?)) is given as

df (Y (1)) = f(Y(0) +dY(1)) —f(Y(0))

/=1 aYZ h—=1 =1 8YkaY[
= S X (). 1) de S B(Y(0). ) dWi(0)
= s=1

Yy

oY, dtJer:zr:Buc(Y(t),t)ﬁ dWi(¢)  (5.196)

where use has been made of the component form of Equation 5.185:
r
dY, =AY (1), 0)di+ > Bu(Y(1),0)dWi (1) £=1,2,....m (5.197)
k=1

In the case m =1, r =1, Equation 5.196 reduces to

2
D) = £V +a¥(0) ~ (1) = L av()+ 5 S Lfar(OF + .
of 162f ) 2
= LA (), 000+ BV (1), 1) AW () + 3 ST B (v (), )W + ..

= |A(Y(2), I)% + gBZ(Y(t), t)g—;j; dr + S—J;B(Y(t), 1) dW (1)

(5.198)

Equations 5.196 and 5.198 are usually called the [t lemma. The difference between
Equation 5.198 and common differentiation is that the terms of second order with respect to
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[dY(t)]2 (see the second equality) cannot be eliminated because they are in the order of dz
and, therefore, an additional corrected term occurs in the final equality in the terms with
respect to dz.

5.6.1.2 Stratonovich’s Stochastic Differential Equation

The It6 integral is elegant in dealing with mathematical white noise whose correlative time is
zero. In practice, however, the correlative time of the physical noise might be short, but finite
and not zero. To consider this fact, the correlation should be considered; namely, « in
Equation 5.192 should take values O <« <1 rather than zero as is done in the Itd integral.
Stratonovich (1963) defined the integral with G(Y(?),?) being the integrand by

er G(Y (1), 1) dW(f) — @LZ G(w,go [W(t)— W(5_1)]  (5.199)

o

The corresponding stochastic differential equation is referred to as the Stratonovich’s
stochastic differential equation.”

There is no constant relationship between the It and Stratonovich’s integrals. However, for
the case where the stochastic process is related to a stochastic differential equation, we can
establish a relationship. To be clear, we consider the Stratonovich’s stochastic differential
equation

dY (1) = a(Y, 1) dr + B(Y, r) dW(7) (5.200)

where o = (a1, az,...,a,)" and B = [Biflnx,- Its solution is given by the Stratonovich’s
integral

t t

(Y, 1) dt+SJ BY, 1) dW(7) (5.201)

fo

Y(l) = Y(lo) + J

fo

We assume that the solutions to Equations 5.201 and 5.187 are equivalent.
First, we will compute the terms of the Stratonovich’s integral:
! 4 Y, +Y,_
SJ B(Y,7) dW(r) = lim ) [3(% - 1) (W, —W,;_] (5.202)
T

4}

Noting that Y;=Y,_; + AY,, we have

Y 4Y, AY; 1 ¢ OB
B(—‘/ 2/ atjl) B(leJrTj,[jl) :B(ijlvtjfl)JrEZa_nAY“

(5.203a)

4 At first glance one may be confused why the argument 7 in G(Y, 1) still takes t;_; and does not get replaced by
(t; + t;_1)/2. We can try replacing ¢;_, by (¢; + ¢;,_1)/2 and then expanding G(Y, ) with respect to t at #;_,, then we find
that this will lead to a term of the order O(AZ)S/ %in Equation 5.199. This means that whether we replace by (¢; 4 #;_1)/2
or by #;_; will essentially have no influence on the results. Again, one can see from here that the influence of Y and 7 is
different in G(Y, t) because Y(¢) is associated with a Wiener process.
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where AY;; can be obtained from Equation 5.197 by Ito differentiation:

AYy =AYy 1) (G =4 0)+ > Ba(Yy 1,4 1) [Welty) = Wi(1; 1)) (5.203b)

k=1

Introducing Equations 5.203a and 5.203b into Equation 5.202 yields

Y, +Y;_
)L“LZ%%, J1>AW

_hmn"“ZB ,l,lj,lAW—f——llmiZ

X | Ap(Yj -1, 1j-1)AL; + ZBM j —lalj—l)AWk/)]
P

t m n
:J B(Y, 1) dW(z —)EILZ:Z%AW x [ZBU( 1,t]1)AWk]]

:J B(Y, 1) dW(¢) + EZJ gg DB; (Y,7)d: (5.204)
to (=

where Bl = (Bu,Bp,...,By)", Ay=t;—t; 1, AW,=W,—~W,_| and AW, ;= W(t) —

Wilt;— 1)
Combining Equations 5.201, 5.202 and 5.204 and comparing with Equation 5.187, we have

m

a(Y, 1) = =) Z a7, DBT Y, 1) (5.205a)

B(Y,?) = B(Y, 1) (5.205b)

where Equation 5.205b is used to replace 8 by B in Equation 5.204 to yield Equation 5.205a,
which is referred to as the Wong—Zakai correction (Wong and Zakai, 1965). Note that, when
B is independent of Y, the Wong—Zakai correction vanishes. Conversely, we have

A(Y, 1) = 22 85 DB} . (Y,1) (5.206a)

B(Y, 1) = B(Y, 1) (5.206b)
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By Equations 5.206a and 5.206b, when a practical engineering structure subjected to
physical white noise was modeled by the Stratonovich’s stochastic differential equation, it can
be transformed into an It6 stochastic differential equation which is mathematically favorable.
This is particularly preferred in establishment of the FPK equation, as discussed in the
following sections.

Before we go there, the existence and uniqueness for the stochastic differential equations
should be noted here. For Equation 5.183, the following theorem can be proved (Jksendal,
2005). Let T > 0 and A(y, t) and B(y, 7) be measurable functions satisfying

Ay Ol +[B(y, )] <C(I+y) yeR", 1€[0,T] (5.207a)
for some constant C (where |B|> = " |B;|*) and such that
‘A(X7 Z)_A(y7[)|+ ‘B(Xa t) _B(ya t)l < D|X_Y| X,y € Rm7 re [Oa T] (5207b)

for some constant D. Let Z be a random variable which is independent of the o-algebra F, (m)
generated by W(s), s > 0 and such that

E|Z) <o (5.207¢)

Then the stochastic differential Equation 5.185 has a unique #-continuous solution Y(¢, @)
with the property that Y (¢, @) is adapted to the filtration F ,Z generated by Z and W(s), s > 0, and

£ UZ 1Y (1)) dt} <oo (5.207d)

5.6.2 Fokker—Planck—Kolmogorov Equation

Let a stochastic process vector Y(¢) be determined by the It6 stochastic differential Equa-
tion 5.185, which is quoted here for convenience:

dY(r) = A(Y, 1) dr + B(Y, 1) dW(1) (5.208)

We are interested in the function, say f(Y(?)), with Y(#) being the argument. As a stochastic
process, let us first examine the evolution of the mean; that is, d€[f(Y(¢))]/dz. Because the
derivative and the expectation operator are interchangeable, there is

dg[f(dst((t))] _¢ <df (th(t))> (5.209a)

Since Y(?) is determined by the It6 stochastic differential Equation 5.208, then according to
Equation 5.196 it follows that

m m r f
E[dF(Y(2))] = 5{(2 Aéa—y+22 £ ay 8Y dz+2;mk de( )}
_ Y >f
S g —] J

(5.209b)
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Here, use has been made of the fact that the By (Y(?), ¢) are nonanticipating functions so that
the second term with respect to dW,() vanishes and (BDBT) o Tepresents the £kth component
of the matrix BDB™.

Combination of Equations 5.209a and 5.209b yields

df[f Iy rn, _Of
VAR M| {ZA/aYﬁE;; (BDB),, 5057 (5.209¢)

On the other hand, denoting the conditional probability density of Y () | (yo, Zo) as p(y, t | yo,t0),

we have
Ipy (y, tlyo; to)

dé'[f(d‘t((l))] _ %Jimf(Y)pY(y’ 1|yo, fo) dy = J fly) — 5 dy (5.210)

And simultaneously, the right-hand side of Equation 5.209¢ yields

m af 1 m m af 00 m
5{;’”8_1@ + EZ (BDB),, ay} J {ZA

oo

— oo

(=1 k=1
n & of(y)
1)DB™( 1lyo, t0) d 5.211
+5 Z Z (9, DB (¥, Dlas o (P (Y, 1130, 10) dy (5.211a)
Integrating by parts and noting usually it holds that
Aé(Y? t)f(y)pY(ya t|y01t0)|y[~>ioo =0 = 1,2,...,/’}’1 (5211b)
%)

B(y,/)DB(y, 1) f(y)py(y, 1Yo, to) =0 (=12,....m (5.211c)

a}’é ¢ — oo
B(y, )DB' (y, )f (¥)py (¥, l¥o, 10)ly, 4 =0 £=1,2,....m (5.211d)

Equation 5.211a becomes

e S+ 3o w0 o < [ - 3o Al

=1

. m m aZ{[B(y’ I)DBT(y, l)}képY()ﬂ I|YO7 lO)} } dy (521 le)

— IykOye

N =

(=1

=~

Comparing Equations 5.210 and 5.211e and noting that f (y) is arbitrary, we must have

m

opy OlAu(y, t)py] B (y, )]y}
oY § SRS, PY] § § » 5212
ot (=1 (‘3y/ —1 k=1 a)’kay/ ( )

where py represents py(y, ¢1yo, o) for simplicity.
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Equation 5.212 is the well-known FPK equation.

IfQ(y, t) = [Quk),«, is an orthogonal matrix —that s, QQ'=L., wherel,., is the r X r unit
matrix —it can be seen that QDQT =Dbecause Disanr x rdiagonal matrix. Therefore, if W(?)
is replaced by QW(?), then the matrix B(y, HDBY(y, 1) is replaced by B(y, )Q(y, HDQ'(y, 1)
B'(y, /) =B(y, /DB (y, 1), which is essentially invariant. This means that the FPK equation is
invariant against the orthogonal transformation on the Wiener process vector. In other words,
the stochastic differential equation associated with an FPK equation is nonunique. This may be
important to understanding the relationship between the FPK equation and the related
stochastic differential equation. Actually, the physical sense of the nonuniqueness is that the
description of probability density usually corresponds to an infinite set of trajectories.

In addition, Equation 5.212 also holds when py represents the instantaneous probability
density py(y, ) instead of the transition probability density. This can be achieved if we note that
(¥, 1) = [ py (¥, tlyo, to)py (Yo, to) dyo, where py(yo, 1) is the initial joint PDF.

We now further discuss the meanings of the coefficients in the FPK equation, Equation 5.212.
According to Equation 5.182 in Section 5.6.1.1, noting that, given {Y(#) =y}, we have

EMY(@[Y() =y] _ . EAY()|Y() =]

Ay, t) = P = Altlino A7 (5.213a)

where AY(?) =Y(¢ + Ar) — Y(?). Likewise, from Equation (5.183b), we have

E[dY(r) dYT(1)[Y (1) =]

dt
i EHAY(DAYT ()] () = ¥} (5.213b)
At—0 At

B(y7 I)DBT(y’ t) =

These quantities are called the derivate moments (Moyal, 1949). Equation 5.213a means
that the coefficient A(y, ¢) reflects the average tendency; therefore, it is referred to as the drift
coefficient, which characterizes the mean drift velocity. In contrast, Equation 5.213b means
that the matrix B(y, t)DBT(y, 1) results from the effect of Brownian motion, or a diffusion
process; therefore, it is referred to as the diffusion coefficient. Now it is clear that the physical
sense of Equation 5.212 is that the change of probability is due to drift and diffusion.

By the way, we point out that the derivate moments of higher order vanish if Y(7) is
Markovian; for instance, it can be proved that (Gardiner, 1983)

6‘.., — lim 5{[AYf(Z)AY.f(I)AYk(Z)]|Y([) =y}
LA Vi At

=0 (5.213¢)

This is essentially due to the fact that the transition probability density of a Markov process is
determined by only two time instants; therefore, only the moment of increment of no more than
second order is in the order of increment of time. More specifically, if the Markov process is
related to a Brownian motion process, then we have E{[dW ()"} = 0for N > 2; therefore, the
derivate moment in the form of Equation 5.213¢c must vanish.

In a more general sense, the FPK equation can be deduced from the Chapman—Kolmogorov
equation

px(, o, f0) = j ey, flz, 1)y (2, tlyo, fo) 4 (5.214)
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as a specific case of differential Chapman—Kolmogorov equation when there is no jumps
(Gardiner, 1983), orit can also be derived as a probability evolution equation in the specific case
of a Markov process (Lin, 1967).

The initial condition for the FPK equation (Equation 5.212), when py represents the
transition PDF py(y, tlyo, to), is

y(¥; tolyo, to) = 8(y — ¥o) (5.215a)

In the case py represents the instantaneous probability density py(y, ?), the initial condition is

(Y, to) = py,(y) (5.215b)

The boundary condition, according to different physical problems, may be different. For
instance, for some systems an absorbing or reflection barrier exists in the space. For structural
response analysis, the simplest but most widely used conditions for the transition PDF and the
instantaneous PDF are

py (¥, 1yo, %) =0 (5.216a)

¢ — Foo

and
(¥, )y, 2=0 (5.216b)

respectively.

5.6.3 Solution to the Fokker—Planck—Kolmogorov Equation

5.6.3.1 Closed-Form Transient Solution to the Fokker—Planck—Kolmogorov
Equation

Linear Systems
Consider the linear stochastic differential equation
dY(t) = aY dr +b dW(z) (5.217)
where a = [a;],,.,, and b = [b;]
respectively.
According to complex modal theory, Equation 5.217 can be uncoupled (Fang and Wang,
1986). Denote the eigenmatrix of a by ¥. Let Y(r) =¥Z(¢), where Z(t) = (Z,(1),Z(1),
..., Zn(1))". Introducing this into Equation 5.217, pre-multiplying it by y" and noting the
orthogonality, we have

are the system matrix and the input force influence matrix

mxXm mxr

dZ(t) = aZ dr + b dW (1) (5.218a)

where a = ¥'aW = diag[a, s, ..., a,) and b = [by],,., = ¥"'b. The component form is

given as

mxr

dZ(1) = asZy di+ Y g dWi(r)  £=1,2,...,m (5.218b)
k=1
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Because the W;(¢) are Wiener processes, the process W[Z(t) =Yy buWi(z) is also a
Wiener process, for which the variance is

E{[AWF ()} = Zzb/kbé/Dk/dl—K(dl (5.219)

where k) = Zk 1 Zj:l bubgiDy;j. The FPK equation associated with Equation 5.218b is then

Opz, (21, 1200, 10) _ Olavzipz (20, |200, 10)] n lK[ P(pz, (20, 1200, 0)]

5.220
ot 0zy 2 82? ( )

where pgz,(z¢, t|zeo,to) is the transition PDF of Z,(¢). The initial condition is

Pz, (2o, tze0, to) = 6(2¢ — zep)-
Taking the Fourier transform on both sides of Equation 5.220 and noting that

¢(9,t)z0, t0) = J Ppz,(ze, t|z0p, to)e’m” dz, (5.221)

then from Equation 5.220 we have

o 0P 1
5 = V55— FKd (5.222)

in the deduction of which use has been made of

0P (i)
09

9 _ J (20 200, 10)id 700~ 97 dzg (5.223)

which is clear from Equation 5.221.
The method of characteristics can be used to solve Equation 5.222. In order to do so, a
subsidiary equation is introduced as follows:

dr dd d¢
1= " a0- oo (5.224)
4 EK(ﬂ (z)
The integral of the first equation is given as
9 = ¢pe” @0 (5.225a)
while introducing it into the second equation gives
K¢ o2
= — 5.225b
o= cow(fo) (5.225)
The general solution to Equation 5.222, therefore, is
b9, 1|z00, t0) = g(Fe“ ")) exp (:l & > (5.225¢)
ay

where g(-) is an arbitrary function.
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Note from Equation 5.221 that the initial condition
(9, t0lz00, t0) = J 8(ze — zog)e V7 dzy = e 1070 (5.226)

From the above two equations it follows that

g(9) = exp ( — iz — :62192> (5.227)
Hence, we have
d(9, 1200, t0) = eXP{ — iz pe! =) 4 :7[132 [1 - ezm(HO)} } (5.228)
1

Taking the inverse Fourier transform on both sides of it yields

[ .
pz,(ze, Z‘Z€,07 ) = EJ (]f)(ﬁ7 t|ze0, lo)e]ﬁ‘[ 49
1 5.22
1 {zf - uzm} ? (5.229)
= exp
V2moy, (1) 207,(1)
where
(1) = zeg e ) (5.230a)
= ﬂ _ a2ai(t—1t)
o7l =3, {‘ e } (5.230b)

Equation 5.229 shows that the stochastic process Zy(¢) governed by the linear stochastic
differential equation (Equation 5.218b) is Gaussian. Because the Wiener processes W(¢) are
Gaussian, this means that the linear stochastic differential operator will transform a Gaussian
process to another Gaussian process. Actually, directly from Equation 5.218b, it follows that

t
Zy(t) = Zype™!' =) + J =7 AW (1) (5.231)

to

Note there that >, _, by Wi (t) is replaced by W;-(¢) for notational convenience. Under
the condition Z;y = zy, noting that ew(=1) jg g nonanticipating function and using the Ito
integral (see Section 5.6.1), we immediately get

ElZu(1)] = zgo e =) (5.232a)
E({zu(0) ~ EZ]F) =5 [1 -] (5.232b)

which are exactly the same as Equations 5.230a and 5.230b respectively.
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The preceding derivation holds for all / = 1,2, ... m; therefore, the vector process Z(?) is a
Gaussian vector process with the component u, (#) of the mean w(#) given by Equation 5.230a
for{ = 1,2,...,m However, because all the Z; are dependent on the W,(¢), itis possible that the
Z, are correlated rather than independent. In other words, Z(?) is a joint correlated Gaussian
vector. This can be demonstrated when we compute

E{Zu(1) = EZUOHZ (1) — EZe(n)]}) = [y Jj, el el =)

EKibdes(n)) (ibk,.dwjmﬂ
s=1 =1

a[ -+ ay (Zzbhb/ﬁ S/> {1 —e ”“Lllk)(l*m)}

s=1j

bDb'],
_ ﬁ {1 _ela +ak>(z—ro>} (5.233)

Therefore, let Cz(?) be the covariance matrix, then the component is given by Equa-

tion 5.233, namely [Cz(?)],, = E({Z(t) — E[Ze()|H{Zk(2) — E[Zi(2)]}).
On the other hand, the FPK equation associated with Equation 5.218a is

8pz a/Z/pZ 82 bDb sz}
2L £ 234
ot ZZI: 0z 2 2 ; 02,0z, (5 3 )

where pz represents the transition probability density pz(z, ¢z, tg).
According to the preceding analysis, the joint transition probability density is

Pt ) = (2m) 1€ ()] exp{ = o w0, (02 - wal0]} (5239

where the component of wz(#) is given by Equation 5.230a and the component of Cz(¢) is given
by Equation 5.233. This, of course, must be the closed-form solution to the FPK equation
Equation 5.234, as also can be verified by directly introducing Equation 5.235 into
Equation 5.234 and knowing the uniqueness of the solution.

Likewise, the FPK equation associated directly with Equation 5.217 is

a m m
pY = Z 8y <Z a/WkPY> > Z Z l(‘))];;)aykka} (5.236)

where py represents the transition probability density py(y, ¢1yo, o), [BDBT] 4 1s the comp-
onent of the matrix bDb" and &, is the component of a. The solution of Equation 5.236 is

pyly.tivo ) = (202 iCs (0] Pexp = Sy - w0y Oy - (0]} (5257

where the mean vector wy(?) and the covariance matrix Cy(7) can be computed directly by
corresponding operators on the stochastic integral solution to Equation 5.217 under the
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condition Y(79) =yo. Because

!
Y(7) = Yoedl—%) 4 J e =)h dW(7) (5.238)
1y
we can get
By (1) = yo el =" (5.239a)
t T 1
Cy(?) :J e/ =0pDb et (=% dr (5.239b)
)

Certainly, the solution equation (Equation 5.237) can also be acquired by using the linear
transformation Y(#) = ¢Z(¢), where the transition probability density of Z(7) has been given by
Equation 5.235.

By the way, the FPK Equation 5.234 can also be solved by directly using the Fourier
transform and following the like steps as employed above.

The process defined by the form of Equation 5.217 is termed the Ornstein—Uhlenbeck
process, due to their initial investigations in 1930 (Uhlenbeck and Ornstein, 1930).

Understanding Nonlinear Systems
For the FPK Equation 5.212 associated with the nonlinear stochastic differential Equa-
tion 5.185, now we consider the transition probability density py(y, ¢ + Atlz, t) with the
initial condition py(y, t1z, t) =6(y — z).

In the case At is appropriately small, the coefficients of Equation 5.212 can be regarded as
invariant and, therefore, it is approximated by

apY apY Z T 3
Ay( (z,t)DB’ (z, ¢ 5.240
S 1SS e (s

By the same steps employed in the preceding section, the solution of the above equation is

pY(Y? 1+ AZ|Z7 l) = (275) _m/2|CY‘Z(lv AZ)| -1z

1 _
XCXP{ = 5 ¥~ by, (1 80)] Cyy (1,A0) [y — oy (1, At)} } (5.241)
where the mean vector and the covariance matrix are
Ry, (2, A1) = 2+ A(z, 1)At (5.242a)
and
Cyp,(1,Ar) = B(z, t)DB' (z, 1) At (5.242b)

respectively.



Random Vibration Analysis 189

These results demonstrate that the instantaneous transition probability density is Gaussian,
while the stochastic process vector can be regarded, in an appropriate small time increment
[z, + Af], as the superposition of a mean (deterministic process) and the effect of a diffusion
process; namely:

Y(t+At) =2+ A(z, t)At +B(z, 1) AW(?) (5.243)

It is certainly quite easy to acquire Equations 5.242a and 5.242b directly from Equa-
tion 5.243, instead of solving Equation 5.240. Alternatively:

Y(i+Af) = 2+ A(z, ) At +n(z, 1) (A1) (5.244)

where m(z, 7) is an m-dimensional zero-mean Gaussian stochastic process vector with
covariance matrix £[n(z, 1)n (z,¢)] = B(z, {)DB"(z, 1). Clearly, Equation 5.244 is consistent
with Equation 5.243. The above equation shows that the trajectory of Y(¢) is continuous but is
quite irregular due to the terms of (At)l/ 2. More specifically, if A(z, #) =0 and m(z, ) do not
depend on z and ¢, then the trajectory of Y(¢) is so irregular that it is undifferentiable at any time.

Moreover, from the understanding that the process Y can be regarded as the combination of a
drift process and the effect of a diffusion process (see Equations 5.243 and 5.244), we can
derive the FPK equation using the principle of preservation of probability as a physical basis.
This issue will be discussed in detail in Section 6.3.2.

5.6.3.2 Notes on Solution to General Fokker—Planck—Kolmogorov Equation

In past decades, great endeavors have been devoted to seeking solutions to the FPK equation.
As demonstrated in the preceding section, the closed-form solution to the FPK equation
associated with linear MDOF systems is known. Moreover, the closed-form solution to the FPK
equation associated with some specific SDOF nonlinear systems, say, the Duffing oscillator, is
available (Caughey, 1971; Zhu and Wu, 1990). However, as far as the solution to the FPK
equation associated with general MDOF nonlinear systems is concerned, little is available so
far in spite of the decades of effort.

The problem with less difficulty is the steady-state, stationary solution to the FPK equation;
that is, the solution as ¢ — oo is time independent provided specified conditions are satisfied. In
this case, Opy/dt = 0 and the FPK equation, Equation 5.212, reduces to

m m

Z"’:a ZZWM{ y) DB (y )Lkpv} =0 (5.245)

j=1 1 k=1

In the past decade, a family of new approaches in the framework of a Hamiltonian
formulation has been developed and the availability of stationary solutions is greatly extended
(Zhu, 2003, 2006). Unfortunately, although in many problems of practical interest the
stationary solution is meaningful or sometimes provides enough information, this is not the
case in many problems in, say, earthquake engineering, where the transient response, or
nonstationary response, is, of course, what really matters.

Meanwhile, a number of numerical approaches for the solution of the FPK equation have
also been investigated: for example, the path-integral method (Wehner and Wolf, 1983; Naess
and Johnsen, 1993; Naess and Moe, 2000), the finite-element method (Spencer and Bergman,
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1993), the random walk method, the cell-mapping method and expansion solutions and so on
(Schuéller, 1997). However, no approach works in the FPK equation of large dimension, for
m > 6 for instance, while in the problems of practical interest the dimension is usually in the
order from hundreds to millions. The gap is so huge that in the near future few approaches can
tackle such problems in the theoretical frame of the FPK equation.



6

Probability Density Evolution
Analysis: Theory

6.1 Introduction

In his investigations on differential equations, Liouville proved a theorem in 1838, the
alternative form of which in the Hamiltonian systems was later called the celebrated Liouville
theorem on the volume of phase space (see Liitzen (1990)). This theory was later extensively
elaborated and developed by Gibbs (1902) in statistical mechanics and finally resulted in what
is now called the Liouville equation. The equation could reflect the evolution of the joint
probability density of states of systems with randomness involved only in the initial conditions
(Kozin, 1961; Syski, 1967; Soong, 1973; Arnold, 1978).

On the other hand, as described in Chapter 1, Einstein derived a diffusion equation in terms of
the probability density of the position of a particle in Brownian motion in 1905 (Einstein,
1905). The sequent investigations on more general cases where the effects of drift and diffusion
occur simultaneously by Fokker (1914) and Planck (1917) led to the celebrated equation
nowadays attributed to their names in physicist circles. Without knowing their pioneering
work, Kolmogorov independently established the same partial differential equation in his
investigations on Markov processes (Kolmogorov, 1931). In addition to what is now called the
FPK equation, he also came up with a backward equation in the same paper. This was not only
very elegant result, but also of methodological sense, because it indicates that a stochastic
system can be treated by a deterministic equation. Since then, with the explosive development
of theory on stochastic processes and stochastic differential equations, particularly the
establishment of the It6 and Stratonovich’s stochastic calculus and the straightforward relation
between the stochastic differential equation and the FPK equation, as discussed in detail in
Chapter 5, the FPK equation has become one of the major tools in a wide range of science and
engineering disciplines (It6, 1957; Stratonovich, 1963; Lin, 1967; Gihman and Skorohod,
1975). Representing the stochastic excitations in a different way from Kolmogorov, Dostupov
and Pugachev (1957) transformed a system with stochastic excitations to a system involving
random parameters and reached a partial differential equation, which is in a form like the
Liouville equation containing parameters.

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5
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Obviously, the Liouville equation, the FPK equation and the Dostupov—Pugachev equation
are different types of probability density evolution equations. Had these equations been
solvable, we could capture the evolution of the probability density of a stochastic system.
Unfortunately, this is not the case for most problems of practical interest, because these
equations are usually high-dimensional partial differential equations and usually strong
nonlinearity is involved in the coefficients. Despite great endeavors, the available solutions
to the above equations are still very limited (Soong, 1973; Risken, 1984; Zhu, 2003, 2006).

Since the celebrated work of Kolmogorov (1931), the rigorous mathematical aspect has been
increasingly stressed. While great advancement has been made, the physical fundamental aspect
seems to have been somewhat ignored by many investigators. In 2003 to 2006, on the grounds of
a physical fundamental point of view, the Dostupov—Pugachev equation was first uncoupled for
the linear systems by Li and Chen (2003, 2004a) and then a generalized density evolution
equation (GDEE) was established in a unified way for linear and nonlinear systems (Li and
Chen, 2004b, 2006a, 2006c). This family of density evolution equations threw a new light upon
the feasibility of probability density evolution analysis for stochastic dynamical systems.

In this chapter, thoughts on the evolution of densities are elaborately investigated. The
principle of preservation of probability is adopted as a unified foundation to derive different
types of probability density evolution equations. Rather than mathematics-oriented deriva-
tions, a direct physical treatment cooperating with the state space description of the principle of
preservation of probability is adopted to re-establish the Liouville equation and the FPK
equation. In addition, the Dostupov—Pugachev equation is found to be the result when a hybrid
treatment of the random event description of the principle of preservation of probability and
coupling physical equations of the system is adopted. As a logically spontaneous result, when
the problem is viewed from the random event description and uncoupling physical equations,
the generalized probability density evolution equation is reached.

For brevity, in this chapter we will sometimes just use the term ‘density’ to represent
‘probability density’ or ‘PDF.

6.2 The Principle of Preservation of Probability

6.2.1 Functions of Random Variables and their Probability
Density Function Revisited

Let X(@) be a continuous random variable with PDF px(x); namely:
Pr{X(w) € (x,x+dx)} = dPr{@} = px(x) dx (6.1)

where Pr{-} is the probability measure and @ represents a basic random event.
If a map G exists from X to Y such that

G:X—Y or Y=gX) (6.2)

then Y is a random variable. Denoting the density of Y by py(y), our present task is to obtain
py(y) through the known density px(x).
Suppose the CDF of Y is differentiable; we then have

py(y) dy = Pr{Y(w@) € (y,y +dy)} (6.3a)
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or
pr) = S Pe{Y () € oy +a) (6.3)
Because
Pr{Y(w) € (y,y+dy)} = dPr{w} (6.4)

and noting Equations 6.4 and 6.1, it follows that
Pr{Y(w) € (y,y+dy)} = Pr{X(w) € (x,x+dx)} = dPr{w} (6.5)

Namely:
pr(y) dy = px(x) dx (6.6)

For the same set of @, the relationship between X(@) and Y(@) is given by Equation 6.2;
therefore, the relationship

y=g(x) (6.7)

exists for x and y in Equation 6.6. Consequently, if g(-) has an inverse, denoting the inverse
function by g~ '(-), then from Equation 6.6 for the monotonic functions we have'

dx

pr(y) =px[g™' ()] dy Vlpx[s ™' (v)] (6.8a)

where J is the Jacobian:

_dx 1 dg~'(y)

Tdy {dg(x) /dx] v— 1)

(6.8b)

In fact, Equations 6.5 and 6.6 are more fundamental than Equation 6.8a, in that no constraints
are imposed on the attributes of g(-) in the former two equations. Likewise, the same thoughts
hold in the case of random vectors.

Denote the joint density of the random vector X = (X, X5, ... 7Xn)T by px(x), where
x = (x1,X2,. .. ,xn)T; namely:

Pr{X(w) € (x,x+dx)} = dPr{w} = px(x) dx (6.9)
Suppose there is a map determining a vector Y = (Y1, Y5, ..., Ym)T by X through

G:X—-Y o Y=gX) (6.10)

Here, n and m are respectively the dimension of X and Y.
Denoting the joint density of Y by py(y), wherey = (y1,y2, - - . ,ym)T, we of course have

Pr{Y(@) € (y,y +dy)} = dPr{w} = py(y) dy (6.11)

! Here, note that, because the probability densities are nonnegative, dx and dy should both be positive. Thus, an absolute
value of the Jacobian is adopted here.
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Considering Equation 6.11 in conjunction with Equation 6.9 yields®
py(y) dy = px(x) dx (6.12)
where, from Equation 6.10:
y =g(x) (6.13)

Equations 6.12 and 6.13 mean that when there exists a map from the space of X to the space
of Y, then if we can find X in an element domain dx in the space of X with a prescribed
probability, then we must be able to find Y in a corresponding element domain dy in the space of
Y, which is determined by the map from X to Y, with the same probability. In this sense, the
probability is preserved in a map, as shown schematically in Figure 6.1. The principle can be
called the principle of preservation of probability.

Ensemble: Dy = g(Dy)

Probability: f”’ py(y)dy = fn Py (x)dx

i

Figure 6.1 Map and preservation of probability.

The map in Equation 6.10 is essentially in the sense of a sample. Consequently, if an
arbitrary ensemble domain Dy is considered in the x-system, then a corresponding ensemble
domain Dy is determined by the map

Q:DX —>DY or DY = g(Dx) (614)

Because the probability is preserved in the map of any arbitrary element, we then have

JDYpY<y> av =[xt ox (6.15)

Dx

This can be understood as an integral form of preservation of probability. From
Equation 6.15, it is known that py(y) can be determined by px(x). Formally, we have

py(y) = Flpx(x)] (6.16)

where F is called the Frobenius—Perron operator (Lasota and Mackey, 1994).

2 A more rigorous and general treatment is to use the form of Riemann—Stieltjes integral instead of the Riemann
integral, which is widely used in many monographs on probability theory because it can cover the case when
discontinuity occurs in the distribution functions (Loeve, 1977).
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With Equations 6.12 and 6.13 in mind, for a one-to-one map and n =m, we have

py(y) = Vlpx[x =g '(y)]

where J =10x/0yl is the Jacobian.

The preceding elaboration indicates that the principle of preservation of probability results
from the fact that the probability will be preserved as long as the random event, which can be
represented in a different but equivalent form and is the argument of the associated random
variables, is retained in the map. Here, the concept is essentially important that the random
variable itself is not an independent argument but a function of basic random events. Insight is
provided in Equations 6.5, 6.9 and 6.11 where the term d Pr{@} is explicitly written, which is
rooted in the measure theory of probability (Chung, 1974).

6.2.2 The Principle of Preservation of Probability

In a general sense, the principle of preservation of probability can be stated as: if the random
factors involved in a stochastic system are retained — in other words, if no new random factors
arise nor existing factors vanish in a physical process — then the probability will be preserved in
the evolution process of the system.

We will now investigate the principle both from the random event description and the state
space description.

6.2.2.1 Random Event Description of the Principle of Preservation of Probability

The analysis in Section 6.2.1 on the functions of random variables via a map holds in a very
general sense, because any function, transformation, or operator can be regarded as a map.
Specifically, a dynamical system can also be taken into account in this framework.

For example, consider a dynamical system with the state equation

Y=A(Y,) Y(t)=Yo (6.17)
where Y = (Y1,7>, ..., Ym)T is the m-dimensional state vector, Yo = (Y10, Y20, .- -, Ymﬁo)T is
the initial value vector and A = (A;,As, . .. ,Am)T is the m-dimensional operator vector.

This system establishes a map G, from Y(¢y) to Y(¢); namely:

G : (Y1(t0), Ya(to), ..., Yu(to)) — (Y1(2), Ya(2), ..., Yi(2)) or Y(z)=glt,Y(t0)]
(6.18a)

Here, Y(?) is the solution of Equation 6.17, or, in other words, the Lagrangian description
of the system in Equation 6.17.

Compared with the map in Equation 6.10, G, X and Y here are respectively replaced by
G, Y(p) and Y(¢). Accordingly, Figure 6.1 becomes Figure 6.2.

Examine an arbitrary ensemble domain D, in the state space, which belongs to the definition
domain. The map in Equation 6.18a simultaneously determines a corresponding domain Dy;
namely:

D, =g(t,Dy,) (6.18b)
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Sample: Y(w,t) = g[t, Y(w,1,)]
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Ensemble: D, = g(t,D, ) ‘g
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Probability: [ py(y.00dy = [ py(y,t)dy 5
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Figure 6.2 Dynamical system, map and probability.

According to Equation 6.15, it follows that

JDpY<y, () dy :j py(y.1)dy = jD py(y. 10) dy (6.19)

g(tvD’()) 0]

where py(y, ?) is the joint PDF of Y(¢).

This is essentially what the Liouville theorem ‘on the volume in phase space’ states, and the
latter is extensively elaborated by Gibbs in statistical mechanics (Gibbs, 1902; Syski, 1967;
Arnold, 1978; Liitzen, 1990; Lasota and Mackey, 1994).

Certainly, Equation 6.19 is equivalent to

D

— {)dy = 2
DZJD’py(y,) y=0 (6.20)

where D(-)/Dt denotes the total derivative, which is usually also called the substantial or
material derivative (Fung and Tong, 2001). Equation 6.20 should be understood as

D . 1
—j pY<y,t>dy=hm—U py<y,r+m>dy—jpY<y,t>dy}=o (6.21)
Dt )p, Dol

Ar—0 AL D,

In the previous discussions, the principle of preservation of probability is understood by
rooting on the samples and then ensembles. That is, tracing the trajectory of a given random
event @, which is shown clearly schematically in Figure 6.2. We refer to this point of view as the
random event description of the principle of preservation of probability. Recalling the motion
of particles in continuum physics, this is of course the counterpart of the Lagrangian
description (Fung, 1994; Dafermos, 2000; Li and Chen, 2008; Chen and Li, 2009).

6.2.2.2 State Space Description of the Principle of Preservation of Probability

Instead of tracing the trajectories, a dynamical system can also be examined by considering the
change of quantities in an arbitrary fixed domain Dgy.q; that is, using the domain Dgyeq as a
window to figure out what happens there.
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Yi

The velocity field:
Y(t) = A[Y(),1]

Figure 6.3 Fixed domain and transition of probability.

Focusing attention now on the fixed domain Dg,.q With boundary ODgyeq in the state
space, because this domain is fixed in a time-variant velocity field determined by
Equation 6.17, the phase of an ensemble will change with time. As time goes, through
the boundary 0Dgy.q some of the phase particles will enter this window whereas some other
phase particles might go out of the window (see Figure 6.3). Adherent to the phase particles
is the probability. Therefore, according to the principle of preservation of probability, during
an arbitrary time interval [7;, #,], the incremental change of probability in the domain Dgyeq
is due to the transition of probability through the boundary 0Dg,.q. Mathematically, this
means that

A[f]A,[Z]PDfixed = A[tl«,tz]PaDﬁxed (6'22)
where
At 1) PDges = J py(y, 1) dy —J py(y, 1) dy (6.23)
Dﬁxed Dﬁxed

is the incremental change of probability in the domain Dgy.q during the time interval [7;, #,] and

15 153

Al ) PoDges = — J J py(y, t)(vdt) -ndS = — J J py(y, HA(y, t) -ndSde
ODfixed OD¥ixed

(6.24)

141 141

is the probability transiting through the boundary 0Djyeq during the time interval [#,, #,], where
n is the unit outward normal vector of the boundary surface ODg.q; the negative sign exists
because when the probability transits outward the retained probability in the domain decreases.

Here, the principle of preservation of probability is understood in the state space by
examining the change of the probability density at a fixed position in the space. This shows
that, because of the preservation of probability, the increment of probability in any arbitrary
fixed domain is equivalent to the probability imported through the boundary.
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6.3 Markovian Systems and State Space Description: Liouville
and Fokker-Planck-Kolmogorov Equations

6.3.1 The Liouville Equation
6.3.1.1 Derivation of the Liouville Equation

In many systems of engineering interest, the initial conditions might not be known exactly. This
uncertainty can usually be described by random variables with known probability distributions.
Without loss of generality, the state equation of the system and the initial condition read

Y=A(Y,) Y(t)=Yo (6.25)

where Y = (Y, Y,,---, Y,,,)T is the m-dimensional state vector, A = (A1, A, ... ,Am)T is a
deterministic m-dimensional operator vector and Yo = (Y1, Y20, - - -, Ym,o)T is the initial value
vector whichisrandom with known joint density py, (y,) in which yodenotes (y1,0, ¥2,0, - - - s Yim,0)-

Being a first-order ordinary differential equation, if A is well behaved, the solution process
Y(#) is completely determined once the initial vector is known. Further, at any time #; > ¢y, Y
(#y) is completely determined; therefore, it can be regarded as the new initial condition for z > ¢,
if 7, is regarded as the new initial time. Thus, once Y(#) is known, the solution process Y(?) for
t >ty is completely determined without knowledge at time ¢ < ¢;; namely:

{Y(0),t>0,Y(x),t < 11} ={Y(1),t>1,|Y(t1)} (6.26)

The above discussions hold true no matter whether Y is a deterministic or random vector.
Consequently, the stochastic process Y(7) determined by the system in Equation 6.25 is a
Markov process.

Because all the randomness comes from the initial condition without other random factors
involved, the system in Equation 6.25 is a probability preserved system. According to the state
space description of the principle of preservation of probability elaborated in Section 6.2.2.2,
when the behavior of the phase particles in an arbitrary fixed domain Dgyeq during an arbitrary
time duration [?;, #,] is examined, Equations 6.22-6.24 hold.

Further, the incremental change of probability in Dgy.q during the time interval [, 75], given
by Equation 6.23, can be rewritten as

Al 6)Poge = JD ry(y, tz)dy—JD py(y, t) dy
fixed fixed 627)
29 t (
Dﬁxed 151 a[

Simultaneously, the probability of transiting through the boundary 0Djyeq during the time
interval [7y, #,], given by Equation 6.24, can be rearranged into

15}

15}
A[’ls’Z]PaDﬁxed = - J Jé)D pY(Y7 Z)(le) ‘ndS = — J
fixed

141

_JJ 3 vy DALy, 1)

Drixed ¢=1 8}) ¢

J py(y, )A(y, ) -ndS dr
ODfixed (628)

14

dy dz

151

where use has been made of the divergence theorem (Korn and Korn,1968).
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The probability being preserved requires that Ay, 11Pp.q = Aj,n)Popme. (S€€ Equa-
tion 6.22). Substituting Equations 6.27 and 6.28 in this and noting the arbitrariness of Dgyeq
and [7,, 1,], the integrands must be equal; therefore:

Opy (¥, 1) | <~ Olpy (¥, DAy, 1)]
ot [Z; (9yg ( )
This is the Liouville equation.
To provide more insight into the equation, we may consider the problem from the tozal
probability formula as well. If we consider the transition probability density py(y, ¢ | yo, to), for
a general stochastic process we have

py(ys, taly, 1) = JPY(.% 53ly2, 825 Y1, 1) -y (Yo, 2|1, ) dys (6.30)

which can be verified when we note that py (y3, 3|y, 11) = py(¥s, 3551, 1) /py(¥;, 1) and the
like relationship. Equation 6.30 is of course essentially the total probability formula. Here, we
stress that Equation 6.30 is also an embedment of the preservation of probability.

For a Markov process at time instants t3 > ¢, > t;, Equation 6.30 reduces to

py(ys, 6aly1, 1) = Jpv(y3, By2; 12) - py (Y2, 2|y1; 1) dys (6:31a)
This is the Chapman—Kolmogorov equation for Markov processes. Clearly, it is an
embedment of the preservation of probability from the state space description in the case

of Markov processes.
When we consider the time instants #, ¢ and ¢ + A¢, Equation 6.31a becomes

pY(ya l+At|Y0a ZO) = JpY(yv I+ Al|Z, l) 'pY(Za t|y0v ZO) dz (631b)
When introducing the increment k =y —z, we have

py(y, t+Atlyg, o) = pr(y, 1+ Atly —k, 1) - py(y — K, 1]yo, t0) dk (6.31c)

Inthe time interval [z, ¢ + At], from Equation 6.25 it is known that the incremental change of
the state Y is

AY =Y(1+ A1) = Y(2) = A(Y, 1)At + o(A¢) (6.32)

which is of course a random vector because Y (¢) is random. For notational convenience, denote
AY by = (9,,m,,...,m,,)" and the conditional probability density of 1 given Y(1) =y by
¢y (M; Y, 1, At). From Equation 6.32 it is seen that

M[Y()) = y] = A(y, A1+ o(A1) (6.33)
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This means that the conditional random vector m|[Y(?) =y] is essentially a deterministic
vector; thus, it follows that

J¢nw(n; y,1,At)dn = 1 (6.34a)
Jm%w(’n;y, t,At)dn = Ay, )At+o(Ar)  £=1,2,....m (6.34b)
annk¢n|Y(n;Y7 tht) d"f] = O(AI) &k = 1,2, e, m (634C)

Clearly, from Equations 6.32 and 6.33 it is known that
py(y+m,t+Aty, 1) = dyy(m;y, t,Af) (6.35)

Introducing this transition probability density into Equation 6.3 1c and changing the notation
accordingly, we have

P04 81130, 10) = [ (Y = 0.1,80 -y (v~ gt i (636)
Expanding the integrand up to second order by the Taylor series:
Gy (M3 Y =, £, A1) - py (Y — M, 2]y, t0) = dyy (M3 Y, £, A1) - py (Y, 2o, to)

ad)n\YpY LN a ¢n|YpY (637)
E E E N+ -
=1 T2 = = Ve

where ¢ ypy in the last two terms represents ¢,y (M;y, 7, A7) - py (¥, £|yy, to) for simplicity of
notation. Substituting it in Equation 6.36 and noting Equations 6.34a—6.34c, we have

m
o
px(y, t+Atlyg, t0) = py(y, 1lyo, fo) — Z@ [Ac(y, Dpx(y, 1]y, t0)]At + o(Ar)  (6.38)
/=1

Subtracting py (y, t]yo, to) from both sides of Equation 6.38, dividing by Az and then letting
At — 0 yields

m

0, LYo, & 0
v (¥ f¥o: 1) | g ety vty )] =0 (6.39)

ot

Multiplying this by py(yy, %) and integrating with respect to y, on both sides of
Equation 6.39a, we have

opy(y, 1 “~ 0
% + ;875 Ay, Dpy(y, )] =0 (6.39b)

This is of course the Liouville equation, identical to Equation 6.29.

In the preceding derivations, particularly from Equations 6.33, 6.34b, and 6.34c, it is seen
that the probability density evolution equation, here the Liouville equation, is associated tightly
with the dynamical system. That is, the evolution of probability must be associated with a
physical mechanism.
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It should be noted that the Liouville equation governs the evolution of the probability density of a
system when randomness is only involved in the initial conditions. If randomness is also involved
in, say, the system parameters, then the Liouville equation does not hold. But some technique can be
used so that the random system parameters can be mathematically treated as part of the random
initial conditions and thus a modified Liouville equation can still be derived (Soong, 1973).

6.3.1.2 Solution of the Liouville Equation

The Liouville equation is a first-order quasi-linear partial differential equation. For such an
equation, the method of characteristics works (Soong, 1973; Sarra, 2003), as has once been
employed in Section 5.6.3.1. The method will be used here to yield the closed-form solution,
whereas the theroretical basis and physical sense of the method will be discussed in detail later
in Section 6.6.1.

First we rewrite the Liouville equation, Equation 6.39b, as

+§:A +§5m, &“y’):o (6.40)

The subsidiary equation is then

g: _ de(Yv ) dyl . dym (6 41)

y7 ZaA/ y; Al(yvt) Am(ya t)

/=1

The last m equalities are essentially the state equation. The first equality will give the
solution

(1) = [py()(yo)exp{ - ol = a‘;jym”] dH (6.42)
Yo Hil(y 1)

o ¢=1

where y = H(yy, ?) is the closed-form solution of the state equation from the last 7 equalities in
Equation 6.41 and H '()) is the inverse function of H.

The solution establishes the relationship between the density of Y(#) and that of Y (), where
the closed-form solution of the associated state equation is involved. By the way, we point out at
present that the characteristic curves of the Liouville equation are in essence the trajectories on
which the probability measure is invariant.

On the other hand, according to Equation 6.18a, where the map G, is essentially the function
H here, we have

py(y, 1) dy = py,(yo) dyo (6.43)

The PDF is thus given in an alternative form by

Y0)yy—nr- 1y = M1Pxo [Yo = H™'(y, )] (6.44)

ay,
pY(ya Z) - 8)’

where J =10y,/Jyl is the Jacobian.
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Comparing Equation 6.44 with Equation 6.42, we reach the equality

_ "~ 0Ady = H(yo,7), 7]
|| = [exp{ — J Z Dye 0 dr}]yg_ﬂl(ywl) (6.45)

to y—1

which can sometimes be used to compute the Jacobian.
Note that, for a given y,, the state is determined by Y =H(y,, 7). Therefore, it is a
deterministic vector; namely, the transition probability density is given as

pY(yv t|y07 [0) = 8[)’ - H(yOV t)] (646)

where 6(+) is the Dirac delta function (see Appendix A). From the total probability formula, the
density of Y(¢) is thus

py(y,t) = Jpv(y, 1¥0, t0)Py, (¥o) d¥o
(6.47)

- JS[y —H(yo, 1)lpv, (¥o) dyo

It is easy to verify that the transition probability density given by Equation 6.46 satisfies
Equation 6.39a and the probability density given by Equation 6.47 satisfies Equation 6.39b.
Actually, a further step of integrating the Dirac delta function in Equation 6.47 by changing the
variables will immediately yield Equation 6.44.

The above discussion shows that Equations 6.42, 6.44 and 6.47 are all equivalent, although
Equation 6.42 is obtained from the solution of the Liouville equation, Equation 6.44 is from the
preservation of probability when an arbitrary ensemble domain in the state space is examined,
and Equation 6.47 is in essence directly from the point of view of the sample.

The asymptotic attributes of the solution of the Liouville equation are now discussed.

For a global asymptotic stable system (for example, a damped linear system subject to
deterministic external excitations), as the time elapses, the effect of the initial condition will

vanish; namely:
lim Y(7) = Ilim H(Yo,?) = H.(2) (6.48)

{— oo

where H..(?) is the asymptotic response of the system. From Equation 6.47 we have

Jim py(y,7) = lim Jﬁ[y —H(yo, )lpv, (o) dyo = J5[y = H..(1)lpy, (o) dyo =8[y — Ha-(7)]
(6.49)

This indicates that as time passes, the stochastic response of the system tends to be a
deterministic process.

On the other hand, if there are some attractors with the attracting domain €y,
£=1,2,..., Bygractor» Where Magracior 1S the number of attractors, then there are 72,yracior POSSible
asymptotic responses Hw/;(t), £=1,2,..., Byractor (Strogatz, 1994), and we have

Mattractor

lim py(y, ) = lim J 8ly — H(yo, )py, (¥o) dyo = D Pidly — Hew(1)] (6.50)
(=1
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where

P, = J Y, (¥o) dyo
Q

Example 6.1. Solution of a Liouvillian System To provide a visual impression, we consider
the linear system®

X= - [§w+ 1—§2tan(mwt>}x X(0) = Xo (6.51a)

where X, is a random variable with known density pxo(xo). The formal solution of the state is

given by
X = H(Xo,t) = Xoe ““'cos (\/ 1— g%r) (6.51b)

Therefore, from Equation 6.42, the density of X(#) yields

e{wr

px(x, 1) = mpxo (o) (6.51c)

Xo=xef! /cos (\/ 1- {zmt)

This equation also holds if we denote px(x,) =8(x) for t = (k+ H)m/(\/1 - (o),
k=0,1,2,....

The contour of the PDF in Equation 6.51c is shown in Figure 6.4 when w =1 and Xj is a
normally distributed random variable with a mean of 3 mm and a standard deviation of 1 mm. It
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Figure 6.4 Contour of PDF.

3 The physical sense of this system is as follows. Consider an SDOF system X + 2/wX + @,X = 0 with the initial
condition X(0) = X,. Then, according to the analytical solutions of the displacement and the velocity, we can get the
state equation in Equation 6.51a except some singular points at #; = (k+ 1) /[(1 — )P, k=0,1,2,....
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is seen that at the time instants / = (k + {)7/(\/1 — {*w), k = 0,1,2,..., singular points
occur where the probability density is infinity because all samples are now concentrated at the
same point. At these time instants, note here that Equation 6.51a is undetermined.

This also provides an example that the map G; in Equation 6.18a does not have an inverse and
demonstrates that G, having an inverse is not a necessary condition; simultaneously, the
Jacobian in Equation 6.44 does not exist. However, the PDF still makes sense if we introduce
the distribution function of Dirac’s delta. This is in contrast to conservation of mass in
continuum mechanics. O]

6.3.2 Fokker—Planck—Kolmogorov Equation Revisited

When randomness is involved in the nonhomogeneous terms of a dynamical system, especially
as the excitations are white-noise processes, the state equation can be understood as the 1t6
stochastic differential equation, as discussed in Section 5.6.1. That is

dY (1) = A(Y, 1) dt + B(Y, 1) dW(?) (6.52)

where Y and A are the same as defined in Equation 6.25, B(y,?) = [Bu(y,?)],,, is
the input force influence matrix, the By (y,f) are nonanticipating functions and
W(t) = (W, (1), Wa(1), ..., W,(1))" is an r-dimensional Wiener process vector with the mean

and covariance matrix of increment
E[AW()] =0  E[dW(r)dW' (1)) =Ddt (6.53)

in which D = [Dj], ., is the same as in Equation 5.179.
Equation 6.52 can be rewritten in an incremental form:

AY (1) = A(Y, )At +B(Y, ) AW (1) + o(At) (6.54)

As elaborated in Section 5.6, the transition probability density of Y(¢) satisfies the FPK
equation. We now examine the physical sense of this equation in detail. To this end, the
probability flow in the state space is studied herein. For schematic convenience, we use the case
m=2inFigure6.5. Letusconsideradomaindy = dy; dy; - - - dy,,. The increment of probability
in this domain is

py

AP = —
ot

dyidy; - - - dy,, At + o(Af) (6.53)

During the time interval [z, 4+ Af], due to the drift effect (or effect of differentiation of the
first order), in the direction of y,, the probability in the domain on the left-hand side
Ay pdy; dys - - - dy,, will enter the domain dy;dy; - - - dy,,, while on the right-hand side the
probability in the domain Ay; g dy, dys - - - dy,, will leave the domain; thus, the net imported
probability in the direction of y; is given as (see Figure 6.5a)

APy, = py(y1,y2, )Ayi L dyr dys - - - dys, — py (y1 +dy1, y2, £)Ayi r dyz dy3 - - - dy,, + 0(Af)
(6.56a)
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Figure 6.5 Schematic diagram of probability flow in the state space: (a) the probability flow due to drift;
(b) the probability flow due to diffusion. Here, two points are illustrated; the arrow represents the diffusion
and the different lengths of the arrows represent that the diffusion coefficients depend on the position. The
probability of the point in the vicinity of the position (y; 4+ 41,y2 +42) at time ¢ is py(y1 + 41, y2 +
A2, t)dA1d2,, while the probability of this point transit to the domain dy; dy, is py(y1 + 41, y2 + 42, )
(f))\(/ll S A v+ A, va + Ao, A[)d/l]d}vzdy]dyz.

Noting AYI,L = A]<y7 l)A[+0(Al> and A,YI,R = Al(y1 +dy1,y2,y3, e Ym, I)Al+ O(AZ),
we have

0
APY] = - 87)71 [Al(y, [)pY(ya t|y07 tO)]dyAt + O(AZ) (656b)
Simultaneously, the analogous thing happens in the direction of y;(j =2,3,...,m);

therefore, the net imported probability in the domain dy;dy; - - - dy,, due to the effect of drift
is given as

m m 8Az y. ! DY
AP, = ;AP_W - _ ;%dyAHo(At) (6.56¢)

Now we consider the effect of a diffusion field (arising from the terms of Brownian
motion). Denote the instantaneous probability density of A = B(y, /)AW(z) = m(y, 7)(Ar)"/?
by ¢, (N;y, 1, At), where n(y, ¢) is an m-dimensional zero-mean stochastic process vector
with covariance matrix £[q(y, /)n"(y, )] = B(y, {)DB'(y, 7).* Certainly, we have

J%(x; y, t,At)d\ =1 (6.57a)
Jxm()\;y, LAAN=0 (=1,2,....m (6.57b)
Jx@xk%()\; y,t,At) d\ = [B(y, t)DB (y, )], At Lk=1,2,...,m (6.57¢)

The probability of the point in the vicinity of the position (y + A) at time ¢ is
py(¥y + N, 1]y, to)dN, while the probability of this point transit to the domain dy during the time
interval [#, 1 + At]ispy(y, t+ Aty + N, £)py (¥ + N, t]yo, to)dN, where py (y, t + Aty + N, 1) is

*For details, refer to Section 5.6.3.1, Equation 5.244.
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the transition probability density from the time instant z to ¢ 4+ At. The probability in the domain
dy at the time instant ¢ 4+ At is thus (see Figure 6.5b)

py(y, t+Atlyy, to) dy = dy pr(y, t+Atly+ N, 6)py(y + N, 1]yo, to) dA (6.58a)
Noting that the transition PDF from ¢ + Af to ¢ is just
py(y, t+ Aty +N 1) = (N y + N, £, A1) (6.58b)
we have
py(y, 1+ Atlyg, 10) dy = dy Jpv(y + N\, 2]¥o, 00)dr (A ¥ + N, 1, A1) AN (6.58¢)
The increment of probability due to diffusion is then
APy = py(y, 1+ Atlyo, to) dy — px (¥, 1[yo, f0) dy (6.59)

Expanding the integrand in Equations 6.58a and 6.58b to the second order in the vicinity of y,
regarding N\ as a vector of increment, we have

v(Y + N, 2]¥o, L) (N y + N, £, At) = py(y, t]yo, to)dr(N; ¥, 8, Al)

1 aL’)Y(bh 8 LUY(I))‘ (660)
+Z Mo+ > Z; Y R R

Introducing this equation into Equations 6.58a and 6.58b, and noting Equations 6.57a—
6.57b, we therefore get

1 m m 82 T
AP, = 5;;M{[B(Y7 1)DB (y, f)]ékPY}Af+0(At) (6.61)

Owing to the preservation of probability, the velocity field and the diffusion field both
contributing to the increment of probability, it follows that

AP = AP, + AP, (6.62)

Employing Equations 6.55, 6.56¢ and 6.61, dividing both sides by Az and taking the limit
At — 0, we get

7] Ay,
gz_z[éy )py] ZZ

=1 1 k= 8y48yk

¥, )DBY(y, )] by } (6.63)

This is nothing but the FPK equation identical to Equation 5.212.

The sense of Equation 6.62 is that the increment of probability in a domain during a time
interval equals the net probability imported through the boundary into this domain. This is, of
course, the principle of preservation of probability viewed from the state space description. The
above analysis demonstrates that the FPK equation is the result of this principle. Meanwhile,
because the coefficients of the FPK equation are related to the coefficients of the associated
stochastic differential equation, which is the embedment of the physical law, keeping the
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preceding analysis in mind, we find that the transition process of probability, or the probability
flow, must result from a certain physical system, which is usually a stochastic differential
equation physically representing the sampling path. In other words, a transition of probability
must have a physical mechanism.

The treatment in Equation 6.62 is in an intuitive way in which the effects of drift and diffusion
are superposed by a summation. Employing a more rigorous treatment starting with the
Chapman—Kolmogorov equation, we can derive the associated FPK equation in a different
way and provide some new insights into the physical sense.

Denote

n =AY, 1)At + o(A¢) A =B(Y,1)AW(7) K=AY(?) =m+A (6.64)
It is seen that m represents the contribution from the effect of drift and N represents the

contribution from the effect of diffusion. Because A and B are both nonanticipating functions,’
the conditional expectations of m and N given {Y(#) =y} are given by

EMIY(?) =y] = Ay, t)At+ o(Ar) (6.65a)
Emm'Y(1) = y] = o(A) (6.65b)
ENY() =y] =0 (6.65¢)
EMNT|Y(¢) = y] = BDBTAz + o(At) = gAt + o(At) (6.65d)
where & = [o4],,.,, = BDBT.

If we denote the conditional density of m given {Y(¢) =y} by quy('n; y, t, At), likewise
denoting that of A by d’MY()‘; y,t,At), then Equations 6.65a and 6.65b will lead to
Equations (6.34b) and (6.34c) respectively, while Equations 6.65¢ and 6.65d will lead to

JMQ’)MY()\; y,t,At)dN =0 (=1,2,...,m (6.66a)
and
JM;Md)MY()\; y, t, At) A\ = oy At + o(At) Lk=1,2,...,m (6.66b)

In addition, the consistency condition requires that

Jd))\\Y()‘;% 1,At)d\ =1 (6.66¢)

Note from Equation 6.64 that k = + A, where m and \ are conditionally independent given
{Y(r)=y} because A and B are both nonanticipating functions. Therefore, using
Equations (6.65a—6.65d), we have the conditional expectations of k:

Elk|Y (1) =y] = EM[Y(2) = y] + ENY(1) = y] = A(y, 1)Ar + o(At) (6.67a)
ETY (1) = y] = EMY (1) = ¥] = oy, A1 + (A1) (6.67b)
where o is the same as that in Equation (6.65d).

5 The significance of nonanticipating functions was elaborated in Section 5.6.1.1.
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Therefore, if the conditional density of k given {Y(¢#) =y} is denoted by ¢K|Y(K; y, t,Al),
then we have

JK()([)KlY(K; y, t,Ar) dk = Ay(y, t)At + o(At) =1,2,....m (6.68a)

JK[qubK‘Y(K; V.0 A dk = ouly, DAL+ o(Af)  Lk=1.2,....m  (6.68b)

Certainly, the consistency condition requires that
J(bK\Y(K; Y. 4 At) de =1 (668C)

Because of the independence of dW(¢) and nonanticipation of A and B, Y(¢) determined by
Equation 6.52 is a Markov process vector. From the Chapman—Kolmogorov equation
(Equation (6.31¢)):

pY(y7 I+ AZ|YO7 lO) = JpY(Ya Z_|_Al‘|y —K, t) pY(y —K, I‘Ym IO) dk (6693)
where the transition PDF from time 7to # 4 A¢, instead of being given by Equation 6.35, is now
given by

py(y+x, i+ ALy, 1) = dgy(K;y, 1, At) (6.69b)
We then have

pY<Y7 I+ Al'Y()v tO) = J¢K|Y(K; YK At) 'pY(y - K, tlyO’ lO) dx <6~7O)
Expanding the integrand up to second order by the Taylor series:

by (K ¥ — K, 1, A1) - py (¥ — K, 1]¥, o) = by (K; ¥, £, A1) - py (¥, 1]yo, to)

m

Obyyp Pbyyp
T 3

= 1 k=1

(6.71)

where the arguments in ¢y and py(-) have been omitted in the last two terms for simplicity
of notation. Substituting this in Equation 6.70 and noting Equations 6.68a—6.68c, we have

5’A/PY - Doy
pY(Y7Z+At|yO7ZO) :pY(Y7[|yOaZO)_ Z Ar+ = ZZ v,0 AZ+O(AZ)

(6.72)

Further, subtracting py(y, f|yo, fo) from both sides of Equation 6.72, dividing by Af and
letting At — 0 yields

8pY ZaAfPY _Zza O ukPY (6.73)

Ay, Oy Oy

where py can either be understood as the transition probability density py(y, |y, fo) or be
taken as the instantaneous PDF py(y, 7).

Equation 6.73 is nothing but the FPK equation identical to that derived in Section 5.6.2. Again,
stressed here is the tight relationship between the evolution of probability density and the
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physical mechanism of the dynamical system. Undoubtedly, noting that the Chapman—
Kolmogorov equation (Equations 6.31a, 6.31b and 6.31c) is in essence the embedment of
the preservation of probability from the point of view of the state space description for the
Markovian systems, the previous derivations demonstrate clearly that the FPK equation is the
natural result of the preservation of probability in the state space description.

6.4 Dostupov-Pugachev Equation
6.4.1 From Equation of Motion to Random State Equation

Without loss of generality, the equation of motion of a general n4-degree-of-freedom structural
or mechanical system can be written as

MX+£(X,X) =B(X,0)&(1)  X(t) = Xo, X(t9) = Xo (6.74)

where X, X and X are the ng-dimensional displacement, velocity and acceleration vectors
respectively, M = [Mgk]nd g is the mass matrix, f(-) is the n4-dimensional internal force vector
including the damping and restoring forces, B(X,?) = [Bu(X,?)],, ., is the input force
influence matrix, &(¢) is the r-dimensional external excitation vector, and X, and X, are
respectively the initial velocity and displacement vectors.

. . T . .
When introducing the state vector Y = (X ,XT)T, Equation 6.74 can be rewritten as

Y =AY, ) +B(Y, &)  Y(t) = Yo (6.75a)
where
_ -1
A(Y, 1) :{ Mxlf(Y)} B(Y,?) = [M BO(X’ l)} (6.75b)

If randomness is involved in the excitations, then Equation (6.75a) can be remodeled by
Y = A(Y,)+B(Y,0E@.1)  Y(1) = Yo (6.76)

One approach to tackling the problem is to model the random excitations as Wiener
processes, thus leading to the It stochastic differential equation and the FPK equation, as
elaborated in Sections 5.6 and 6.3.2. An alternative approach is to decompose the excitation
using, for example, the Karhunen—Loeve decomposition (see Equation 2.120 in Section 2.2.5):

E(@.0=80() + S @)y Myafiat) (6.77a)

where &; (w, 1) is the jth component of &(@, 1), §o(?) is the mean, A;, and f;,(f) are the
eigenvalues and eigenfunctions, §; ,,(w) are the uncorrelated standard random variables and N;
is the number of truncated terms. This treatment is particularly useful for the nonstationary
process encountered in practice.

If we denote ® = [gl,l(w)7 51,2(6)7 s agl,Nl (ZD'), 52,1 (ZD'), s a§2,N2(w)7 s agr,N,.(w)]’ then
according to Equation 6.77a the excitation vector can be represented explicitly by

&(m,t) =F(O,1) (6.77b)
Substituting this, Equation 6.76 can then be rewritten as

Y=G(®,Y,:) Y(t) =Y (6.78)
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where G = (G1,Ga, ..., Gm)T is given by
G(0,Y,7) = A(Y,1) +B(Y,)F(®,1)

Equation 6.78 is a random state equation with random variables made explicit.

6.4.2 The Dostupov—Pugachev Equation

To capture the probability density evolution of the system in Equation 6.78, we first start as was
suggested by Dostupov and Pugachev (1957). Then we will tackle it from the unified point of
view of the preservation of probability.

If we consider a given 0, the random variable Y(¢ + A¢) can be regarded as a linear
transformation of Y(¢); namely:

Y(t+At) =Y(t) + G(Y, 0, 1) At + o(Atf) (6.79)

Denoting the density of Y(z + Af) with the parameter ® by pye(y,0,?), then from
Equation 6.12 we have

pY@(y7eal+A[) dy :PY®(Y707 l) dy (680)
where, according to Equation 6.79:
Yy =y +G(y,0,1)At+o(Ar) (6.81)
Differentiating Equation 6.81, we have®
0G( ,0 f)
dy = |1+ Z ! y ]dyz 17|dy (6.82)

where J is the Jacobian.
Introducing Equations 6.81 and 6.82 into the left-hand side of Equation 6.80 yields

Pye [y+G(y7ea Z)AI+O(AI)705 Z+At] |‘]|dy

" 9G(y,8,1)
1+Z ‘y’ 9Ge3:8.1) 5| ay-+o(ar)

[PY@()’,G 1+A1)+ Z p;;@Gf(Yae 1A

y,et
l

]At}dy—ko(Az)

(6.83)

{PY@ (v,8,14+A0)+ Z pY@Gé (v,0,0)+pve(y.8,1+Ar Z
=

in which the first-order terms are retained in the Taylor expansion.

S This can be obtained as a product of the differentiation of the components. From Equation 6.81, we have

9Gy(y, 0,1) 9Gy(y, 0, 1) 0G(y, 0, 1)
dy, =d ——— LAy At =< 1+ ——2Arp dyg ————dy/ At
Yoo ; Aye . i O i zZ@k e

k=1,2,....m
Multiplying dy, and ignoring the terms of higher order of A¢ yields dy=dy,dy, --- dy, =

" 0Gy(y, 0,1t
1+ Zkg}’{)m} dyydys -+ dyn = [J]dy
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Replacing the left-hand side term of Equation 6.80 by Equation 6.83, subtracting
pye(y, 0, 7)dy on both sides, then dividing it by At and letting Az — 0, we have

apY@(ya ea t) - a[pY@(Ya ea t)G[(y7 07 t)]
o T2 dve

=0 (6.84)

where dy on both sides is eliminated. We call this equation the Dostupov—Pugachev equation,
which was first derived by Dostupov and Pugachev (1957). Comparing Equation 6.84 with
Equation 6.39b, we find that Equation 6.84 may be regarded as a parametric Liouville
equation where 0 occurs explicitly. This change is essential, because the Liouville equation
does not hold for the system in Equation 6.78.

It is noted that the derivation of Equation 6.84 holds for every possible value of 0; that is, for
any prescribed random event. In this sense, Equation 6.84 is the result from the random event
description of the preservation of probability. Thus, in contrast to the Liouville equation, the
methodology of the Dostupov—Pugachev equation is changed from incorporation of the state
space description and coupling physical equations to incorporation of the random event
description and coupling physical equations. To understand this point further, we will derive
the Dostupov—Pugachev equation on the basis of the preservation of probability (Chen and
Li, 2009).

Compared with Equation 6.25, in the visual form the difference of Equation 6.78 is that @ is
involved in the operator. This difference leads to a distinct feature that the evolution process
of Y(?) itself may not be probability preserved because of the effect of 8. In other words, in
order to form a probability preserved system, we should consider @ is time invariant;
namely:

0=0 (6.85)

Actually, it is the time invariance of ®, which is the embedment of the nondisappearance of a
random event, that ensures the preservation of probability (see Section 6.2.2.1).
According to Equation 6.20, the probability being preserved leads to

D

—J pye(y,0,7)dyde =0 (6.86)
D1 )p,xpe

Noting the map from time 0 to time ¢, Equation 6.86 can be rearranged to

D

D JD[X%pYe (y,0,1)dy d®

D
" Dt

Dp, (v, DlJ
[ (P 00D ay e
D,0><D9

j Poo(v,0,0)|71dy d8
D,OXDQ

D¢
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Oy (¥:0,1) | IPye (.98, 7)
= JI[ =4 ) Gy, 0,1)——"——=
j{| |< TR Lo

.~ 0G(y, 0, 1)

dy do
Ay, }

+[pye (¥, 6, 1)
(=1

B J <8pm :0.0) | §~ 007 (2.0 0Gi(.0 z)]) Uldy do
DtOXD@)

ot ya (3))5

OPye(¥,0:1) 0[Py (¥,0,1)Gy(y, 0,1)]
= x + E Al dy de 6.87
JD,XD@ ( o1 = % Y (6.87)

where the total derivative is given as

m

DpY@(y707t) apY@(Yaea t) 8PY®(y707 l)
Dt ot + = «(¥,8,7) Oye

(6.88)

in which Equation 6.85 has been considered, and the total derivative of the Jacobian is
(Belytschko, 2000)

D|J 8y 0G(y, 0,1t
L—IIZ - |]|24[(8y/ ) (6.89)

In addition, we should note that when the integral domain is D, X Dg, the corresponding
arguments y and 0 in the integrand are Eulerian coordinates, while the integral domain is
D,, x Dg, the arguments y and 0 in the integrand should be understood as Lagriangian
coordinates y; 0y, where (y,0) = H(y,, 0, ?) is the solution of the system in Equations 6.78
and 6.85 and the Jacobian is given by

8()’70) — ’6H(YL70L7Z)
a(yL, OL) 3(}’1_, OL)

However, for notational simplicity, we use the same symbols for the Eulerian and Lagrangian
coordinates in Equation 6.87 without inducing confusion.
Combining Equations 6.86 and 6.87 and noting the arbitrariness of D, X Dg, it follows that

8pY®(ya 9; t) - a[pY@(Ya 07 Z)Gf(yv 07 t)]
a ; e

|J|=\

(6.90)

=0 (6.91)

This is nothing but the Dostupov—Pugachev equation identical to Equation 6.84.

It is interesting that although the random event description of the principle of preservation of
probability, as discussed in Sections 6.2.1 and 6.2.2.1, seems logically more straightforward than
the state space description, the latter is preferred in the history of developing the probability
density evolution equations such as the Liouville equation and FPK equation. In the above
derivation of Equation 6.91, however, the random event description of the principle is employed
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in conjunction with the coupling physical equation. In other words, the Dostupov— Pugachev
equation can be regarded as the probability density evolution equation that turns the point of view
from the complete state space description to partly considering the random event description.

6.5 The Generalized Density Evolution Equation
6.5.1 Derivation of the Generalized Density Evolution Equation
6.5.1.1 From Random Event Description to Generalized Density Evolution Equation

As discussed, the Dostupov-Pugachev equation is the result of cooperating the random event
description of the principle of preservation of probability and the coupling physical equations
in state space description. Actually, a further step will open the way to a generalized density
evolution equation (GDEE). In fact, when viewed from the random event description of the
principle of preservation of probability and introducing the physical solution of the system, a
completely uncoupled, any arbitrary-dimensional density evolution equation can be reached
(Li and Chen, 2006c, 2008).
We now consider the generic stochastic dynamical system

Y=G(®,Y,:) Y(t) =Y (6.92)
where Y = (Y1, Ya,. .., Yy) is the state vector, Yy is the initial value vector, m is the dimension
of the system and @ = (0, 0,, ..., Oy) is an s-dimensional random vector characterizing the

randomness involved with known joint PDF pg(0). The randomness might come not only from
the excitations, but also from the system properties. Generally, the random excitations are
modeled as stochastic processes, which could be further represented by some types of random
functions of some standard basic random variables, say through decompositions or physical
stochastic modeling as elaborated in Sections 2.2.5 and 6.4.1 and Chapter 3. The randomness
involved in the system properties might originally occur as random fields or directly as some
random parameters. Again, the random fields can be discretized or decomposed to a set of
standard random variables, by employing the methodologies in Section 2.3 for example. The
random vector @ consists of these two sets of standard basic random variables coming
respectively from random excitations and system properties. This is different from Equa-
tion 6.78, where the random parameters come only from random excitations.

As arandom state equation, Equation 6.92 can be understood as an Eulerian description of a
dynamical system, where a velocity field is specified and thus a Dostupov—Pugachev equation
will be led to. However, the system can also be specified by a Lagrangian description. Without
loss of generality, suppose the Lagrangian description is given by

YZH(@,Y(),Z) or Y[ZH/(@,Y(),Z‘) (=1,2,...,m (693)

which, of course, is the physical solution of Equation 6.92 and satisfies Yo = H(®, Yy, 7).
Correspondingly, the velocity can be assumed to take the form

Y =h(0,Yy,t) or Y, =h(® Yo,t) (=12,....m (6.94)

where h = 9H/Jt. The expressions of Hy(-) and /,(-) need not be explicitly figured out in the
present instance; it is sufficient to know that they exist.

In a general sense, if there are a set of physical quantities Z() = (Z,(¢), Z2(1), .. . , Zu, (1))"
associated with the system in Equation 6.92, then Z can usually be determined by its connection
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with the state vectors, for instance by
Z()=vwlY()]  Z(t) =12 (6.95)

where -] is a transfer operator. For example, for a structural system in which geometric
nonlinearity is ignored, if Z,(¢) are the strains at some points, then (-] will be a linear operator
bridging the displacement and the strains (Fung and Tong,2001). While if Z represents Y itself,
then -] is an identity operator.

Introducing Equation 6.94 into Equation 6.95 we have

Z(1) = y[Y(1)] = y[h(®, Y, 1)] = hz(®, 1) (6.96a)

or in a component form as
Zo(t) = hg (®,1)  £=1,2,...,nz (6.96b)
Here, hy = (hz,1,hz0, ... ,hz,nZ)T, where 1, is the number of the physical quantities considered

in Z. For brevity, we now consider the case of deterministic Y, and omit it in the equation.
From Equations (6.96a) and (6.96b), it is noted that the randomness involved in Z(¢) results
completely from @; therefore, the system (Z(¢),®) is a probability preserved system. From
Equation 6.20, if the joint density of (Z(?),®) is denoted by pze(z,0,t), where
z=(z1,22,...,2n,), then it follows that
D

—J pz20(2,0,1)dzd6 =0 (6.97)
D1 )p,xpe

Following a process analogous to Equation 6.87, we have

DJ D
— p70(2,0,1 ddez—J pze(z,0,1)|J| dzdo
Dt Jp,xpe 6 ) Dt )p, xpe 6 Wl
D, D|J
= (|J| P20 |y o0 )d a0
D, , xDg

orze <> Opze Ohz.y
= J +> h +|J ~| dz do
[| |< 5+ Dt L |+ e
Opze L Opze
= + E hz.. J| dz do
DIUXD@)< at =1 e aZ[ | ‘

Opze L dpze
= + D h dz de
D;xDg ( ot ; Zt 0z Vi

(6.98)

where the arguments of the functions pze(-) and Az ¢(-) are omitted for notational simplicity.
Again, as pointed out in Equation 6.87, in each step of Equation 6.98 the arguments should be
carefully understood as sometimes Eulerian but sometimes as Lagrangian coordinates,
according to the integral domain.

Introducing Equation 6.98 into Equation 6.97 and noting the arbitrariness of D, X Dg, we
have

5172@ z,0,1) Opze(z,0,1)
+ Zhu (0,1) o =0 (6.99a)
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or in an alternative form, when considering Equation 6.96b, as

(9])1@ Z 0 ) Zz 0,1 81’2‘"’3: 8.0 _y (6.99b)
J4

The joint density of Z(¢) can then be given by
pala) = | pola.0.0 a8 (6.100)
Qe

where Qg is the distribution domain of .

It is noted that the dimension ny of Equation 6.95 depends only on the research requirement
and is independent of the dimension m of the system in Equation 6.92. In this regard, we might
call Equations 6.96a and 6.96b the result of an arbitrary-dimensional Lagrangian description. It
is the flexibility here that makes the dimension of Equations 6.99a and 6.99b flexible rather than
fixed to be the same as the dimension of the state vector of the system as in the Liouville, FPK
and Dostupov—Pugachev equations.

6.5.1.2 From Multidimensions to One Dimension: A Formal Treatment

When employing a formal expression of the density of the responses and handling it directly,
we can also reach the one-dimensional uncoupled density evolution equation (Chen and Li,
2005a; Li and Chen, 2005a, 2006a).

Clearly, owing to Equation 6.93, the density of Y(¢) is given by (see Appendix A)

pe(y,1) = jmy _H(8, y,. )l (6) 0 (6.101)

where 8(+) is the Dirac delta function and

m

pye(y,8,1) =y —H(8,y,, 1) HSM—H@ Yo 1)lpe(8) (6.102)

is the joint density of (Y(¢),®). Here, without loss of generality and for simplicity, we consider
Y, =Yy as a deterministic vector.
Differentiating with respect to ¢ on both sides of Equation 6.102 yields

w = %Ea[yz—He(G»YOJ)]P@)(O)
= i{ TT ol x(0.30.0 2 ‘}'ng(e’yoyl)}}pe(e)
=1 Wk=1kee
. - _8H/(0,y0,t) . . 88[)75_1_[((9)3’0,1()}
= ;({ a5 Lllj[yk Hi(0,y0,1)] Bve )P@(e)
_ & ([_GHZ(O,yO,t)} 8{1_[:_18[}’/(_Hk(e?YOvl)lp(‘B(e)})
“ ot Jyr
_ 7211// , 07 apY@(Yve t)

Oy,
(6.103)
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or in an alternative form as

8PY@) y,(-) ) 3PY®(Y79 Jpve(y.8,1)
+Z/15 Yo.1) o =0 (6.104)

Comparing this equation with the Dostupov—Pugachev Equation 6.91 shows that the
coefficients here are no longer coupled with the density in the partial differentiation operator.
In mathematical form, this is because Equation 6.92 is replaced by Equation 6.94 and,
therefore, Gy(+) in the coefficient is replaced by /(). Here, it is worth pointing out that we
have turned from the Eulerian system to the Lagrangian system; that is, from the coupling
physical equations to the uncoupled physical equations (physical solutions).

Taking multiple integrals with respect to yi,...,Y¢—1,Y¢+1,...,Ym and denoting the
marginal density by
pre(y,8,1) = me(y, 0, 7)dy; - dye—1dyes 1+ dym (6.105)

we immediately have

8]’&@()’2707 l) apYz:@(y/f707t)

he(0 t =0 6.106

o (8.3, 1) PO (6.1060)
or in an alternative form, when Equation 6.94 is considered, as
pre(y,,0,1) . Ipy,e(ye,9,1)

S Y0, f) — =0 6.106b

o e T (6.106b)

where use has been made of
pY/@(yb 0, t)|y[*>j:0<> =0 and ylezQ(yZa 0, t)|v\'[‘>i00 =0 (6107)

Clearly, Equations 6.106a and 6.10b are identical to Equations 6.99a and 6.99b respectively
if nz =1 and Z is replaced by Y,

These equations can also be obtained in a more straightforward way. From Equation 6.93 it is
known that the density of Y;(7) is given by (see Appendix A)

prloes0) = [ o~ Hi(0.33.lpo () 00 (6.108)
Therefore, the joint density of (¥,(¢),®) is
Py,@ (yfve [) _8[})5 ( »Yo> )] (e) (6109)

Differentiating this equation on both sides with respect to ¢ yields

Ipy,e(ye,0,t 0
o080 _ 05 0.y, 1)]pe(®)

ot - Ot
— 68[))/ - Hé(ea Yo, t)]pQ(e) a[yf - Hf(ea Yo, l)}
Oy ot
6.110
_ OHY(8.¥0,1) Oprie(y1,0.1) (6.110)
ot Oyy
_ 8]’&@()’6797 l)

which is of course the same equation as Equations 6.106a and 6.106b.
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Clearly, if we replace Y and h by Z and hy respectively, then following the above derivations
we can also reach Equations 6.99a and 6.99b.

In the above manipulations, we note that when the Dirac delta function is employed, we are
tackling the problem starting from the perspective of the sample. In other words, we can reach
the density evolution equation by establishing a relationship between the sample and the
density.

6.5.2 Linear Systems: Uncoupling of the Dostupov—Pugachev Equation

For linear systems, the GDEE can also be obtained by uncoupling the Dostupov—Pugachev
equation, which is a high-dimensional partial differential equation. Actually, this is the first
way that we found to reach the completely uncoupled GDEE for multidimensional problems
(Li and Chen, 2004a).

Suppose Equation 6.78 takes the form

Y =a(@®)Y+F(®,1); Y(t) = Yo (6.111)

wherea = [ag],,y,, andF = (F1, F», ..., Fm)T, which can be determined from the equation of

motion, say, through transformation used in Equations 6.74—-6.76.
In this case, the component G, of Equation 6.78 is given by

Y((@, l) G[ @ Y, l Zagk Yk—FF[(@,l) (6.112)

Substituting this in the Dostupov—Pugachev equation, Equation 6.91, yields

8pY® Z Dys l(Z Ak + Fz)

pye =0 (6.113)

Here, for notational brevity, the arguments in ap/(-), F¢(-) and pye(-) have been omitted.
Equation 6.113 can further be rearranged to

BPYQ 4 Z

+pyeTr(a) =0 (6.114)

Opy
(Z anyk + F/) T

k=1

where Tr(a) = > 77" | @j; is the trace of matrix a.
Integrating both sides of Equation 6.114 with respect to yi,...,Y¢—1,Y¢+1,-- -, Ym, for the
first and the third terms on the left-hand side of Equation 6.114 we need only replace pyg by

Pv,e (see Equation 6.105), while for the second term we are led to

5 0)

J=

m m a |
:JZ(Za/k}’k )d}’l dyé_ldyz+1"'dym+Fé$
! e

]dw ~dye _1dygq1 - dym
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m 8
( a[k)’k >dy1 dyg—1dygsr - dym — Z a;py,e + F g;;
J=1, j#t C
m a 5 |
Z J(a/kYk it dYk)+aZ€y/ g Z ajpye + Fo gy@ (6.115)
=Lkt Oye e j=1,j#¢ Ve

where

Py,v®(Ve, Vi, 0,1) = JPY@(Y’Q, H)dy; -+ -dyg—1dygq1---dye—idyey 1o -dy,  (6.116)

Because, for a given 0, y; can essentially take only a single value Y;(8), Equation 6.115 then
becomes

m m 8pY®
Z Zajk)’k"’F/‘ ay; dyy---dye—1dye+1 - dym
J

(6.117)
m apy[@ m
= Z anYi(0) + Fe o Z @;Py,®
k=1 Y i
Substituting this in Equation 6.114, we have
0 0
py[ Z a{kYk % + aypye = 0 (6.1 18)

According to the definition of the state vector, when Yy here is the displacement, namely
£=ng+1,n3+2,...,m,itis seen that as, = 0, then the above equation becomes

m

Z aucYi(0

In contrast to the original Dostupov—Pugachev equation, which is an m-dimensional partial
differential equation, Equation 6.119a is a one-dimensional equation. Further, noting Equa-
tion 6.112, we find that the coefficient is essentially the velocity; therefore, the equation can
also be rewritten as

81’1@@
Oy

Opy,e Y(l

=0 (6.119a)

op Y,0
Oy

opv.e
ot

+Y,(8,1) =0 (6.119b)

This is nothing but Equation 6.106b.

The above manipulations uncouple the high-dimensional density evolution equation to a
one-dimensional equation and simplify the problem greatly in the case of linear systems.
Although it does not work in nonlinear systems, the idea that we have to consider the evolution
of probability from the point of view of random event description has essentially been used,
particularly in the derivation of Equation 6.117.
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6.5.3 Initial and Boundary Conditions

If the initial value vector in Equation 6.95

Z(to) = 20 (6.120)
is a deterministic vector, where zy = (201,202, - - ,Zo‘nz)T, then the initial condition of
Equation 6.99 will be given by

ng
126(2,8,10) = 5(2—20)pe(8) = [ [ (= — z0.)pe(6) (6.121a)

(=1

In the case that randomness is also involved in the initial conditions, the corresponding
random variables can be absorbed into and then become part of @. For such cases, there are

120(2,0, %) = pz,(2)pe(0) (6.121b)

where pz, (o) is the joint density of Zj.
For the system without external constraint on Z(f¢), the boundary condition for
Equations 6.99a and 6.99b can take

rz0(z,0,1)[, ... =0 L=1,2,...,ng (6.122)

while for some special cases (for instance, in the first-passage reliability assessment), some
other conditions (such as absorbing boundary conditions) might be imposed on the equation (Li
and Chen, 2005a; Chen and Li, 2005a). This will be discussed in Chapter 8.

6.5.4 Physical Sense of the Generalized Density Evolution Equation

Equation 6.99 holds for arbitrary physical quantities involved in a physical system. For
stochastic structural systems, Z as determined in Equations 6.99a and 6.99b can be a vector of,
say the stress, strain, internal force, displacement, velocity and acceleration, and so on. In
particular, if Z represents Y, then Equations 6.99a and 6.99b essentially become Equa-
tion 6.104, while if Z represents one component of Y, say Y;(7), then Equations 6.99a and 6.99b
are then identical to Equations 6.106a and 6.106b. In the case nz =1, Equations 6.99a
and 6.99b reduce to a one-dimensional partial differential equation which, for clarity, can
be rewritten as

apZ®(2707 t) apZ@(Z707[) _
o +hz(0,1) 0 0 (6.123a)
or in an alternative form as
8pZ®(Zae7 l) ; 6PZ®(Z,0, l) _
BT +7(0,1) = =0 (6.123b)

where Z(8, ¢) is the velocity given @ = 0.
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If two physical quantities are involved, then Equations 6.99a and 6.99b become

Opz,2,6(21,22,0,1) Opz,2,6(21,22,0,1) Opz,2,0(21,22,0,1)

h t h t =0
ot +hz.1(8,1) 0z, +h22(8,7) 0z,
(6.124a)
or in an alternative form
Opzze(z1,22,0,1) . Opzze(z1,22,0,1) . 0pz,2,0(21,22,0,1)
142 Z 142 Z 142 —
o1 +2:(8.0) 071 +22(8,0) 025 0
(6.124b)

where Z;(0,¢) and Z,(8, ¢) are the corresponding velocities given @ = 8.

From Equation 6.123b, the physical sense of the GDEE is clear that the change of the
probability density is due to change of the position; therefore, the time rate of change of
the probability density is associated with the time rate of change of the position. In this
equation, the inseparable ties between the physical system and the evolution of probability
are clearly exhibited. It is quite interesting to revisit Section 6.5.2 and find that the same
result is reached in Equation 6.119b, which is obtained in a quite different way from that
in this section.

Further, the most important point distinct from the classical Liouville equation and FPK
equation is that the probability density of each physical quantity is due to the change of the state
itself, not by other components, no matter whether the physical quantities are coupled or not.
Because of this, the GDEE can be of any arbitrary dimension without constraints on nz. Then it
is possible to extract the probabilistic information of any single or any two or more physical
quantities, which can be at least numerically feasible, as will be elaborated in Chapter 7. The
crux of the uncoupling is to view the principle of preservation of probability from the random
event description incorporating with the physical solution instead of the state space description
together with the coupling physical equation.

The embedded reason of the above difference of the two different descriptions essentially
lies in the different methodologies. In the state space description, as elaborated in Section 6.3,
the investigator is focused on the transition of probability in a fixed domain in different ways
according to their different phenomenological origins; for example, the effect of drift and
diffusion. This requires globally taking into account the state vector, because each component
of the vector is an indispensable dimension in the state space where the fixed domain examined
is located. On the other hand, in the random event description, it is stressed that the transition of
probability is adherent to random events and their probability measure; namely, the transition
of probability results, in essence, not from the superfluous phenomenological exhibition
of change of state, but from its embedded random events. In other words, the transition of
probability density is adherent to a physical evolution process. Thus, the transition of
probability is treated in a unified way by its association with the random event. In fact, such
a principle is suitable for all physical stochastic systems.

In the above sense, Equations 6.99a and 6.99b are called the generalized density evolution
equation (GDEE). The methodology for tackling stochastic dynamical problems through
solving the GDEE is called the probability density evolution theory (Li and Chen, 2006c, 2009).
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6.6 Solution of the Generalized Density Evolution Equation
6.6.1 Analytical Solution
6.6.1.1 The Method of Characteristics

‘We have encountered the method of characteristics several times, in Sections 5.6.3 and 6.3.1 for
instance. Here, we will discuss its basic idea and the embedded physical sense. For simplicity of
concept, we first consider the one-dimensional first-order partial differential equation

L) ) Lo < b p(.) =0 (6.125)

where p(x,?) is the unknown function of x and ¢ and a(x,?) and b(x,?) are known functions of x
and ¢. Clearly, we note that if b(x,t) = da(x,t)/0x, then Equation 6.125 becomes

P 4 Dy, (e, )] = 0 (6.126)

which is the Liouville equation elaborated in Section 6.3.1.
If we introduce a parameter t and use the parametric equation

{ x = x(t) (6.127)

t = t(7)

then we have

dplx(0), t(0)] _ Op(x, ) dr | Op(x, 1) dx

12
dz ot dr Ox dr (6.128)
Comparing this equation with Equation 6.125, when setting

dr

— =1 6.129

% (6.129a)

d

£ = a(x, 1) (6.129b)
it is found that Equation 6.125 becomes

d t
PR O) | piate), (o) plx(e). ()] = 0 (6.130)

Here, we see that Equations 6.129a and 6.129b determine a family of curves represented by a
parametric equation, Equation 6.127, in the x—¢ plane. Along this family of curves, the partial
differential equation Equation 6.125 becomes an ordinary differential equation Equation 6.130.
These curves are called the characteristic curves or characteristics.

Note that the initial condition of Equations 6.129a and 6.129b can take

(0)=0  x(0)=y (6.131)
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The coordinate system (x, ?), therefore, is transformed to the coordinate system (y, t) by

x = x(x,7)
{t:t(,\/,r):r (6.132)

This implies that, for a given initial value y, Equation 6.132 (through integration of
Equations 6.129a and 6.129b) determines a curve in the x—¢ plane, which is one specified
characteristic curve. Figure 6.6 shows two typical characteristic curves for different initial
values y; and y,. The transformation in Equation 6.132 is nonsingular, so that the inverse

transformation exists: (x.1)
X=X\,
{‘czr(x, 0 =t (6.133)

It is well known that the solution of Equation 6.130 is given by

T

£067) 2 plxCr ) 106 7)) = Pl o), i, T())]GXP{ - [ bt ) dr} (6.1342)

To

Here, x(7) and #(t) used in Equation 6.130 are replaced by x(y,t) and #(x,7) respectively.
Noting Equations 6.131 and 6.132, Equation 6.134a becomes

£061) = Pl 0. 106, 7)] =po<x>exp{ - j blx(x, ). 10, 7] dr} (6.134b)

where pg(x) is the initial function of p(x,?); that is, p(x,0) = po(x).
Introducing the inverse transformation in Equation 6.133 will then give the solution of the
original Equation 6.125 by

p(x7 t) = f(Xﬂ T) |X:/\/(x‘t),f:r(x‘t)

= polx(x, t)]exp{ - J;b[x(x7 1), t(x,7)] d‘[} (6.135)

x=x(x,t),1=1(x,1)

* dx
= = a(x,t) X = x(x,1)

'S A

N

dx
— = a(x,t X=X N3
7 (x,9) (x2,0)

Figure 6.6 Characteristics of the first-order partial differential equation.
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The above method for solution of the first-order partial differential equation is called the
method of characteristics (Hodge,1950; Petrovsky,1954; Farlow,1993; Sarra,2003), which has
been employed in Sections 5.6.2 and 6.3.1.2.

The physical sense of the method of characteristics is of particular interest. From
Equations 6.129a, 6.129b and 6.131 it is seen that the characteristic curves are determined by

d

Pl a(x,t) x(0) =y (6.136)

If b(x,t) =0, then from Equation 6.130 we have

dp[x(x, 1), 1(x, 7)]
dr

=0 (6.137)

Here, we note that y is invariant against 7. This indicates that along the characteristic curve
for a specified y, which is determined by Equation 6.132, p(x,?) is invariant and equal to p
(x,0). In the case p(x,?) is a PDF, this underlies that the probability density will be preserved
along the characteristic curves, which is nothing but what is embedded in the random event
description of the principle of preservation of probability. Referring to Section 6.2.2.1 will
provide more insight. Actually, if randomness is only involved in the initial condition, then it
is seen clearly that the characteristic curves have a Lagrangian coordinate description of the
position of the particle being studied. This is particularly clear when we view Equation 6.132
and rewrite it as

x=x(x,1) (6.138)

where =1 is used.

When Equation 6.136 is viewed as a state space equation in an Eulerian system, Equa-
tion 6.138 as its solution is nothing but the corresponding Lagrangian description. Here, once
again, we find the essential relation between the Lagrangian description and the preservation of
probability.

6.6.1.2 Analytical Solution of Generalized Density Evolution Equation

We now consider the special case when Equation 6.125 becomes

Ip(x, 1) Ip(x, 1)
— t =0 6.139
5 T~ (6.139)
This is essentially in the same form as the one-dimensional generalized density equation
(Equation 6.123a) for a specified 0. In this case, from Equations 6.129a and 6.129b and the
initial condition in Equation 6.131, the characteristic curves are given by

x=x+ J; a(t)dt = x+ (1) (6.140)

where (1) a(t) dt.

Il
=) 2
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From Equation 6.135 it is known that the solution of Equation 6.139 reads
p(x, 1) = polx — ()] (6.141)

where po(x) is the initial function of p(x,?). This is actually a one-way wave propagating at a
velocity of a(?) (Graff, 1975).
Now we consider Equation 6.123a again, repeated here for convenience:

8pZ®(2797t) 8p2®(2707t) _
According to Equation 6.141, the solution is
p2®(2707l) :p()[Z—H(O,l)] (6142)
where
t
H(0,1) = J hz(0, 1) dt (6.143)
0
Note that
po(z) = 8(z = z0)pe(6) (6.144)
Combining Equations 6.142 and 6.144, we have
pelet) = | pro(0.000 = | sl-HO.pe®)d  (6.145)
.Q@ Q@
If only one random parameter © is involved, then we have
pr(e,t) = J 8z — H(0, 1)]po(0) d6 (6.146)
Qo

Considering the integration rules of the Dirac delta function (see Appendix A), this can be
changed further to

po(z1) = Wlpe @l (6.147)
where |J| = |0H ~!/0z|.

The closed-form solution is consistent with what was employed in Section 6.5.1.2, where the
solution of Equations 6.106a and 6.106b will be Equation 6.109 according to Equation 6.145.

Example 6.2. Response of an Uncertain SDOF System Consider the SDOF system
X+0’X=0 X0)=0  X(0)=xo (6.148)

where w is a random variable uniformly distributed over [w;, w,].
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Because w is a random variable, the response X(7) is a stochastic process. The formal
solution of the displacement and velocity of the system in Equation 6.148 is given by

X = x¢ cos(wt) (6.149a)
X = — xow sin(wt) (6.149b)
For clarity, denote w by ©. The GDEE of the process (X,0) is given by

Opxe(x,6,1) Opxe(x,0,1)

T — xoBsin (61) o =0 (6.150)
According to Equation 6.142, under the initial condition
Pxe(x,0, 1) = 6(x — xo)pe(6) (6.151)
the solution of Equation 6.150 is
pxo(x,0,t) = 8(x — xo cos 0t)pe(0) (6.152)
Thus, according to Equation 6.146, we have
px(x, 1) = JS(x — xocos0t)pe(0) dd (6.153)

Or further (see. Equation 6.147):

1 = X X
1 2€n+2n—cosl(—),t]+ [ZETH—COSI(—),Z]} X<l
px(x,t)= /—x(z)_xz;{p"[ X Pn P x| < |xo
0

otherwise
(6.154)
where n =0t and
1
Palx)=pe(x/1) (6.155a)
for w1 SQSWZ
po(f)=q w2—w (6.155b)

0 otherwise

Figure 6.7 shows the typical PDF at different time instants given by Equation 6.154 (Li and
Chen, 2004a).
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Figure 6.7 PDF at typical different time instants.

6.6.2 Numerical Solving Flow of the Generalized Density
Evolution Equation

6.6.2.1 Numerical Solving Flow

To resolve a stochastic dynamical system by the GDEE, some special methods must be
developed. Here, we only give a brief description. A more detailed discussion is given in
Chapter 7.

It is seen that Equations 6.99a and 6.99b are linear partial differential equations where there
are no terms with respect to partial differentiation in terms of @ involved. That is, for a given 0,
Equations 6.99a and 6.99b become partial differential equations where the arguments of the
unknown function are only z and ¢. This equation can of course be solved through a numerical
algorithm once the time-variant coefficients Z(8, ) are available.

Therefore, to solve the GDEE, we should first select a set of representative points in the
random parameter space Qg. Then, for each representative point chosen, carry out a
deterministic dynamic analysis to obtain Z,(8, ). These results are then introduced into
the GDEE and solved by, say, some type of numerical method. Finally, the results associated
with all the representative points are synthesized to obtain the instantaneous probability
density of the responses of interest. For simplicity of illustration, we will consider the
solution of the one-dimensional GDEE (Equation 6.123b). The same idea can be used for
Equations 6.99a and 6.99b.

Explicitly, the above procedures usually involve the following four steps:

Step 1. Select representative points in the random parameter space Qg.

Denote this point set by P = {0, = (814,024,...,054):¢ =1,2,..., 1}, where s is the
total number of random variables involved, as discussed in Section 6.5.1.1, and n, is the
cardinal number of the point set. For each representative point 6,, a representative volume
(domain), say the Voronoi cell V,, exists (Conway and Sloane, 1999). These cells form a
partition of Qg. The probability measure over this domain is assigned to this point and
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denoted by P,; namely:’
P, = J Pe(8) d6 (6.156)
v,

q

Clearly, 2221 P, = 1. The initial conditions (Equations 6.121a and 6.121b) are partially

discretized correspondingly to

Pze(2,04, 1) = 6(z—20)P, qg=1,2,... R (6.157a)

Pze(z,04,10) = pz,(2)Py g=1,2,... 14 (6.157b)

Step 2. For each representative point 8, carry out deterministic analysis on the dynamical
system (Equation 6.92) when setting ® =0, and then obtain the velocity of Z(8,, f) from
Equation 6.95.

Step 3. For each representative point 8,, introduce Zg((-)q7 1) obtained in Step2 into the
discretized version of Equation 6.123b:

8]’2@(27 Oqa l)
ot

6p2®(27 Oqa l)

+2(8,,1) o

=0 q=1,2,...,nl (6.158)
Then solve this equation under the initial conditions (Equations 6.121a and 6.121b) with,
say, the finite difference method. In this step, the space (z,7) should be meshed. Denote the
nodes of the mesh by (z;, ), i = 0; 1, £2,...,k =0,1,2,..., where z; = iAz, t;y = kAt,
k=0,1,2,... Az is the space step in the direction of z and At is the time step.
Equation 6.158 is then transformed to an algebraic equation set and can be solved to give
the values of the density at the nodes, denoted by pze(zi, 8y, tx).

Step 4. Synthesize the results in Step 3 to obtain the instantaneous density through the

discretized version of Equation 6.100:
Msel

pz(zit) = > pze(zi,0q, 1) (6.159)
q=1

6.6.2.2 Schematic Solution Process of a One-Dimensional Liouvillian System

To illustrate further the meanings of the GDEE and its difference from the Liouville equation,
we consider the solving flow of a one-dimensional system with randomness involved only in
the initial condition:

X=AX,1) X(t) =Xo (6.160)

where Xj is a random variable with the density px, (xo).
Denote the density of X(#) by p.(x,?). According to Equation 6.29, the Liouville equation and
its initial conditions are respectively

w + a% [A(x, t)px(x,1)] = 0 (6.161a)
px(x, %) = px, (%) (6.161b)

7 This will be elaborated in Section 7.2.2.
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On the other hand, the Lagrangian description of the system in Equation 6.160 and its
velocity are assumed to be given respectively by (see Equations 6.93 and 6.94)

X = H(Xo,?) and X = h(Xo,?) (6.162)

When (X(¢),X) is examined, it is a probability preserved system and the GDEE is given by

Opxx, (x, X0, ) Opxx, (x, X0, )
—_— —_— .1
5 + h(xo, 1) o 0 (6.163a)
with the initial condition
Dxx, (X, X0, o) = 8(x — x0)px, (x0) (6.163b)

where pxx, (x, Xo, ) is the joint density of (X(¢), Xo).

X
: |
R ¥4 L A 1)
X2
X1
X0
[ t
X 0 k t
x_2 _——
x,j . "1
x—ll
(@)
x A
xO‘nl 1
X0: o — X;
7 S R I R 4
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X, 7
0;1
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|

(b)

Figure 6.8 Schematic solution process through (a) the Liouville equation and (b) the GDEE.



Probability Density Evolution Analysis: Theory 229

The density of X(¢) can then be obtained by
px(x,t) = JPXX() (x, X0, 1) dxo (6.163c¢)

If we solve the above sets of equations numerically by the difference method, for the system
in Equations 6.161a and 6.161b the solving process is implemented on a meshed x—¢ plane, the
initial condition (Equation 6.161b) will be first discretized and then Equation 6.161a is solved
through a difference scheme, where the velocity field A(x, ) can be computed instantaneously
at the discretized mesh node points (x;,7;) (Figure 6.8a). For the system in Equations 6.163a
—6.163c, however, what is done first is to select some representative point of the random
parameter X,, which can be denoted by xo.1, X0, - . ., X0, then take time integration on
Equation 6.160 for each given xj,, to obtain the time history of the velocity in Equation 6.162.
After that the time histories of the velocity are employed in the finite difference method to solve
Equations 6.163a and 6.163b and finally synthesize all the results to obtain the joint density, as
shown in Equation 6.163c (Figure 6.8b).

Here, it is seen clearly that in the solving process of the Liouville equation a velocity field in
the state space is used and computed instantaneously, whereas in the solving process of the
GDEE the tracing of some representative trajectories is needed instead of computing the
velocity field. This is just the difference between the state space description and the random
event description.

It seems, in this example, that the implementation process of the probability density
evolution method is more complicated than the Liouville equation. However, in the analysis
of a large system, the Liouville equation might be impossible because a multidimensional
partial differential equation must be handled, which is usually impossible for large dimensions.
In contrast, there are no essential difficulties arising compared with the one-dimensional
problems in the probability density evolution method.
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Probability Density Evolution
Analysis: Numerical Methods

7.1 Numerical Solution of First-Order Partial Differential Equation
7.1.1 The Finite-Difference Method

Despite the endeavors devoted to analytical solutions of first-order partial differential equations,
it is more feasible to seek numerical solutions for most problems of practical interest. Because
the generalized density evolution equation, as a first-order partial differential equation, is in a
form similar to conservative equations in fluid dynamics, some of the approaches developed
there can be applied in the probability density evolution method. Actually, the numerical
methods for first-order partial differential equation, such as the finite-difference method, the
finite-volume method and the cell-mapping method, and so on, have been well developed,
particularly some special approaches or schemes stimulated by demands in computational fluid
dynamics (Anderson, 1995; Wesseling, 2001). The finite-difference method, which has been
well dealt with in general textbooks (Mitchell and Griffiths, 1980; Smith, 1985; Stricwerda,
1989) and especially in tackling problems of conservative laws in physical systems (Godlewski
and Raviart, 1996), exhibits satisfactory performances in probability density evolution analysis
when the appropriate difference schemes are employed (Chen and Li, 2004a).

Without loss of generality, we first deal with the equation in the form of Equation 6.139,
which is given again here for convenience:

@@0+M0@@ﬁ 0 (7.1)

Ox

ot

This is a hyperbolic partial differential equation. The basic idea of the finite-difference
method is to discretize the partial differential Equation 7.1 into an algebraic equation, referred
to as the difference equation.

To use the finite-difference method, the x—¢ plane will be meshed by the two families of lines

x=x t=t; j=0,%1,42,...,k=01,2,... (7.2)
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such that a uniform grid with time step Az and spatial mesh size Ax is determined. For
notational convenience, denote the value p(x;, #;) at the point (x;=jAX, t, = kAt) by pj( >.
Representing the partial differentiation by the difference between the values on the nodes
will give an algebraic equation, then solving the algebraic equation will give the approximate
values of p(x;, 1;). Obviously, different approximate representations of the partial differentia-

tions will result in different difference schemes.

7.1.1.1 One-Sided Difference Schemes

Using the first-order Taylor expansion in terms of ¢

(k)

k41 k op

P/(‘ +1) :P/(‘ )4 {at] At + o(At) (7.3)
j

we can approximate the partial differentiation in terms of ¢ by

k+1 k
ot|; At '
Likewise, in terms of x, we have the first-order Taylor expansion
) (k)
P =pP + {ap} Ax + o(Ax) (7.5)
Jj—1
Therefore, partial differentiation in terms of x can be approximated by
c k k
ap] ¥ :p<> —p¥, 06
ox; Ax '

Substituting Equations 7.4 and 7.6 in Equation 7.1, replacing a(?) by a* " and rearranging the
equation yields

k+1 Ko, k
P = = 2aPp - p] (7.7a)
or in the alternative form
p}kﬂ) = (1—7a® ) P pjjl (7.7b)

where 1= At/Ax is the ratio of the time step to the spacial mesh size.

A schematic illustration of this difference scheme is shown in Figure 7.1.

The most important attributes of a difference scheme for a hyperbolic partial differential
equation are the consistency, convergence and stability. A difference scheme is consistent if the
difference equation tends to the original partial differential equation as Ax — 0 and Az — O.
On the other hand, a difference scheme is convergent if the solution of the difference equation
at the grid tends to the solution of the original partial differential equation as Ax — 0
and At — 0. Generally, a consistent scheme cannot guarantee convergence. The stability,
here the numerical stability, requires that the increase of the computed value of the solution
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(k)
N (k+1)
J p;

®
Pj

Figure 7.1 One-sided scheme (Equation 7.7).

of the difference equation should be bounded. The Lax—Richtmyer equivalent theorem
asserts that a consistent finite-difference scheme for a partial differential equation for which
the initial value problem is well posed is convergent if and only if it is stable (Stricwerda,
1989). Because of this, the stability of a difference scheme should be stressed. Otherwise it
will be of no practical use.

The scheme in Equation 7.7 is, of course, consistent because Equations 7.4 and 7.6
are consistent.

To understand the other features of the scheme in Equation 7.7, we consider the special case
a® = a.Inthis case, the characteristic line will be a family of parallel lines with slope a, of which
the one from the origin is shown in Figures 7.2a and 7.2b respectively for a > 0 and a<0.

x | I z *
Characteristic line Characteristic line
X; X |
X, Xy
2’ Do
o
t t t i t
At - 0 1 2 k
X 1 X

a
1
X_,
Do D,

(a) (b)

Figure 7.2 Characteristics and propagation of probability.

For simplicity, we consider the initial value condition'

©_ s _J1 forj=0
P =0 = {0 otherwise (7.8)

'Tt should be noted that using this initial condition is also without loss of generality, because any discretized
initial condition p](.o) =pjo, j=0,£1,42,..., can be represented by a linear combination. In addition,
Equation 7.8 is also the discretized initial condition for many practical problems, say in discretization of
Equation 6.121a, except from a difference in a constant factor.
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which means that pj(»o) is nonzero only at the origin. Here, & is the Kronecker delta. Using

Equation 7.7b, it is noticed that the nonzero points at the time instants ¢4, #,, . . ., are limited
in the shaded area in Figure 7.2a, denoted by the small hollow circles. In the case a > 0, the
actual propagation of the probability is along the characteristic line from the origin on which
the points at 71, f,, ... are denoted by the black points. In addition, we notice that

xopf)1> +x1p$1) = alt (7.9a)
and it is easy to verify that

Z xjpj(-k> = kaAt (7.9b)
J

This means that, at a specified time instant, the actual propagation point (on the characteristic
line) is the mean point of the nonzero pomts in the numerical solution. In particular, noting
that we require the probability® 1 > p< ) >0;1> p( ) >0 and xg=0, x;=Ax, from
Equation 7.9a we have

0<p =aAt/Ax<1 or 0<ia<1 (7.10)

What will happen if Equation 7.10 is not satisfied? From Equation 7.7b, it is seen that if
Aa > 1, then

p(()l) =(1- )va)péo> <0 pgl) = )vapf)o) >1 (7.11a)
and further
P = —iaylpy  p =20a— 2 = 2a’py) (7.11b)

Actually, we have in general
p](.k) = (]k> (1 —)Va)kfj)fa"péo) (7.11c)

where

pgd = /'tap,((k:l =Ad"py’ = pars (7.114d)

This is an unbounded quantity and increasing very rapidly against k if a > 1. Therefore, if
Equation 7.10 is violated, the scheme in Equation 7.7 is unstable.

The quantity p(x, f) is the PDF. However, it is usually more convenient to understand the discretized value
as a value of probability. This can be achieved when we replace the discretized initial condition pj(.o) =8j0/Ax
by p}o) = 8o, as is done in Equation 7.8. Then, after we get the numerical solution, we in turn replace p(x, f) by
p(x, 1)/Ax.
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On the other hand, if a<0, then the practical propagation of probability is along the
characteristic line shown in Figure 7.2b; however, the numerical probability in the scheme in
Equation 7.7 propagates in the shaded area in Figure 7.2a. In this case, from Equation 7.7b
or Equation 7.11c:

Py = (1=zapy " = (1= 2a)'py” = (1 - ) (7.12)

Because now a <0, and thus 1 — Za > 1 and then (1 — 2a)* is an unbounded quantity and
increasing very rapidly against k, this means that the scheme in Equation 7.7 is now unstable.
Therefore, in this case, the scheme should be modified such that the propagation direction
should be the shaded area in Figure 7.2b.

Modify Equation 7.6 to

(k) (k)
Ox Ax '

Substituting Equations 7.13 and 7.4 in Equation 7.1 yields
k+1 k k k

P = p =29, — (7.14)

or in an alternative form as

k+1 kK, k

p} = 1 Jricz<k)]p](- - Aa(k)p]&)l (7.14b)

Likewise, to guarantee the stability of the scheme in Equation 7.14 requires that
1+2a®]>0 or —1<ia® <0 (7.15)

The schematic illustration of the scheme in Equation 7.14 is shown in Figure 7.3.

(k)
pj+l

® (k+1)
pj pj

Figure 7.3 One-sided scheme (Equation 7.14).

Equation 7.7 is sometimes called a forward-time backward-space scheme and Equation 7.14
is called a forward-time forward-space scheme. It should be stressed that, according to the
above analysis, the appropriate scheme should be chosen according to the sign of a(?) such that
the propagation direction of the numerical solution coincides with the propagation of the real
solution, which is determined by the characteristic curves.

The schemes for a > 0 (Equation 7.7) and a <0 (Equation 7.14) can also be written in a
unified way by

p](.”” =(1— |ia|)p](.k) (|Aa| —Mz)pj(Jrl + = (|Aa| +/1a) (7.16a)
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or
k+1 k) |, (k
Pt = —dapl) \u(—a)+ (1 - 2a))p" + 2ap} u(a) (7.16b)
where u(-) is the Heaviside unit step function, of which the value is unity when the argument is
nonnegative and otherwise zero (see Appendix A), and «a here represents a® for simplicity.
The conditions in Equations 7.10 and 7.15 now become

2a®| <1 (7.17)

Actually, this is just the celebrated Courant-Friedrichs—Lewy (CFL) condition (Courant
et al.,192).

One of the advantages of the one-sided scheme in Equation 7.16 is that the nonnegativeness
of probability can be preserved. In addition, the total probability is conversative; namely:

ij(k) = Zp}o) =1 (7.18)
J J

which can be verified by introducing the unified scheme in Equation 7.16. However, it is of first-
order accuracy because only the first-order expansion is employed in the Taylor series
approximations in Equations 7.3, 7.5 and 7.13. The schemes of higher accuracy should retain
higher-order terms, which will be elaborated in the following sections.

Before leaving this section, we spend a little more time on the unified scheme in
Equation 7.16. It is seen that Equation 7.16 is a one-step linear scheme; namely:

l‘“ Z c/ij (7.19)
(=—v

For the present case, v =1, c_| = 3 (|4a| + Za), co=1—1Aal and ¢| = 1 (|Za| — Aa). This
shows that the value at the grid at time #; , ; is the linear combination of the values at the grid
at time 7.

The physical sense of Equation 7.19, however, is not so clear. In particular, preservation of
probability cannot be seen directly. If we let F(p) = ap(x, t), which is the flux of probability,
Equation 7.1 now becomes

op aF(p)_
T A =0 (7.20)

This equation is usually called the convertive type partial differential equation. When it is
discretized using Equations 7.4 and 7.6, where p is replaced by F, we get

k+1 k k k k k
pf N =l = = FY) = - iaE?

i-3%

(7.21a)

where F; *) and F )1 are the numerical flux and AF (&) U= Fj(k) —F /(li)l is the difference in the
numerical flux.> ’ '

3Such convention for notation is widely used in numerical analysis and computational fluid dynamics and will
be widely used in the following sections. For any quantity p;, we denote Ap;, (2m—1)/2) = Pj+m — Pj+m—1 for
m=0,+1,42,.... For instance, Apj i3 =Dpj+2—Dj+1, while Apj,% =pj-1—Dj-2-
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The physical sense of Equation 7.21a is, of course, clearer than Equation 7.19. We can now
rewrite Equation 7.16 in the form of Equation 7.21a by employing the numerical flux:

k),One-sided 0 1 k 1 k
Fonesied & ) — 2 (a— laplt), + 5 (a+ lal)p)" (122)

Using similar notation, Equation 7.21a can also be rewritten as

k+1 K 1 ) o1 X
Y =p = 3 Ga— P spl), — 2 Gatliahap, (7.21b)
k k k k k k
where Apj(_Jr)% = ](+)1 _P_,(' ) and APJQ% :pl( ) ;21

7.1.1.2 Two-Sided Difference Schemes

We now construct the difference schemes with second-order accuracy. If we retain the terms up
to second order in the Taylor expansion in terms of #, then Equation 7.3 becomes

(k) 2 1)

k+1 k op 1]o°p

A e RS (123)
J J

Differentiating Equation 7.1 with respect to ¢ on both sides yields
°p 0 (Op
o ot \ot

= —a(t) o _ a(r) 9 <8p> (7.24a)

= — c'z(t),g—lfC +d* (1) =

If a(?) is slowly varying in the time interval [¢, ¢ + Af], then a(t) ~ 0 and we have

Cp 5 O
= a’(t 7.24b
oz~ Wae (7.240)
Substituting Equations 7.1 and 7.24b in Equation 7.23 yields
(k) 2 2 (k)
k+1) (k) op a’ (1) [op ) 2
i =p —at)|=—| At+—=|=—=| At At 7.25
Y = “”[axl +57 e, 7 +ota) (7.25)

Using the difference to approximate the partial differentiation with accuracy up to second
order, [Op/ ax]}") should be represented by a central difference; namely:

op “ <'k+)1_ ('k>1
—J*r G- Ax? 2
{ ] TAx + o(Ax”) (7.26a)

axj
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Simultaneously, the second-order partial differentiation can be approximated by a second-
order difference:

k) (k) (k)
o%p © j(-+1 +p;21—2p; 2
— = A 7.26b
{ale. = +o(A) (7.26b)
Substituting Equations 7.26a and 7.26b in Equation 7.25 and ignoring the effect of o(Af%)
and O(sz), we have

ke _ 0 _Aap o w ] L EE 0wk (7.272)

pj =P 5 |Pi+1 7 Pj-1 5 [Piv1 TP TP =la

where a® is simplified to « for notational convenience.* The scheme can also be rewritten as
1 L,

p](,k+ D= (1- ﬂvzaz)p_l(.k) + 3 (22d® - ia)p](-i)l + 3 (P2d®+ }va)p;kjl (7.270b)

This is the widely used Lax—Wendroff scheme (LeVeque, 1992), a schematic illustration
of which is shown in Figure 7.4.

(k)
p/‘+l o

k (k+1
) o———o0 pi*

(k)
Pi-1 o

Figure 7.4 Two-sided scheme (Equation 7.27).

Rewriting Equation 7.27b similar to the numerical flux form in Equation 7.21, the numerical
flux is now

HIWa k) 1 k 1 k
FOMNEF® = (a—2a)pft) + 5 (a+ el (7.27¢)

Comparing this with Equation 7.22, we find that

£),LW k),One-sided 1 k
F/( LW _ F/( ) One-sided | §(|a| fiaZ)Ap]&)% (7.274d)

This indicates that the numerical flux of the Lax—Wendroff scheme can be regarded as the
numerical flux of the one-sided scheme plus a correction of a second-order term.

*We point out here that if we consider the effect of the term — a(¢)(0p/dx) in Equation 7.24a, the value of @ in
the Lax—Wendroff scheme should take a*+2 = % [aw +alk+ 1)}. The proof is left to the reader.
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To understand the properties of the Lax—Wendroff scheme (Equation 7.27b), again we
consider the case when the initial condition is given by

P = 8y, (7.8)

in which only the origin is the nonzero point at the initial time.

The propagation of the nonzero points at time instants ¢y, ¢,, . . . is shown in the shaded area
in Figure 7.5, where the characteristic line when a is a constant is also plotted. Clearly, in
contrast to the one-sided schemes, it is seen that the scheme of Equations 7.27a and 7.27b works
both for @ > 0 and a<0.

N

Figure 7.5 The Lax-Wendroff scheme.

Combining Equations 7.8 and 7.27b, it follows that

| 1 0 1 0 | .\ (0
P =52d —ap  pl) = -2 P =52+ aapl) (1.28)

|
| =

and further:
290 a Nk 2 2 k
& Ata® — la 0 & Aca”+ Aa 0
o= (=== n =) (7.28b)
2 2
To meet the requirement that p@k and p,(ck
satisfied that

) be bounded against increasing k, it must be

a2 — Ja
2

22+ da

<1 d
< an 3

(7.28¢)

Consequently:
lha| <1, or 2| <1 (7.29)

This is the CFL condition for the Lax—Wendroff scheme.
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Re-examining Figures 7.2a and 7.2b and 7.5 and the CFL conditions for the one-sided
scheme and the Lax—Wendroff scheme, we can see that no matter whether for the one-sided or
the two-sided schemes, the CFL conditions require that the angle of the diagonal line of the grid
should cover the angle of the characteristic line.

The Lax—Wendroff scheme is of second-order accuracy because in Equations 7.23, 7.26a
and 7.26b the second-order terms in terms of both Ar and Ax are retained. Using the
Lax—Wendroff scheme, the total probability is still conservative; namely:

ij(-k) = ij(o) =1 (7.30a)
J J

and the mean points still coincide with the point determined by the characteristic line; for
example, at the first time step, this can be rewritten as
x_ 1p(,1)1 + xopf)l) + xlp(ll) = aAt (7.30b)

which can be verified by Equation 7.28a. However, unlike the one-sided scheme, the
nonnegativeness of the probability cannot be retained.

7.1.2 Dissipation, Dispersion and Total Variation Diminishing Schemes

The features of the difference schemes play one of the central roles in judging if the numerical
solution is a physically reasonable solution. To understand this point, we now first examine a
numerical example where the exact solution is a piece-wise continuous function, as shown in
Figure 7.6. It is seen that, if the one-sided difference scheme is employed, the numerical
solution is greatly smoothed in the vicinity of the left-hand side discontinuity point while a
tiny high-frequency oscillation occurs in the vicinity of the right-hand side discontinuity point.
If the Lax—Wendroff scheme is employed, on the other hand, the numerical solution is closer
to the exact solution in the vicinity of the left-hand side discontinuity point. However, severe
high-frequency oscillation occurs to the left of the two discontinuity points.

90 T T T T T 90

80} 1 80 Exact soluti |
xact solution

7ol Exact solution 70F L e Lax-Wendroff scheme-

------------------ One-sided scheme
60
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10 10

0 0
-10+ R -10+

_20 1 1 1 1 1 _20 1 1 1 1 1
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.02 0.03 0.04 0.05 0.06 0.07 0.08

(a) (b)

Figure 7.6 Numerical solutions computed by different schemes.

The effect of smoothing is related to dissipation, while the high-frequency oscillation is due
to dispersion. Intuitively, when we gave an analysis on stability of the schemes, from
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Equations 7.11b, 7.11d and 7.12 it is seen that the amplitude of the numerical solution is
nonincreasing when the CFL condition is satisfied. This means that the scheme is dissipating
and the results will be smoother than the real solution. A more rigorous basis is provided by the
modified equation (Warming and Hyett, 1974; Hedstrom, 1975; LeVeque, 1992) or the von
Neumann analysis (Stricwerda, 1989).

7.1.2.1 Modified Partial Differential Equations for Difference Schemes

In the preceding sections, the original partial differential equation is discretized on a uniform
grid through truncation of a Taylor series. The p](k) values obtained by the difference schemes
are approx1mat10ns of the solution at the node (x;, #;). We now investigate what happens if we
regard the p( ) values as the exact p(x;, t;) values and replace them in the difference equation.
Certainly, because the difference equation is an approximation of the original differential
equation, not an exact replacement, we expect that the p(x;, #) values will satisfy some kind of
partial differential equation as an approximation of the original partial differential equation.

We first consider the one-sided schemes. For convenience we use Equation 7.7a and replace
a® by a (a > 0) here:

Y =pl dapl —p ] (7.31)

Replacing p(-k)

;" by the exact value p(x;, 7), Equation 7.31 becomes

P(xj, i + A1) = p(x;, t) — 2alp(x;, tr) — p(x; — Ax, )] (7.32a)

Performing the Taylor expansion in the vicinity of (x;, #;):

op(x;, tx) 10°p(x;, tx) 10°p(x;, 1)
e+ AL = p(x), 1 DA D AP A - DAL A
P, i+ Al = p(xg, i) + =4 t5 t e o8 +
(7.32b)
Op (), 1) 18p(x, 1) > 18p(x 1) 5
p(x;—Ax, 1) = p(x, 1) — TAJH' ETAX - ETAX +o
(7.32¢)
Using the similar manipulation in Equation 7.24a, we have
Fp_ L0 O 30%p
=% = “ow (7.324)
Substituting Equations 7.32b—7.32d in Equation 7.32a yields’
) 9 1 - Ja)Ax & Pa—1)A* &
o O _a(l-ia)AxOp a(fa®—1)AxDp (733)
ot Ox 2 0x? 6 ox3

5 This equation is different from that in Le Veque (1992), where the second term on the right-hand side of the equation is
ignored. The treatment here is more complete.
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We see that, as Ax — 0, this partial differential equation tends to the original partial
differential equation, Equation 7.1. Equation 7.33 is the modified equation of the difference
scheme (Equation 7.31). The right-hand side of the equation is the local truncation error of the
difference scheme.

Physically speaking, the first term on the right-hand side of Equation 7.33 is the diffusive
term and the second one is the dispersive term. This means that, in the one-sided difference
scheme, artificial diffusion and dispersion are introduced. Of course, the term of diffusion is a
type of artificial viscosity which results in dissipation. In particular, because the coefficient of
the dispersive term is in the higher order of Ax, its effect is usually much less than the
dissipation term. When it is ignored, Equation 7.33 becomes

op op  a(l—la)Axd*p
5 + Cla = 72 @ (734&)
In thermodynamics, this is an advection—diffusion equation. Actually, it is also a one-
dimensional FPK equation with the diffusion coefficient a(1 — 1a)Ax/2. As we have understood
in Section 5.6.3.1, this equation will make the solution smoother and smoother as time passes.
For example, an initial delta function will become a normal distribution with increasing standard
deviation. By the way, we know that for a physical meaning system it is required that

1—Za)A
a(l — Za)Ax >0 (7.35)
2
This essentially coincides with the CFL condition given by Equation 7.10.
More generally, for both a > 0 and a <0, Equation 7.34a becomes

o o _ (1~ Aa)axdp

ot Ox 2 0x2 (7.340)

If we note Equation 7.27d, we see that the corrections in the numerical flux of the
Lax—Wendroff scheme are of course consistent with the right-hand side of Equation 7.34b;
this is how the second-order accuracy is achieved.

Similar treatment works for the Lax—Wendroff scheme. In this case, we replace
Equation 7.32a by

Aa
p(xj, b5+ A1) = p(x;, 1) — > [p(x;+ Ax, 1) — p(x; — Ax, 1)

2a?
+ - [p(xj + Ax, tr) +p(x; — AX, ) — 2p(x;, tk)] (7.36)
Substituting the Taylor expansion in the vicinity of (x;, ) and rearranging the equation
yields

op p a(2*a® —1)Ax*d’p

Here, we see that the local truncation error is the dispersive term and the diffusive term
disappears. This is because the second term in the Taylor expansion has been considered in
Equation 7.25 and, therefore, the dissipation is not shown here. Actually, the dissipation of the



Probability Density Evolution Analysis: Numerical Methods 243

Lax—Wendroff scheme is very small, as will be seen in the next section. In this case, however,
the effect of dispersion dominates the error. This accounts for the nonphysical spurious
phenomena near the discontinuity points in Figure 7.6.

7.1.2.2 Amplification Factors of Difference Schemes: von Neumann Analysis

To capture the features of the difference schemes for all possible initial function po(x) is not
easy. However, we have successfully adopted the methodology that some types of special
function can be used to understand the properties of the system, as discussed in Section 5.2.1.
Similar to what is done in dynamical systems, we can also understand the features of the
difference scheme through tracing the propagation of a harmonic wave in the difference
equation. As a matter of fact, in the case where a Kronecker delta initial condition is used (see
Equation 7.8), we are trying to understand the features of the difference scheme by examining
the propagation of an impulse through the difference equation.

From Section 5.2.1 we know that any physical practical function can be represented by a
Fourier transform pair:

e

1 or
po(x)e ™" dx (7.38)

o) =5 | e an g = |

:277 o

For this reason, we can just consider the initial function as a unit harmonic function
Po(x)= ¢!, where k is the wave number.

Note that both the one-sided and the Lax—Wendroff schemes are one-step linear schemes;
namely, they can be written in a unified scheme as in Equation 7.19, for convenience of
reference, repeated here as Equation 7.39:

k - k
P =3 e, (7.39)
(=—v

It is easy to see that for the one-sided and the Lax—Wendroff schemes »=1 and the
coefficients ¢y can be determined by comparing this equation with Equations 7.16 and 7.27b
respectively.

The discretized initial condition of py(x) = e reads

pj(p) — iKY oikAY] (7.40)

Here, use has been made of x;=jAx. We now consider the first step by Equation 7.39

M _ N~ 0
pl = an

l=—v

v
_ E C[ClKAx(] +4)

l=—v

14
— § : C[elkAX[elKAXj

l=—v

(7.41)
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where O = kAx and
g(®) =Y e (7.42)

is an amplification factor.
Because Equation 7.39 is a linear operator, it is clear that

Y = g(9)p (7.43a)

k 0 ivj Vi b
lj(' )= gk(ﬁ)[j(' )= 8k(ﬁ)e ! (7- 3 )
Intuitively, for a stable scheme we must require that

lg(@)] <1 (7.44)

Otherwise, from Equation 7.43, p](k) will increase rapidly and be unbounded as k — oo. Thisis
the case for a uniform grid with constant A = A#/Ax.

For the case A and Ax are not constant, Equation 7.44 can be relaxed to
lg(9,At, Ax)| < 1+ KAt (7.45)

for all ¥, 0 < At < At, and 0 < Ax < Axy,, where K is a constant (independent of 9, Af and Ax)
and At, and Ax,, are some positive grid spacings (Stricwerda, 1989).

According to Equation 7.42, it is easy to obtain the amplification factor and then give the
condition of stability by Equation 7.44 or 7.45. A more direct approach is to introduce
Equation 7.43b into the difference scheme. For example, examining the one-sided scheme
(Equation 7.7b) for a contant a > 0:

p;’” D= (1- icz)pj(-k> + iap/(»k_), (7.46a)

when replacing p(-k) by gk e'”, we have

J
e = (1 — Ja)ghe™ + Jaghe®V -1 (7.46b)
Eliminating g" ¢ on both sides yields
—i9 2 ) ) a2V
g =1-Ja(l1—e ") and [g(F)|" =1—4la(l—Ja)sin ) (7.46¢)
For constant 4, using Equations 7.44 and 7.46¢, we obtain

Ja<1 (7.46d)

This, again, gives the CFL condition for the scheme in Equation 7.46a.
Similar manipulation can be performed for the Lax—Wendroff scheme. Substituting
Equation 7.43b in the scheme in Equation 7.27b gives

g U | o/ 1 g
gk+1610] _ (1 7/12a2)gken‘)]+ 5(/12612 7;»a)gk€“9(]+1) + E(/ALZaZ+/1a)gken§(]71) (7473)
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and thus
g(9) = (1= 22d%) + J2dcos® — iJasin® (7.47b)

and
v
1g(®))? =1-422%(1 — lzaz)sin45 (7.47¢)

From Equation 7.44, it follows that
|[4al <1 (7.474d)

which is the CFL condition for the Lax—Wendroff scheme given by Equation 7.29.

On the other hand, from Equation 7.43, for a constant /, in the case Ig(9)l = 1, there will be no
dissipation because the amplitude does not decay. However, dissipation exists when Ig(%)l < 1.
It is seen from Equations 7.46¢ and 7.47c that both the one-sided and Lax—Wendroff schemes
have dissipation; but, for the same 4 and «, the amplification factor of the Lax—Wendroff is
closer to unity than the one-sided scheme is, which is why stronger dissipation is seen in the
latter scheme.

7.1.2.3 Dispersion

As pointed out in Section 6.6.1, the solution of Equation 7.1 is a wave. Thus, to understand
the properties of the numerical methods, it is useful to consider the propagation of a real wave
in the original system and the propagation of the corresponding numerical wave in the
discretized system. As has been done in the preceding section, we consider the propagation of
an initial wave with wave number k, e"*. The analytical solution, according to Equation 6.141,
is given by

plx, 1) = et (7.48)

In the numerical solution, there might be some distortion such that the velocity might not
exactly be a. Denoting it by «, the numerical solution can then be written as

ik(x—at) _ ei(Kx—wt) and p :P(xj, [k) _ eiK(X/'—CYf/C) — ei(Kx/—wt/c) (749)

pi) = o

where the frequency w = ko
Substituting Equation 7.49 in the Lax—Wendroff scheme in Equation 7.27b we have

ei(Kx/ — ot —0Al) _ (1 _ /'LZaZ)ei(Kxffwtk) + %(/12‘12 _ }Va)ei(KX/+KAX7wt/()

+ = (2% + Ja)eil —Kax— o) (7.50a)

N —

Eliminating e'* ~®%) on both sides yields

. 1 . .
e M — (1 - 2%d%) + 3 (22d* — 2a)e™™ + — (2*d* + Ja)e A (7.50b)

| =
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or in an alternative form as

Ja sin(kAx) B Ja sin(kAx)

tan(wAf) = =
(wAl) (1—2%a?) + 2%a? cos(kAx) 1 —2/2a?sin*(kAx/2)

(7.50c)

This demonstrates that the frequency w is a nonlinear function of the wave number «.
Therefore, the wave velocity & = w/k, which is now called the phase velocity® for a specified k,
is dependent on the wave number «. Further, if we expand the above terms in the vicinity of
k=0 by using the Taylor expansion series sin(x) = x[1 — 1x* + O(x*)] and tan~!(x) =
x[1 = 1x2+O(x*)], from Equation 7.50c we have

1
o =ak {1 - 8,<2Ax2(1 —/12a2)} (7.51)
Thus, the phase velocity is given by
1
alkAx) =2 =a {1 — KA (1 - )?az)} (7.52)
K

Equation 7.52 can also be reached by directly introducing Equation 7.49 into the dispersive
equation (Equation 7.37) and then eliminating the common terms on both sides.

For practical situations, the wave is composed of many, or infinite, waves of different wave
numbers k;; they form a wave packet or wave group. For the jth component, the change of the
phase ¢;= (k;x — w;t) in dz is

dp; = d(k;jx — w;t) = k;dx — w;dt (7.53)
The same thing happens for the /th component with the wave number k, and frequency w;.

In order for the wave group to be maintained, the change in the phase of different components
should be the same; that is, dg; = dg,. This leads to

(kj — k¢)dx — (wj — wp)dt =0 (7.54)
Since k; and k, and w; and w, differ only slightly, we have

dx_wj—w[_da)
dt_Kj—K/; T dk

(7.55)

Thus, the group velocity, the velocity of the wave group, is defined (Graff, 1975) as

dw
= — 7.56
ag dK ( )
For the Lax—Wendroff scheme, from Equation 7.51 it follows that
d 1
ay = ﬁ =a|l-— EKZsz(l —22d?) (7.57)

Because I4al <1, it is found from Equations 7.52 and 7.57 that

“This term comes from the fact that it is the velocity that occurs in the phase angle k(x — af) of the wave
e(x—a1) in contrast to the group velocity introduced later.
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a,(k) < a(k) <a (7.58)

That is, the wave obtained by the difference equation lags behind the real wave. Moreover,
this degree of lag is different for the components with different wave numbers. Thus, the
components with different wave numbers will separate as time elapses. This leads to dispersion
(Trefethen, 1982). The phenomenon is particularly severe when the real wave possesses
discontinuity, because a wide range of (particularly higher) wave number is needed in this
case. For the Lax—Wendroff scheme, Equation 7.58 also accounts for why the high-frequency
oscillation is always to the left of the discontinuity points (the propagation direction is
from left to right). However, for different schemes, the relationship among «, @, and a might be
different from Equation 7.58; therefore, the properties of the high-frequency oscillation will
also be different.

Generally, there is competition between the dissipation and the dispersion. This can be
seen from the modified Equations 7.33 and 7.37. Usually, one of them dominates the local error.
The schemes with less dispersion usually exhibit stronger dissipation, and vice versa.

7.1.2.4 Total Variation Diminishing Schemes

The one-sided difference scheme is nonnegativeness preserving and the numerical results are
usually smooth, but the dissipation is too large. On the other hand, the two-sided scheme
(for example, the Lax—Wendroff scheme) is much less dissipative, though much more
dispersive, especially in the vicinity of discontinuity. Can we have a balance between them
by some type of hybrid scheme? This is possible by constructing a total variation diminishing
(TVD) scheme (Harten, 1983; Shu, 1988).

The nonnegativeness preserving of the one-sided scheme, as noted in Section 7.1.1.1 and
Figure 7.6a, is more rigorously called monotonicity preserving, which means that if the initial
data p}o) is monotone as a function of j, then the solution p}k should have the same property
for all k. Actually, a linear, monotonicity-preserving scheme is at most first-order accurate
(van Leer, 1974; LeVeque, 1992).

Intuitively, from Figure 7.6b we see that, compared with the real solution, the numerical
solution by the Lax—Wendroff scheme is more irregular because of the high-frequency
oscillation. This can be measured by a quantity called total variation of a function defined by

op(x, 1)

o0

TV[p(-,t :J dx 7.59
pC0l=] (7.59)
of which the discretized form could be written as
| K)
Ve = 3 | (7.60)

J=—x
It can be proved that the real solution of Equation 7.1 satisfies (LeFloch, 2002)
TVLD(',IQ)] STV[p(,[l)} < TV[p(,ZQ)] for 6>t >t (761)

This attribute of the solution function is TVD. Any TVD scheme is monotonicity preserving.
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Clearly, if a difference scheme is TVD, then spurious nonphysical phenomena will be
expected to reduce or even disappear. It can be verified that the one-sided scheme is TVD
but that the Lax—Wendroff scheme is not. Actually, it is readily seen that the high-
frequency oscillation makes the total variation of the numerical solution larger than the
exact solution.

To construct a scheme having a trade-off between the one-sided and the Lax—Wendroff
schemes, we first examine the relationship between them further. Comparing the modified
Equations 7.33 and 7.37, we judge that the Lax—Wendroff scheme must be some type of
modified version of the one-sided scheme where additional terms are imposed to suppress
the dissipation. This is actually the case, as we have seen 1n Equation 7.27d, which indicates
that the numerical flux of the Lax—Wendroff scheme F; (K)LW i a modified version of that of the
one-sided scheme F ]( )One-sided -\ here a second- order correction term is added. We can
then rewrite the Lax—Wendroff scheme Equation 7.27b to a flux-difference form:

(k+1) _ p(_k) _ MF(k),Lw _ng),Lw)

pJ J J j—1 | 6
_ p/(k) _ A(Fl(k) ,One-sided F;Ii),IOne—mded) _ E (|;La| . ;Lzaz)(Apj(]jr)% _ Ap(f)%) ( . )

where Apj(,ljr)% = p]@ 1 p} ) Ap( ), = p}k> — p](-li)l can be regarded as the difference of numeri-

cal flux (divided by a). Here, it is clearly seen that a second-order correction term is imposed
on the one-sided scheme to construct the Lax—Wendroff scheme. It is this correction term
that greatly reduces the dissipation but simultaneously makes the dispersion obvious. We need
to modify this term such that in the vicinity of discontinuity this term almost does not work
while in the smooth part this term works well. This means that the modification should be based
on the data of the solution.

The most intuitive approach to balance between the one-sided and the Lax—Wendroff
scheme is to construct a hybrid scheme with the numerical flux as combination of numerical
flux of the Lax—Wendroff scheme F (). LW and that of the one-sided scheme F (k) One- “ded,
namely, for 0 <1 <f3:

Ti ne-sides k),One-side 1
Fj(k),Hyb d _ (1 _B)Fj(k),o ded +BFj(k),LW _ FJ(I),O ded +B_ (|}'a| _ Zzaz)Ap(_k>l
2 Jt3

(7.63a)

where F}k)’LW is defined in Equation 7.27d.

If B is a constant (that is, not dependent on the data of the numerical solution), then
Equation 7.63a is a one-step linear scheme in the form of Equations 7.19 and 7.39. As pointed
out above, a linear, monotonicity-preserving scheme is at most first-order accurate; the scheme
constructed above cannot be a second-order accurate scheme.

To retain second-order accuracy, 8 must be a nonlinear factor dependent on the data, denoted
by ;. I8 thus Equation 7.63a is rewritten as

Fjgk),Hybrid _ F;/:),One—sided n 1 (4

- zza2)¢j+%Ap](.’j% (7.63b)

Because ;1 is a factor less than unity, imposed on and modifying the numerical flux
according to the data of the numerical solution, it is called the flux limiter. Equation 7.62 is now
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modified to
pj(k+ n_ pj(k) Y Fj(k),Hybrid _ F/(l:),]Hybrid)
_ pj(k) _ A(Fj(k)-,One-sided _ Fjg/:),IOne-sided) _ % (Jia - /lzaz)(wH %Ap/(i) = v %Apj(li)%>
(7.64)
or in a complete form when introducing F;k)’one'smed from Equation 7.22:
p}kﬂ) :p](k> - %(la - |Aa|)Ap}<l:_>% - %(ia—i— |/1a|)Ap/(_k_>%
— Sl = 7)) 80 (7.65)

1 =0, Equations 7.64 and 7.65

Note that in the case where the flux limiters ¢; 1= Wi s
reduce to the one-sided scheme, whereas in the case where 1/;/»;r 1= i 1= 1 they become the
Lax—Wendroff scheme. Therefore, we require

0<y <1 0<y <1 (7.66)

As analyzed, the modification should adapt to the data by judging if the change of the curve
is abrupt. This can be measured by the ratios of a sequent difference; that is:

(k) (k) (k) (k) k) _ (k)
" :Apj+g:17j+2 —Dit1 - :Apj,%:pj —Di—1 (7 67a b)
i+3 Apt®) (k) (k) j+3 Apt®) (k) (k) B
p/+% Pjv17P; ijr% Pjv17P;

For instance, if ril = 1, then the (j + 2)th, the (j + 1)th and the jth points are on a straight
line and the curve is smooth; that is, the change of the curve is not abrupt. The same
thing happens for Fn= 1. But, if ":1‘ is very large, then the (j + 2)th point is very far
from the line determined by the (j + lfthzand the jth points and, thus, there is an abrupt change
in the curve.

If we assume a > 0, then imposing the TVD condition on the scheme in Equations 7.64
and 7.65 will give the conditions that the flux limiter s should satisfy (Sweby, 1984; Roe, 1986).
According to computational experiences, the following flux limiter is recommended:

o (r) = max (0, min(2r, 1), min(r,2)) (7.68)
Further, in a unified way for both a > 0 and a <0, we use

‘ffj+%(”_,1%7 riy) =u(— a)d’o(’_;%) +ula)do(r;, 1) (7.69)

1
2
where u(-) is the Heaviside’s unit step function (see Appendix A). Replacing the subscript
by j — 1 gives 1.

Investigations have proved that away from the extreme value the scheme in Equations 7.64
and 7.65 is second-order accurate, whereas near the extreme value it is first-order accurate
(LeVeque, 1992).

The TVD scheme does work well in the probability density evolution analysis of most
problems.
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Example 7.1. Comparison between Lax—-Wendroff and TVD Schemes Again, we study
the SDOF system with uncertain natural frequency in Example 6.2. The PDF of the displace-
ment is solved both by the Lax—Wendroff scheme and the TVD scheme. Figures 7.7aand 7.7b
shows the PDFs at 1.00 s computed by the two schemes and Figures 7.7¢ and 7.7d shows the
PDFs evolving against time in the period 0.9—1.1s. These figures show that the Lax—Wendroff
scheme can capture the exact results in most places but that it does not work well in the vicinity of
discontinuity because of dispersion, whereas in the TVD scheme the accuracy is high even in the
vicinity of discontinuity and the high-frequency oscillation disappears.

15.0 T T T T T T T 14

Theoretical solution
JR—T51= Y 12k

----------------- Computed PDF al t = 1.00 sec
Exact PDF al 1.00 sec

[T [T
£ £
6_
4_
P
5.0 L L L L L L L 0 L i L L L 3 L
-0.20 -0.15 -0.10 -0.05 0 0.05 0.10 0.15 0.20 015 -010 005 00 005 010 015
Displacement (m) Displacement (m)
(a) Lax-Wendroff scheme (b) TVD scheme

00

-
0.1 . eC)
Displacement (m) 0.90 Time (s) (m) 0.90 Twve (s

(c) Lax—Wendroff scheme (d) TVD scheme

Figure 7.7 Numerical solution computed by Lax—Wendroff scheme and TVD scheme.

Computational experiences demonstrate that the accuracy of the TVD scheme in
Equation 7.65 sometimes deteriorates severely compared with the Lax—Wendroff scheme,
particularly in the time interval near the initial time. This might require reducing the time
step to increase the accuracy. The selection of the time step usually depends on the frequency of
the time history of the velocity a(¢), and should be carefully calibrated, say, through comparing
the mean and the standard deviation with those obtained by the Lax—Wendroff scheme.



Probability Density Evolution Analysis: Numerical Methods 251

When the smaller time steps are used, an interpolation between two sample time instants of a(z)
is usually needed (Chen and Li, 2005a). O

7.2 Representative Point Sets and Assigned Probabilities

As we have discussed in the solution flow of the probability density evolution method in
Section 6.6.2, to solve the generalized density evolution equation numerically, a set of values
of the parameters @ = (64, 0-,. . ., 6,) should first be specified. In other words, a set of points
scattered in the s-dimensional region Qg C R’ needs to be chosen. Here R’ is the s-dimensonal
real Euclidian space. To select these points in a smart way, it is required to understand
the configuration of s-dimensional space. To this end, we first revisit the sphere packings
and covering problems and then come to the strategies of determining the representative
points.

7.2.1 Sphere Packings, Covering and Partition of Space
7.2.1.1 Sphere Packings

The celebrated Kepler conjecture asserts that the highest dense sphere packing in three-
dimensional space is 77/1/18 = 0.740 480 - - -, which is closely related to the problem of largest
kissing number (coordination number or contact number) of equal spheres. Essentially, this
problem deals with how to pack a given space with equal spheres in an efficient way. More
significantly, research on this problem in the past hundreds of years provides deep insight into
the understanding of multidimensional spaces (Conway and Sloane, 1999; Zong, 1999;
Martinet, 2003).

We consider the sphere packing problem in an s-dimensional space; that is, to pack the space
by a set of nonoverlapping, equal spheres. The case for s = 2 is shown in Figure 7.8, where the
nonoverlapping equal circles are placed in different ways. Clearly, there is always some room
not being occupied by the circles. Visually, the packing in pattern (b) is more efficient than
that in pattern (a); that is, the unoccupied room in pattern (b) is less than that in pattern (a).
More rigorously, the efficiency of the packing can be measured by the density of packing
defined as the proportion of the space that is occupied by the spheres. Note that a particular
polyhedron is related to and covering each sphere; for example, in Figure 7.8a it is a square
contact to the circle and in Figure 7.8b it is a regular hexagon contact to the circle. We call the
volume of this polyhedron the fundamental region (or representative region) of the sphere.

(a) (b)

Figure 7.8 Patterns of sphere packings.
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Therefore, in an infinite space, the density of packing is equivalent to

_ Volume of all the spheres V(one sphere) (7.70)
~ Volume of the space  V(fundamental region) '

where V(- ) is the volume. Certainly, there is always p < | and the packing with higher density
is more efficient.
It is easy to obtain the density of packing for the patterns in Figure 7.8a and b as

2 o ar? T
2 2 _-0785398--- and p= =—==20.906899 - -
2} 4 P Vi

respectively. They are obviously distinct. Actually, the pattern in Figure 7.8b is the densest
packing in two-dimensional space.

The definition in Equation 7.70 also applies in higher dimension. The volume of an
s-dimensional sphere B(r,s) = {x = (x1,X2,...,x,) : [|[X]|? =3+ 3+ --- +x2 <r?} is
given by

wr

p:

7Tm rS

for s=2m
,n.s/ZV.v m!
V(B(V,S)):J dXIdXZ ...dxsziz

s m_.
*€B(rs) Ft+3) 7%71( 277). a for s=2m+1
[[Z(27+1)

(7.71)

where I'(+) is the Gamma function and

V(fundamental region) = J dx;dx; - - dxg (7.72)

xefundamental region

In dimension s = 3, it has been proved recently that the Kepler conjecture holds; that is, the
highest density is 7/ V18 = 0.740480 - - - (Hsiang, 2002; Hales, 2006; Hales and Ferguson,
2006). For dimensions s > 3, the densest packings have not been found, except for the /attice
packings.” However, the densest possible lattice packings are available now in dimensions
s < 8. For example, face-centered cubic (fcc) packing is one of only two structures that
maximize a local density in dimension 3 (Figure 7.9).

By the way, a problem closely related to the sphere packings is the kissing number problem,
which asks how many balls can be arranged so that they all just touch, or ‘kiss,” another ball of
the same size. The kissing number is sometimes also called the Newton number, contact
number, coordination number or ligancy number (Conway and Sloane, 1999). Itis well known
that the maximum kissing numbers £ in dimensions 2 and 3 are respectively 4, = 6 and
43 = 12. We see that the fcc packings in Figures 7.8b and 7.9 reach the maximum kissing
number, but this is not the case in Figure 7.8a. Again, the maximum kissing number in high
dimensions is far from easy to obtain. We only know that the maximum kissing number in
dimension 4 might be 24 or 25, and in dimension 8 it is 240. No further information is available
in other dimensions (Conway and Sloane, 1999).

7 The lattice is defined in Section 7.3.2.



Probability Density Evolution Analysis: Numerical Methods 253

Figure 7.9 Patterns of sphere packings.

The centers of these nonoverlapping spheres form a point set, of course uniformly scattered
over the space in a sense, with the attributes measured by the density of packing.

7.2.1.2 Covering

We now come to the dual problem of sphere packings. If the spheres overlap, then we
encounter the problem of covering a space by the overlapping equivalent spheres. For
example, Figure 7.10 shows two patterns of sphere covering. Visually, the covering in
pattern (b) is more efficient than that in the pattern (a) because the overlapping area is less.
In other words, to cover a given space the number of spheres in pattern (b) is less than that
in pattern (a). It is seen that, because the spheres are overlapping, in contrast to the sphere
packings, the fundamental region related to each sphere is smaller than the sphere itself. We
now call the ratio of the total volume of the spheres to the volume of the space the thickness
of the covering, which is equivalent to

V(one sphere)
= 7.73
0 V(fundamental region) (7.73)

Certainly, there is always O > 1 and the covering by the pattern with a smaller thickness is
more efficient.

(a) (b)

Figure 7.10 Equal spheres covering space.
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For patterns (a) and (b) in Figure 7.10, the thicknesses are

2 2
2
6:7(\;;)2:;:1.570796--- and 0:37;;2:—3\%:1.209199‘--. (7.74)
==r

2

respectively. This means that the covering by pattern (b), whose thickness is smaller, is more
efficient. In fact, in the two-dimensional space (plane), pattern (b) is the thinnest (Conway and
Sloane, 1999).

Analogous to the packing problem, the thinnest covering is only known in dimensions 1 and
2. For lattice covering, the thinnest patterns are known in dimensions 1-5.

Like the packing problem, the centers of the covering spheres form a point set, possibly
different from the packing point, but also uniformly scattered over the space in a sense.

7.2.1.3 Partition of Space

‘We now come to something like the inverse problem of the packing and covering. If there is a
point set P = {0, = (014,024,...,054); ¢=1,2,...,ny} in an s-dimensional space L,
where 7, is the number of points (cardinal number of the set), we consider the problem of
using equal spheres (balls) with radius r located at these points, denoted by B,(, s), to pack or
cover the space. Here:

By(r,s) = x = (x1,X2,...,%,) € R : ||x—0,]| =

where IIll is the 2-norm and R’ is the s-dimensional real Euclidean space.

There exists a maximum value such that the packing of space by the nonoverlapping,
equal spheres with this value as radius centered at the prescribed points reaches a highest
density. In other words, if the radius is larger than this value, then the spheres cannot be
nonoverlapping. This value is called the packing radius, denoted by ry; clearly:

1.
Tpk ZEBL_};}‘;P(H&—GJH) (7.76)

Figure 7.11a schematically shows the packing radius for a given point setin a plane. Itis seen
that, for a given point set, equivalent spheres with packing radius located at the given points are
usually not mutually tangent. Actually, it can only be ensured that at least two spheres are
tangent. It is the distance between these two points that determines the packing radius via
Equation 7.76.

On the other hand, there exists a value such that the covering of space by spheres with this
value of radius centered at the prescribed points reaches a minimum thickness; namely, if the
radius is less than this value, then the space cannot be completely covered (occupied) by the
spheres centered at the prescribed points. This value is called the covering radius, denoted by
Tey, and is given by

rey = sup inf (|[x —8,]|) (7.77)

xeRe 84€
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(a) (b) (c)

Figure 7.11 The point set and the corresponding Voronoi cells in a plane.

Figure 7.11b shows schematically the covering radius for the same set of points as in
Figure 7.11a.

For example, if we regard the centers of the circles in Figures 7.8a and 7.8b and 7.10a and
7.10b as the specified points, then we have for the point sets (a) and (b)

Foy = \/Erpk =1.4142rc and 1oy = 2 Fok = 1.1547rp¢ (7.78)
V3
respectively. Again, the problems in dimensions s > 3 are much more complicated.

The covering related to point set P, as visualized in Figure 7.11b in the case s = 2, determines
arepresentative region for each point to which belong all the points in the space with minimum
distance to this point. The representative region so determined is the Voronoi cell of the point,
denoted by V(8,) or simply V,, and is given by

V(B)) =Vy={x € R : |lx—8,|| < [[x— 6| forallj,j+#q} (7.79)

Other terms are nearest-neighbor region, Dirichlet region, Brillouuin zone and Wigner—
Seitz cell (Barndorff-Nielsen et al., 1999; Conway and Sloane, 1999; Zong, 1999).

Schematically shown in Figure 7.11c are the Voronoi cells of the points. Comparing
Figure 7.11b and Figure 7.11c will immediately find the relationship between the sphere
covering and the Voronoi cells. It is not difficult to understand that the packing radius and
covering radius are essentially the minimum inradius and maximum circumradius of the
Voronoi cells respectively.

Because all the Voronoi cells are mutually exclusive except in a zero-measure set related to
the boundary surfaces, they form a complete but nonoverlapping partition of the space €;

namely:
e

" Ve=Q and V(V{V;) =0 for any different/,; (7.80)

where V(-) is the volume measure in the s-dimensional space. If V(Q) is finite, then from
Equation 7.80 we have

Tpt

V(Unm Vq) _ ZV(V") =V(Q) and V(Vl-mvj> =0 for any differenti,j (7.81)
q=1

g=1
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7.2.2 Representative Point Sets and Assigned Probabilities
7.2.2.1 Representative Points and Their Assigned Probabilities

We now come back to the solution flow of the probability density evolution method as
discussed in Section 6.6.2. The point sets

Psel = {eq = (91,q702,q7 cee Oul) q= 1 2 nsel} (782)

should be first determined in the space Qg. The chosen point set is termed the representative
point set, of which each point is called a representative point. Here, n is the cardinal number
of the selected representative point set.

Because the representative points are scattered in a space where a probability measure is
assigned, to each representative point the probability over its Voronoi cell should be assigned

P,=Pr{®@cV,}= J pe(0)d0  g=1,2... ng (7.83)
V’I

which is called the assigned probability of @,. Here, pg(0) is the joint density of the random
parameters @ = (0, O,,..., O,). By doing this, the joint density pe(@) has in fact been
discretized through replacing it by (see Appendix A)

Hge| sel

Pe(8) = [P5(6—8,) Z[qﬂae e,q] (7.84)

q=1 q=1
Clearly, we have
lim pg(0) = pe(6) (7.85)

Tey — 0

where r., is the covering radius of the point set P and is also the maximum circumradius of
the Voronoi cells. In addition, in consideration of Equation 7.81, it follows that

JQ@p@(O)dB = Jgep@,(e)de = ;Pq => JV 1e(0)d0 = J o, pe(8)d0 =1 (7.86)

q=1 q g=1

For visual convenience, we illustrate the assigned probabilities when only one random
parameter is involved with the PDF pg(6) shown in Figure 7.12a. Denote the representative
point set Pg = {61,61,...,0,,}. If the Voronoi cell of the point 6, is the interval
V, = [84,0,] (noting that the interval may be different for different ¢), then the assigned
probability of the point 6, is given by

Py = rq po(6)do (7.87a)

Qq

Thus, the original PDF pg(0) is discretized to

Hsel

=> P00, (7.87b)

as shown in Figure 7.12b.
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Figure 7.12 Assigned probabilities.

7.2.2.2 Discrepancy and F-Discrepancy of Point Sets

In the solution procedure of the probability density evolution equation, determination of
the representative point set Pg is undoubtedly of paramount importance. Recalling
Equation 6.100, we see that in the mathematical form the right-hand side is a multidimensional
integral with respect to 0 in which the joint PDF p,e(z, 0, ?) is the integrand. If the information
of the integrand is well or partly known, then a variety of approaches have been developed
to reduce the dimensionality (He, 2001) or to select reasonable point sets, for example,
in the numerical multiple integral (Engels, 1980; Genz, 1986; Sobolev and Vaskevich, 1997;
Xu, 1998). However, in many cases little is known about the information of the integrand,
which is the case in most problems of practical interest, because the closed form or even the
qualitative features of the integrand may depend on closed-form solutions of the complex
nonlinear system which are usually unfeasible. In this case, intuitively, the representative point
is better scattered uniformly in a sense. For instance, choose the point set with a fixed cardinal
number 7y that makes

(a) the packing radius maximized; or
(b) the covering radius minimized; or
(c) some other indices minimized.

Investigations show that these criteria are usually not equivalent and will result in different
point sets. Some of the point sets will be generated by these criteria in the following sections.
In order to do so, we introduce an additional family of indices here, named discrepancies,
which are also usually employed in measuring the uniformity of a point set.
Without loss of generality, we consider the point sets over a unit hypercube

C =101 ={x=(x1,x2,...,%x5) : x; € [0,1] for allj = 1,2,...,s}

in an s-dimensional space. Denote a point set P = {xp = (X14, X2k, ., Xsk)
k=1,2,...,n}. If P C C’, then the discrepancy of P is defined by (Hua and Wang, 1981)
N

D(n, P) = sup N, P)

vel’

—V([0,v]) (7.88)
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where v = (vy,va,...,v) € C,0<v,;<1,i=1,2,...,5 N(v, P) is the number of the points
satisfying x; < and V([0,v]) is the volume of the hyper-rectangle [0,v] = [];_, [0, ]
and given by V([0,v]) = vivs - - - v,

1 . .
e . .
Vile L .
.

Figure 7.13 Discrepancy of a point set.

It is seen from Figure 7.13 in dimension s =2 that the discrepancy defined above is the
maximum error when replacing the ratio of the areas by the ratio of the number of points
contained in the areas. Visually, if the points are scattered uniformly, the discrepancy will be
small. An important theorem related to this discrepancy makes it quite valuable (Hua and
Wang, 1981): if fix) is a function of bounded variation in the sense of Hardy and Krause, then

< TV(f)D(n, P) (7.89)

s

[ rwar= 15" sm)
: k=1

where TV(f) is the total variation of the function f. TV(f) in dimension 1 is the same as defined
in Equation 7.59. This means that the discrepancy D(n,P) bounds the error of the multi-
integral.

According to the definition in Equation 7.88, the discrepancy of the uniform grid point
(UGP) set (Figure 7.14a)

20 —1 26, —1 20— 1
Pugp:{< L = = ) 1§é,—§m,j:1,2,...,s} (7.90)
m m m

satisfies
c1(s)n~ V5 < D(n, Puce) < ea(s)n~ 5 or  D(n, Pygp) = O(n~ /%) (7.91)

Here, ¢, and ¢, are two constants dependent on s but not on #.
While for the Monte Carlo-sampled (MCS) points Pycs (Figure 7.14b), the discrepancy

D(n, Pycs) = O(n’lﬂ(loglogn)l/z) (7.92)

with unity probability.

8 The variation of a function in the sense of Hardy and Krause is to measure the irregularity and smoothness of a
function. If the function is too irregular, then the variation in the sense of Hardy and Krause is usually large. For its exact
definition, refer to Hua and Wang (1981) and Niederreiter (1992) for example.
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Figure 7.14 Two typical point sets.

It is seen that D(n, Pmcs) < D(n, Pygp) in dimensions s >3 with unity probability. This
accounts for why the MCS set is more efficient than the UGP set for numerical multi-integrals.

However, in D(n, P), the probability density assigned to the space over which the point
set P scatters is not considered. To take into account this information, an F-discrepancy can be
defined by (Fang and Wang, 1994)

Dr(n,P) = sup | Fn(x) — F(x)] (7.93)

xeR’

where F(x) is the CDF and F,(x) is the empirical distribution function given by
1 n
Fux) ==Y I{x, < 7.94
0= i <x) (7.94)

where I{-} is the indicator function whose value is one if the event is true and zero otherwise.
The F-discrepancy is essentially the Kolmogorov—Smirnov statistic for the goodness-of-fit
(Robinstein, 1981); see Figure 7.15 for s =1.

It is easy to see that Dx(n,P) defined by Equation 7.93 becomes D(n,P) defined by
Equation 7.88 if the probability distribution is a uniform distribution over C°.

o X

Figure 7.15 Schematic picture of F-discrepancy.



260 Stochastic Dynamics of Structures

Equation 7.94 essentially possesses an acquiescence that all of the sampled points
have the same weights. This is not the case, because each point x,, is associated with an
assigned probability P, as given by Equation 7.83; therefore, it is reasonable to modify
Equation 7.94 to

ZP I{x, <x} (7.95)

g=1

The F-discrepancy so obtained is called the modified F-discrepancy or true F-discrepancy.
Clearly, the discrepancy D(n, P), F-discrepancy Dx(n, P) and the modified F-discrepancy
can also be used as the indices to be minimized in the above-mentioned criterion (c).

7.2.3 First- and Second-Order Discrepancies of Point Sets

From Section 6.6.2, the PDF py(z, t) obtained by Equation 6.100 is approximated by Equation
6.159 (note that the latter is the case in dimension 1). The error in approximating the PDF,
ignoring that in the finite-difference method, reads

Nsel

E(Z, t) = ’JQPZ@(Zv 07 t)p®(e)d0 - Z[PZ@(L el]v t)Pq} (796)
q=1

It should be noted here that, to make Equations 6.100 and 6.159 consistent, pze(z, 0, ) here
is not the same as that in Equation 6.159 but equivalent to pze(z, 0, t)/pg(f)).9
It follows from Equations 7.83 and 7.86 that

e(z, [) = ZJV pZ@(Zv 07 t)p@(e)dﬁ - Z [PZO(Za eq, [)JV Pe (O)de‘|
q=1""Yq q=1 q

(7.97)

el

ZJV [pze (2,0, 1) — pze(z, 0, 1)]pe(0)de

q=1

Using the Taylor expansion and retaining the second-order terms, we have

pZ@(Z,O,l) pZ@ z eqal szq(pZ@) lq qu’yq(pZ@) 0 —qu)( 01, )

j 1 i=
(7.98)

where

Gzpze(z, 0,1)

W@y ()= 26,06,

- (7.99)

lybi,q (pZ@) =

0-0, 0=0,

°It is noted that the generalized density evolution Equation 6.109 is invariant if the initial condition (Equation
6. 121a) is changed to pze(z,0,ty) = 8(z — z9) and simultaneously Equation 6.100 is changed to
pz(z,1) J;zeng z,0,1)pe(0)d0. The expression in Equation 7.96 adopts the present treatment.
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are respectively the first- and second-order sensitivities of the function pze(z, 0, 7) in terms of 0
and (9,;‘,1 are the coordinates of the representative point set, where the hat is added to avoid
notational confusion.

Taking Equation 7.98 into Equation 7.97 yields

Hsel

e(z,1)= ZJV [Z, Vig(pze)(0i—0;4)+ ZZ%@ZQ )(0:—0:4)(6; e,q>]p@<e>de
qg=1""q ] 1 i=
(7.100)
Further:
e(2,1) < |(max o)) D | D16~ Biglpo8)c8
’ qg=1"7Vq i=1

+ 2 (x4 ) ZJ S 16— 810) (6 — B, po(@)d0

q=1 q j=1 i=1

= ¢1(pz0)D1(Psel) + ¢ (pz@) D2 (Pser) (7.101)

where ¢1(pze) and ¢,(pze) are the functionals as the maxima of absolute value of the first- and
second-order sensitivities of the function pze(-):

01(p20) = max iy pro)|  dalpze) = ymax [Wig(pre)l  (7.102)

and D (Pse) and D,(Py) are the measures of discrepancy of the point set Py defined by

D1 (Pser) ZJ ZIB 8i4lpe(0)d0 (7.103)

V‘/l

and

DaPa) = D | 331016~ B o )8 (7.104)

q=1 j=1 i=1

which might as well be called the first- and the second-order discrepancy respectively.

Equation 7.101 means that the error of the numerical algorithm depends on the configuration
of the point set (measured by D;(Pse) and D, (Pser)) and the sensitivities with respect to the
parameters (measured by ¢(pze) and ¢,(pze)). Therefore, a good algorithm should, in
principle, consider these two factors.

7.2.4 Two-Step Procedure of Constructing Representative Points

According to the above analysis, to improve the accuracy in approximating the PDF, a point set
Pser should make the modified F-discrepancy Dx(n,P) and the first- and second-order
discrepancies D; and D, as small as possible. Simultaneously, the sensitivities ¢(pze) and
b-(pze) of pze(z, 0, 1) should be taken into account.
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Generally, in the region where the sensitivities of pzg(z, 0, ?) in terms of 0 are larger, the
points should be denser. Unfortunately, because pze(z, 0, ?) is an unknown function to be
obtained through the generalized density evolution equation, it is usually hard to get
information on its sensitivities in terms of @, particularly for nonlinear systems. This makes
it reasonable to have the points scattered uniformly; namely, to make the discrepancy D(n, P)
as small as possible for the given n. Point sets so obtained, however, cannot guarantee the
minimization of the modified F-discrepancy Dz (n,P) and the first- and second-order
discrepancies D, (P) and D, (P). Actually, the point set with small D(n, P) may have a very
large modified F-discrepancy Dx(n, P) if the joint probability density of the parameters is not
uniform, as will be seen in Section 7.4. To make D (n, P), D;(P) and D,(P) as small as
possible, a density-related transformation on the uniformly scattered point sets obtained can be
imposed, to adjust the density of points partly according to the density of the parameters.

According to these considerations, we may employ a two-step procedure of constructing
representative point sets (Chen et al., 2009):

i. construct a uniformly scattered point set as a basic point set, denoted by Phpasic;
ii. perform the density-related transformation on Ppgye to yield the representative point
set Pel.

In the next two sections we will elaborate the approaches in these two steps.

7.3 Strategy for Generating Basic Point Sets

To determine point sets uniformly scattered over a given space has long received the attention
of mathematicians, physicists and chemists. As mentioned, the sphere packings and covering
will lead to uniform point sets in a space (Conway and Sloane, 1999). In addition, the number
theoretical method can also generate uniform point sets (Hua and Wang, 1978, 1981). All these
are deterministic point sets. The MCS points (including their improvement, the Latin
hypercube sampled points), on the other hand, will generate random point sets uniformly,
usually with higher discrepancy (Robinstein, 1981; Fang and Wang, 1994). This section will
discuss deterministic point sets by tangent spheres, lattices and the number theoretical method.

7.3.1 From Sphere Packings: Tangent Sphere Method
7.3.1.1 Construction of Point Sets by Tangent Sphere Method

The sphere packings problem provides a possible way to construct uniformly scattered point
sets as the basic or representative points. Considering first the case for s =2. In a plane, it is
well known that the kissing number of a circle is six. In this case, the centers of the kissing
circles form the vertices of a regular hexagon (shown in Figure 7.16a) and a total of seven
circles forms a fixed-shape substructure. Therefore, the pattern of packing generated by using
this substructure as the basis structures will have a tight packing with the highest density. This is
essentially the pattern in Figure 7.8b. However, using the generating process as shown in
Figure 7.16a will make it easy to locate and number the centers in computer programs.
Actually, we see that the circles form different loops (layers) outward, and in each loop we
numerate the circles anticlockwise. By doing this, we can get the polar coordinates (r;, ¢;) of the
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(@ (b)

Figure 7.16 Tangent circles in a plane.

center of the ith circle:

i=0BC-30+1)+4+k  j=01,....5 k=0,1,...,0—1 (7.105a)

r,.:r\/(2€—k)2+(\/§k)2 j=0,1,....5 k=0,1,....,0—1 (7.105b)
_z 1 \/gk . . _ .

go,-_]S—Han <—2€k> j=0,1,....5; k=0,1,...,0—1, (7.105¢)

where £ =0, 1,..., L is the order number of the loops with the origin being labeled 0 and r

is the radius of the tangent spheres.
It follows from Equation 7.105a that the total number of circles is

Mo = 3(L+1)? =3(L+1)+1=3L>+3L+1 (7.106)

It is noted, however, that the numbers of projections of centers to the x and y coordinate
axes are different; thus, the information reflected by the points is not equivalent in different
coordinates. This is because the projections of the regular hexagon, on which the centers of the
circles in the same loop are located, to the x and y coordinate axes, a,=2a and a, = V3a
(where a is the edge length), are not equal. Rotating the hexagon by an appropriate angle s to
make the modified projections ¢, and o', equal gives ¢y=m/12 (Figure 7.16b).
Equation 7.105c, therefore, should be modified to

T, 1 [ V3k .
goi—3(]—4)—|—tan (%_k) j=01,....5k=0,1,....0—1.  (7.107)

No modification is needed in Equation 7.105b.
The Cartesian coordinates of the points are then given by

{ YOS 01,2, ... (7.108)
Yi = IiSIng;
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(a) (b)

Figure 7.17 Pattern of tangent spheres in three-dimensional space.

As mentioned above, in the three-dimensional space (s = 3), the highest kissing number of
the sphere is 12. The pattern of packing with kissing number 12 can be constructed using the
pattern in the two-dimensional space discussed above as the pattern in one layer (Figure 7.17a;
also see Figure 7.9). It is seen that the spheres in one layer (see the white solid circles as
projections of the spheres in the same layer to the plane) can be regarded as a translation of the
spheres (see the dashed, shaded circles) in the adjacent layers, the translation being Ax = 0,
Ay = 2\/§r/ 3 before rotation in Equation 7.107. After rotation, we have

24/3r . 2/3r
3

Ax = 3 sinys Ay =

cosis (7.109)

Simultaneously, the centers of one sphere in the upper layer and the three kissing spheres in
the lower layer will form the vertices of a regular tetrahedron with edge length 2r
(Figure 7.17b); thus, the distance between the two layers is the height Az of the regular
tetrahedron and given by

_ 2/6r

A
T3

(7.110)

For convenience, we get the coordinate in the z-direction of different layers in a symmetric
way

Bo=kAz  k=0,%+1,42,... (7.111)

Denoting the coordinates of the centers located in the kth layer z = Zj as (X;x, ¥; 4, Z« ), then
we can get

5 1
Xik = Xio+ = {1 —(- 1)k}Ax

2
(k=0,%1,...,+N.) (7.112)

5 1
Yik = Yio+ 5 [1 — (- l)k} Ay

where x;, y; 0 are the Cartesian coordinates of the centers located in the plane z =0 and given
by Equation 7.108 and N, is the total number of layers.
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Renumber the points and change the subscript indices (7, k) to a single index j and denote the
coordinates of the points by (x,,yj,z,»). Similar to the situation for s =2, it is necessary to
perform a rotation here with x as the rotational axis and finally the points are given by

Xj = Xj
yj = yjcos, + Z;sin, G=12,..) (7.113)
zj = zZjcosi, — y;singr,

where ¢, are the rotational angles circling the x-axis. Considering the symmetry of x, y and z in
the three-dimensional space, one can reasonably take ¢, == m/12.

Likewise, the construction for s =4 can also be made. But it is more direct now to
generate the points in the four-dimensional space by a generator matrix. For details, refer
to Chen and Li (2008).

7.3.1.2 Discrepancy and Projection Ratio of Tangent Sphere Points

Denote the point sets obtained through the tangent sphere method by Pr,s.
Investigations show that for s = 2 the discrepancy of Pr,s defined by Equation 7.88 is (Chen
and Li, 2008)

D(n, Pras) = cO(n~'%) (7.114a)

where ¢ = (161/3 —3)/12 = 2.06 is a constant and ¢=o(1). In dimensions s=3 and 4,
fitting the computational results gives respectively

D(n, Pras) = cO(n~CM*4) and  D(n, Pres) = cO(n~ 3 +%) (7.114b)

The constant c¢ is different for different s. Uniformly, Equations 7.114a and 7.114b can be
rewritten as

D(n, Pras) = O(n~ (/2 ~{1/REs= 1]} +2) (7.115)

We will compare them later with the number theoretical method.
Another index attached to the point sets which is related to the symmetry in different

coordinate directions is the projection ratio. For a point P = {X¢ = (X1 4, X2, .- -, Xsk),
k=1,2,...,n, we define the projection ratio by
N(Proj(P,j)) .
= T =12 (7.116)

Here, N(Proj(7P, j)) stands for the number of the projections of the point set to the coordinate x;
(Figure 7.18). Clearly, for any arbitrary point set there exists

nl<m <1 (7.117a)

The projection ratio reflects the marginal information that is contained in a point set. For
example, for the uniform grid point sets Pygp in Equation 7.90

m=n"" =12, (7.117b)
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Figure 7.18 Schematic projection ratio. A total of 18 points are scattered over the square [0, 1]*
The number of points projected to the x;-axis is 13 because some points have identical x;-coordinate
values. Thus, in this figure, n =18, N(Proj(P, 1)) = 13 and n, = 13/18.

while for the MCS point sets Pyics

n=1  j=12...:5 (7.117¢)

with unity probability.
For the tangent sphere points before rotation in dimension 2 (see Figure 7.16a), computa-
tions result in (Chen and Li, 2008)

n, = YT20( ) = 1.860(n ) m = {004 = LoTO( (2+)
(7.118)
so that n, = V3 7. The projection ratios of the points after rotation are given by
N =1n, >4.650(n" /2 **) (7.119)

This indicates that the rotation can change and improve the projection ratio greatly.
Actually, in dimensions 3 and 4, the projection ratios can be improved from the magnitude
of order O(n~ /%) to the magnitude of order O(1/2). That is why the rotation in Section 7.3.1.1
can improve the features of the points.

7.3.2 From Thinnest Covering: Lattices Approach

A lattice PLagice 1S an infinite set of points in R* with the following three properties (Sloan,
1985):

(a) if X, X' € PLattice, then X £ X' € Plagice;

(b) PLauice contains s linear independent points; and

(c) there exists a sphere center at the origin O that contains no points of Ppyyice Other than
O itself.

These properties mean that Pp,uice iS invariant to certain translation groups (properties (a)
and (c)) and could be generated by a generator matrix composed of the coordinates of the s
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linear independent points (property (b)). Obviously, the above-constructed point set Pras
belongs to the family of lattices. The simplest lattice is the rectangular lattice {(’;1 ,-% yeee ,-’ni),
ji € Z, 1 <i < s}. Forexample the uniform grid point set shown in Figure 7.14a is the subset
of a rectangular lattice.

The dual of a Ppyyice is defined by
,P]J:anice = {y eR’ 1y-xe Za Vx € PLattice} (7120)

where Z is the integer set.

Applications of lattices in multiple integrals have received attentions for years (Haber, 1970;
Sloan, 1985; Sloan and Kachoyan, 1987). As mentioned above, although little is known
about the densest packings and thinnest covering problem in dimensions s > 3, the information
on the densest lattice packings and the thinnest lattice covering, in contrast, is much richer.
For instance, the pattern of tangent spheres elaborated in the preceding section is one of the
densest lattice packings in dimension 3. In this section, on the other hand, we will introduce
the point sets via a possible thinnest lattice covering.

It can be verified that the set

Ay = {(X0, X1, x,) €Z°T i X+ X1 + -+ xy =0} (7.121)

which uses s + 1 coordinates to define an s-dimensional point set, is a lattice lying on the
hyperplane ijll x; = 0in R*"!. The pattern of tangent spheres in the preceding section is
essentially equivalent to this lattice in dimensions 2 and 3. According to the investigations
(Conway and Sloane, 1999), the dual lattices A} of A have the known best efficient covering for
all s <23; namely, they have the known smallest thickness for lattices. From Equations 7.120
and 7.121, the generator matrix of the dual lattice A} in the s dimension is

'S 1 -1 0 - 0 0
S, 1 0 -1 -0 0
S — S, _ |- (7.122)
1 0 0 oo =10
Ss-1 —s 1 1 1 1
LSs 1 s+ s+1 s+1 s+1 s+1]
which is an s X (s + 1) matrix, S; (j=1, 2, ..., 5) is the jth (s 4 1)-dimensional row vector.
If z=(zy,2,.. .,Z.Y)T € 7° is an arbitrary s-dimensional integer vector, then the point
X = (X1,...,X;+1) determined by
N
x=> z8=1'8 (7.123)
J=1

is a point of the lattice A;.
For example, consider the case s =2. Equation 7.122 becomes

S, 1 -10
S = = 2 1 1 (7.124)
3
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Thus, letting z; = (1,1)", according to Equation 7.123 we get x; = (1, — 2,1). Likewise,
we have the pairs

n=(1,0" X =(1,-1,0)
B T - [ 211
Z3—(0,1) X3—< 373a3

If we denote Xy = (0, 0,0), then the distances between arbitrary two points are given by

d(xo,xl):\@ d(X0, %) = V2 d(Xp,X3) = \@

a8 =2 s =V ds) =

Actually, it can be found that the minimum distance is m, and thus the packing radius
is 1/2/3/2.

In addition, it is clear that the points X,,X;,X»,X3,..., are all located in the plane
X| + X, + X3 = 0. Thus, we can transform the coordinate system to a new coordinate system
such that in the new system ox;x,x3 the points are located in the plane x3 =0. This can be
achieved when we introduce the base vectors e, e, and ez for the new coordinate system
such that

e-¢=0; i,j=12,3 (7.125)
and
1
V3

that is, ez is normal to the plane X| + X, + X3 = 0 and, therefore, e; and e, are in the plane
X1+ X + x3 = 0. Satisfying these conditions, we can choose

es=—(1,1,1)" (7.126)

e :%(1, —1,0)" ez:\/ia(l’l’ —2)F (7.127)

Thus, the new coordinates of the point (x|, x,, X3) are given by
Xi=X-¢ j=12,3 (7.128)
Using this transformation, the points X;,X»,X3,..., can be given in the new coordinate

system by
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respectively. It is seen clearly that these points are located in the plane x3 = 0. Therefore, it is
more convenient just to use the former two coordinates such that the points are essentially in a
two-dimensional space

Xy
L] L] [ ] .
. * (V20
[ ] L] L] / L]

[0
L] L]
° o
° L] [ ] .
# LD
/6

5k

Figure 7.19 The dual point set in two-dimensional space.

The points so generated are shown in Figure 7.19. The configuration of the points is in
essence the same as that in Figure 7.8b. They can be further transformed by a scale factor 4 such
that the configuration is the same but the scale of the points can be varied. By this,
Equation 7.128 can be changed to

x,=ix-¢ j=123 (7.129)

Or we can achieve the same thing by changing Equation 7.123 to
X=7)Y z8=1i2"8 (7.130)

The above treatment can be extended to higher dimensions. Actually, the packing radius and
covering radius of the sphere are given respectively by

1 s [s+2 1 |s(s+2)
T'pk 75 —S+1 and Fey = I'pk 3 75 12(S—|—1) (7131)

while the kissing number is k = 2s + 2. Here we find the kissing number of A} is much less than
the known highest kissing number in packings. For example, in dimension 8, the highest kissing
number is 240 while the kissing number of A} is only 18. In turn, this implies that, by the known
thinnest covering, the number of points can be minimized. This is one of the advantages of
using the lattice covering.

Letting X = (X1 4,.--,%s+14), the coordinates of the lattice could then be given by
Equation 7.130. Obviously, the points generated by Equation 7.130 satisfy

5C1,/c+ +)~Cs+1,lc =0 (7132)
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That is, these points are located on the (s 4+ 1)-dimensional hyperplane
xl_|_..._|_xs+1:() (7133)

Thus, Equation 7.130 gives the lattices on a hyperplane in dimension (s + 1).

We now proceed to extract the s independent coordinates and give the explicit expressions.
In order to do so, we introduce a new coordinate system with the base vectors e, e,,..., €,
such that

€€ = 64‘,‘ (7134)
where §;; is the Kronecker delta. For convenience, let

1
e =
+1 Al

(1,1,...,1) (7.135)
———

totally (s+ 1) of ‘1’

Clearly, lle, , 1ll=e,, -e;, ; = 1. Then the other base vectors can be chosen according to
Equation 7.134. The typical base vectors for s=4, 5, ...,23 are shown in Appendix D.
Using the new base vectors, the new coordinates of the points can then be computed by

Xjk = Xk - € j=12,...,s (7.136)
From Equations 7.133 and 7.130 it follows that x; , 1 4 = 0. Therefore, the coordinate x; | ; is
trivial and the nontrivial coordinates are the former s components.
Likewise, a rotational transformation can then be performed on the points by Equation 7.136
such that the features of the projection ratio (discussed in Section 7.3.1.2) can be improved.
The volume of the Voronoi cells of the point set A} reads

2 (s+ 1)

V(V) 2 (7.137)
and the thickness of the lattice is
V(B(rey,s)) s(s+2) 5/2
- T = 1 1 T ~7 . =5 .1
Q) V(v) V(B(1,$)Vs+ 2G+1) (7.138)

While the covering ratios of the Voronoi cell to the contact covering hypercube is

V() 2+nSTV2 0 s+t <rpk)‘f(s+1)<“>/2( 3 )S/z

T (2re)’ | 252, bk $5/2 §/2 s+2
(7.139)

rCV

The quantities in Equations 7.138 and 7.139 can be used to check the accuracy when
employing lattices to compute the assigned probabilities.

7.3.3 Number Theoretical Method

Another family of uniform point sets is the number theoretical net (NT-net) (Hua and Wang,
1981). Since the 1950s, NT-nets with low discrepancy have been studied extensively and
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applied widely in science and engineering (Niederreiter, 1992; Fang and Wang, 1994; Sobol’
1998; Nie and Ellingwood, 2004; Li and Chen, 2007a).

The basic idea of the method is to employ an integer generator vector (n, Qy, Qa, ..., Q)
to generate a point set Pnrv = {xXx = (X1.4, X245 - - -, Xsk) : kK =1,2,...,n} by

Xjk = (2kQ;—1)mod(2n) j=1,2,...,855k=1,2,...,n
Xk (7.140a)

Nk =5
where the meaning of the modulo is identical to Equations 4.70a—4.70c. Equation 7.140a is

equivalent to

_2kgi -1 . (2kQ;—1 L o
ka—T—lnt(T ]—1,2,...,5, k—1727...,}’l (7140b)

Here, int (-) takes the integer part of the value and 7 is the cardinal number of the point
set Pntwm.-

Equations 7.140a and 7.140b mean that the coordinates of the point set take decimal
fractions of the value (2kQ; — 1)/2n; thus

O<xje<l j=12,....5 k=12,....n (7.141)

This is of course related closely to congruence and the Diophantine equations and is one
of the central topics in algebraic number theory (Manin and Panchishkin, 2005). Through
units of the cyclotomic field, we can get different sets of integer vector (1, Qy, Q»,. . ., Q) so that
the point set generated by Equations 7.140a and 7.140b is a point set uniformly scattered over
the unit hypercube C*. Hua and Wang (1981) proved that the discrepancy of such a constructed
point set, referred to as a Hua—Wang point set and denoted by Py.w, is

D(n, Puw) = O(n~ /2~ {1/Rls=Dl} 2y (7.142)

Generally, we can set Q; = 1. The generator vectors with low discrepancy for s =2-18
for different n can be found in, say, Hua and Wang (1981) and Fang and Wang (1994) and are
givenin Appendix G. Indimension s = 1, from Equations 7.140a and 7.140b it is seen that Py w
is identical to the uniform grid point set Pygp (given by Equation 7.90). In dimension s =2,
the Fibonacci sequence Fy, £ = 0,1,2, ..., can be used:

For=F/_1+Fy_y; 0=23,...; Fp=1;F =1 (7143)

In this case, letting n = Fy, Oy =1 and Q, = F,;_, Equations 7.140a and 7.140b will
generate a uniformly scattered point set in the square C* = [0, 1] x [0, 1].

Comparing Equation 7.142 with Equation 7.115, it is seen that the discrepancy of the
Hua—Wang point sets Py_w is in the same order as that of the tangent sphere points Pr,s, at least
for s =2-4. Actually, this similarity can also be seen from the scattered configuration, as
shown in Figure 7.20 in dimension 2 for similar n. However, we should note that they are not
always so similar for different ». In fact, the possible 7 for Py.w and Pr,s might differ greatly:
we cannot always generate a Py.w with n close to a given Pr,g, let alone similar configurations.

Figure 7.21 shows the discrepancies of different patterns of point sets, including the tangent
spheres point set Pr,s, the Hua—Wang point set Py_w, the uniform grid point set Pygp and the
point sets obtained by Latin hypercube sampling Prys. Because P ys is a random point set,
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Figure 7.20 Configuration of different uniform scattered point sets.
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Figure 7.21 Discrepancies of different patterns of point sets.

(C1: D(n) = n~'/2,C2: D(n) = 2.06n~",C3: D(n) = 1.2n'/3,C4: D(n) = 206n3/%)

we plotted six samples of the point set (McKay et al, 1979). This indicates clearly that the
discrepancy in Pr,s is of the same order of magnitude as Py.w, whereas the discrepancy in P ys
is almost surely larger than that in Pr,s and Py.w. Thus, employing Py.w is usually preferred.

The above-generated tangent sphere point sets Pr,s, the lattices Praice and the Hua—Wang
point set Py.w and the like can be applied sometimes directly as the representative points.
But more reasonably, they can be used as basic point sets as dicussed in Section 7.2.4. For
notational convenience, we denote all these points by Ppgasic-

7.4 Density-Related Transformation
7.4.1 Affine Transformation

The point sets generated in the preceding sections, including the tangent spheres points, the
lattices and the Hua-Wang points, denoted uniformly by P = {Xx = (X14, X2k - - -, Xsk),
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k =1,2,...,ny}, are all point sets in a sense uniformly scattered over the unit hypercube C°.
Here, n,, is the cardinal number of P. The distribution domain of the basic random variables
Qg, however, is usually not C°. We need to perform an affine transformation to map the point set
P over C to the point set P over Qg.

Without loss of generality, we assume the distribution domain

Q@ = {0 = (91,62, ‘e ,95) : bj,L S 0[ S bj,R;j = 1727 AP ,S} = H;:l[b/’L’b/’R] (7144)

where b;;. and b; r are respectively the left-hand side and right-hand side boundaries. We can
then construct the point set P = {0y = (61x,02x,...,05x), Kk =1,2,...,ny} over Qg by
employing an affine transformation:

Hj,k = bj,L+xj.k(bj,R_bj‘L) j = 1,2,. R k = 1,2,.. . ,I/lpt (7145)

In the case the distribution domain Qg is an infinite domain (for example, when the basic
random variables are normal or lognormal variables), the domain should be truncated to a
bounded domain. How to select the truncation boundary is somewhat an open problem
(Fang and Wang, 1994). We will come back to this issue again later.

The point set P generated by Equation 7.145 can be used as the representative point set Pey;
for example, in dimensions s <4 (Chen and Li, 2008). Otherwise, it can be used as the basic
point set as discussed in Section 7.2.4 and denoted in a unified way by

PBasic - {ék - (él,ka éZ,ka ey HS,k)v k= 17 27 e 7npt} (7146)

7.4.2 Density-Related Transformation

The point set Pgysic generated in the preceding section is essentially based on the uniform
distribution of basic random variables. If the density pg(0) is nonuniform, then the assigned
probabilities of the points in Pg,sic might differ so severely that the representative of different
points varies too severely. In this case, further transformation imposed on the basic point set is
needed; namely:

Psel = T(PBasic) (7 147)

This transformation, of course, should change the density of the points and simultaneously
change the assigned probabilities to make them more uniform than before. In other words,
Equation 7.147 should reduce the modified F-discrepancy Dz (n, P) defined by Equations 7.93
and 7.95; that is:

D]:(n,Pse]) < D]—'(”ypBasic> (7148)

Because of this, we call this the density-related transformation.

Besides Equation 7.148, the density-related transformation in Equation 7.147 should also try
to minimize the first- and the second-order discrepancies D; and D,, as discussed in
Section 7.2.3.
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7.4.3 Radial Decay Distribution: Spherical Sieving and
Expansion—Contraction Transformation

In many problems of practical interest, the density of the basic random variables exhibits the
property of radial decay. For example, the multidimensional normal distribution exhibits a
more fascinating property of spherical symmetric decay. In this case, a spherical sieving
operator can greatly reduce the number of points finally selected. In addition, an isotropic
expansion—contraction transformation can be adopted as the density-related transformation.

7.4.3.1 Spherical Sieving

For radial decay densities, the assigned probabilities of the points around the corners of the
domain Qg are very small compared with those of the inner points and, thus, can be eliminated.
This could be achieved by sieving the points in the point set P, which is uniformly scattered
over C°, through the inner contact sphere:

1\ 2 12 1\ 2 1 \2
<x1,k — 2) + (xz,k - 2) + -+ <x&,k — 2) < <2r0> (7.149)
where o> 1.

Figure 7.22 schematically illustrates Equation 7.149. Clearly, for o > /s, the condition
Equation 7.149 does not work, while the number of the points satisfying Equation 7.149 will be
smaller than 7, in the case 1 < rg < /s. In particular, in the case ro = 1, the ratio of the number
of remaining points 7 to the total number n, is given by

7.150
st npt V(Cs) nPl — 00 ( )

Figure 7.22 Sphere sieving (s =2).
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where V(B(r, s)) is the volume of an s-dimensional ball given by Equation 7.71. Therefore, the
sieving ratio Yy, satisfies

,n.m

52 sz fors = 2m

Hge] ™

i — lim 7.151

npllinopysv nluonpt 2°T'(1+ ) L fors =2m+1 | )
2" T (2+1)

The nominal sieving ratio lim,,, —, o Y, shown in Figure 7.23, decreases very quickly
(in fact, faster than exponentially) as s increases. For instance, lim,,, —, o Y,, = 0.785, 0.524,
~1/400 and <10~° in dimensions 2, 3, 10 and 18 respectively.

10°

107} .

102 .

10 3

10k E

The nominal sieving ratio

107k E

10°} -

10-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
The number of the random parameters s

Figure 7.23 The nominal sieving ratio versus the dimension s.

The number of the uniformly scattered points over C* usually increases in degree as the
dimension s increases; spherical sieving will compensate for this increase and can make the
number of points finally selected almost invariant against s for acceptable accuracy.

Figure 7.24 illustrates an example of spherical sieving in dimension 2. The original
points come from the tangent spheres, as shown in Figure 7.20b. These points are sieved
by acircle and then transformed by Equation 7.145 from the square [0,1]* to the square [—4,4]°.
Also plotted in Figure 7.24 are the contours of the joint normal distribution, each concentric
circle being equi-PDF. This intuitively justifies sphere sieving.

7.4.3.2 Expansion—Contraction Transformation

For the radial decay parametric density, transformation 7 in Equation 7.147 can take the
isotropic expansion—contraction transformation (Chen et al., 2009); namely:

Oig=¢ (|\0q||)” g=1,2,... . n;;j=1,2,....,s (7.152)
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Figure 7.24 Spherical sieving.

where 8, = (14,05, - .-,05,) and g(-) is an operator with respect to the norm of the point.
Through the transformation in Equation 7.152, all the points will move toward or outward from
the origin in an isotropic radial manner.

Actually, g(-) is the ratio of expansion or contraction. It is reasonable to make points on the
edge of the distribution domain invariant, whereas points near the origin (peak density) should
contract at an appropriate ratio 3; namely:

gl o=8 &), =1 (7.153)
A simple one might take the form
gry=ar"+b (m>0,me2Z) (7.154)
Combining Equations 7.153 and 7.154 gives

1-pB
a= Pz

b= (7.155)

The isotropic expansion—contraction transformation in a normal density field in dimension 2
is shown in Figure 7.25. It is seen that more points are scattered in the area of larger probability
density after the isotropic expansion—contraction transformation.

In the present case, the F-discrepancy defined by Equation 7.93 may be transformed to the
radial F-discrepancy

Dr(P) = max |Fp(r)—F(r)| (7.156)

0<r<ry

where r, is the radius of the hyperball which covers Q and

Mgel

Fp() =D Py {8l <} =)0 Py= Zuequsfjvl’ﬂ‘*)d‘* (7.157)
g=1 /
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Figure 7.25 The point sets after expansion—contraction transformation (n =199, m=1, B =0.5).

and

F(r)= Jg(p@(e) I{]|0]] < r})de = J Pe(0)d6 (7.158)

llefl<r

are respectively the sum of the assigned probabilities and the probability contained in the
hyperball B(r, s) of radius r in dimension s. In contrast to Equation 7.93, only one variable is
involved in the distribution functions in Equation 7.156, which makes it much more tractable.

The closed-form expression of Equation 7.158 for a standard normal distribution is
elaborated in Appendix E. The probability contained for different » and s is illustrated in
Figure 7.26. What is particularly important and shown in the figure is that, as the dimension s
increases, the probability in the area near the origin decreases greatly while the probability

wn oo

Probability
LOONDTTRWN =

D00 oon

Figure 7.26 The probability contained in a hyperball, F(r, s).
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distributed over the outer area increases correspondingly. For instance, for r =2, in dimen-
sion 1 more than 0.7 is contained, whereas in dimension 10 the probability is less than 0.05. In
addition, to have a probability of more than 0.99, for example, r = 3.5 is enough in dimension 1,
whereas r should be around 5.0 in dimension 10. This implies that, when we truncate an infinite
distribution, we should be very careful and should have sufficient understanding of the
distribution over the space.

Through appropriate isotropic expansion—contraction transformations, the radial F-discrep-
ancy can usually be greatly reduced. For instance, in dimensions s =2 and s = 8, Figure 7.27
shows the distributions given respectively by Equations 7.157 and 7.158. This demonstrates
that the isotropic expansion—contraction transformation can greatly reduce the F-discrepancy.
The effect is particularly obvious in larger dimension s. Correspondingly, the computational
results when employing such selected point sets are usually satisfactory (Chen et al., 2009).

Exact CDF
1.0[ —— GDF by the point set 1 i 1 1.0
CDF by the point set 2

Exact CDF e
CDF by the point set 1
CDF by the point set 2

0.8 0.8
2 2
2 06f 906
Rel el
[ <]
o 04 o 04
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0505 1.0 15 20 25 30 35 40 O 0510 1520253035 4045 50
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(a) (b)

Figure7.27 The CDF before and after expansion—contraction transformation (NTM). (a) s = 2, Ny = 68;
pointset 1: m=1,8=1; pointset 2: m=2, 8=0.5. (b) s =8, Ny,; = 360; point set 1: m =1, B = 1; point set 2: m =6,
B=0.6.

7.5 Stochastic Response Analysis of Nonlinear MDOF Structures
7.5.1 Responses of Nonlinear Stochastic Structures

Consider a 10-story shear frame as shown in Figure 7.28 subjected to earthquake. Randomness
is involved in the mass parameters, stiffness parameters, the parameters of the nonlinear
restoring force model and the peak parameters of the ground acceleration.

The means of the lumped masses miy,m,, ..., mjq are listed in Table 7.1. From the bottom
to the top, the first four stories are grouped into a subset that these four masses are completely
correlated and the randomness can be characterized by a single random variable. The other six
stories are grouped into the other subset. Thus, two random parameters are involved in the
masses. In a similar way, another two random parameters are involved in the initial elastic
modulus. The geometric size of the section of the columns is 500 mm x 400 mm. The
Bouc—Wen model discussed in Section 5.5.2 is employed to characterize the interstory
restoring force versus the interstory drift. Here, the model parameters B, v, d,, d, are
taken as random parameters of which the probabilistic information is given in Table 7.2.
The other model parameters take deterministic values: « =0.01,A=1,n=1, ¢g=0, p =600,



Probability Density Evolution Analysis: Numerical Methods 279

my,

i,

Figure 7.28 Structural model.

dy=0, ,=0.5, {,=0.95, y =0.2. For simplicity, Rayleigh damping is assumed such that
C=aM + bK, where K is the initial stiffness matrix, « =0.01 and » =0.005. The ground
acceleration is assumed to be the random combination of the El Centro accelerograms in the
N-S and E-W directions with random combination coefficients Opga_ ; and Opga . Regarding

Table 7.1 Probabilistic information of the mass and stiffness parameters.

Story number Mean value Coefficient of variation

Initial elastic

Lumped mass modulus Initial elastic
(x10000kg) (x100 000 MPa) Lumped mass modulus
10 0.5 2.8 0.2 0.2

9 1.1 2.8

8 1.1 3.0

7 1.0 3.0

6 1.1 3.0

5 1.1 3.0

4 1.3 3.25 0.2 0.2

3 1.2 3.25

2 1.2 3.25

1 1.2 3.25

Table 7.2 Probabilistic information of parameters in the Bouc—Wen model and excitation.

Parameters B 4 d, dy OpGai Opca 2

Mean value 60 10 200 200 2.0 m/s> 2.0 m/s>
Coefficient of variation 0.2 0.2 0.2 0.2 0.2 0.2
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all the randomness, a total of 10 random variables are involved. The partition of probability-
assigned space using the NT-nets as the basic point sets is employed to generate representative
points and then the generalized density evolution equation is solved to obtain the probabilistic
information of the stochastic response of the nonlinear structure.

Figures 7.29—7.31 illustrate some of the results. Figure 7.29 shows that both the mean and the
standard deviation of the response accord well with the MCS. In the computation, only 570
representative points are selected in the PDEM, but 16 000 reanalyses are carried out in the
MCS. One of the most important advantages of the PDEM is that the instantaneous PDF of the
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Figure 7.29 Mean and standard deviation of stochastic responses.
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Figure 7.30 Typical PDF of stochastic responses at different time instants.
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response can be captured. This can be seen in Figure 7.30a, where the PDFs at three different
instants of time are illustrated. Figure 7.30b shows the comparisons between the CDF by the
PDEM and the empirical CDF by the MCS. Clearly, it is seen that the PDFs at different instants
of time are irregular and quite different. This can be seen further in Figure 7.31a, where the
PDFs evolving against time construct a PDF surface. Simultaneously plotted in Figure 7.31b is
the contour, where it is seen that the probability transits against time just like water flowing in a
river with many whirls.

PDF
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125 13 135 14 145 15

Time (s)
(a) (b)

Figure 7.31 PDF evolution surface and the contour.
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Figure 7.32 Restoring force versus interstory drift.
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Figure 7.33 Mean and standard deviation of stochastic responses.
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7.5.2 Stochastic Seismic Response of Nonlinear Structures

Now a nonlinear structure subjected to stochastic ground motions is considered. In the present
context, the structural properties are regarded as deterministic, taking the same values as those
in Section 7.5.1, except that the geometric size of the columns is 400 mm x 400 mm and that the
parameters regarded as random variables in Section 7.5.1 take values identical to the mean
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values. The physical stochastic model of ground motion elaborated in Section 3.2.3 is
employed here to represent a stochastic ground acceleration. In total, 221 representative
points generated by the strategy of tangent spheres are employed here to generate 221
representative time histories of the ground acceleration. Then the PDEM is performed to
obtain the probabilistic information of the stochastic response.

Figure 7.32 shows a typical curve of the restoring force versus interstory drift in one of the
representative time histories. Figure 7.33 shows the mean and standard deviation of the
stochastic response. It is noted that the amplitude of the mean process has a magnitude of small
order. The PDF of the response is illustrated in Figures 7.34—7.36. We can see that the shape of
the PDF is quite different at different instants of time.
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Figure 7.35 PDF surface and contours of stochastic responses.
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Dynamic Reliability of Structures

8.1 Fundamentals of Structural Reliability Analysis
8.1.1 Structural Reliability

One of the important purposes of stochastic response analysis of structures is to provide a
quantitative basis to enable the designed structure to satisfy the requirements for safety or
serviceability in the expected service life. Structural safety and serviceability may be
comprehensively called structural reliability. Herein, reliability means the probability of
success. In this chapter the concern is only dynamic reliability that is related to dynamic
responses of stable structures.

If a structure does not meet a certain prescribed requirement (that is, the whole structure or
part of it exceeds a certain specified state), then this certain state is called the limit state.
Accordingly, limit states are boundaries that distinguish whether the working state of the
structure is reliable or not. The limit states of engineering structures can usually be classified
into two basic categories: ultimate states and serviceable states. The ultimate states correspond
to cases in which the structure or members of the structure reach the ultimate bearing capacity
or deformation states that are not suitable to continue to carry loads. The serviceability limit
states refer to those states where the structure or members of the structure reach the prescribed
limit values for serviceability or durability.

According to the background, the main target of structural reliability analysis is to evaluate
the probability of the structural response not exceeding the limit states. This target can be
accomplished equivalently by calculating the probability of the structural response exceeding
the limit states (namely, failure).

In general, the limit states of the structure can be defined by limit state functions. Assume that
£1,6, ..., &, are the n random variables influencing the structural response, then the random
function

Z:g(§1a§27"'7§n) (81)
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is called the /imit state function if it satisfies

when Z > 0, the structure retains the prescribed function — that is, the structure is reliable;
when Z <0, the structure loses the prescribed function — that is, the structure is in failure;
when Z=0, the structure is in a critical state — namely, the structure reaches the limit state.

Assume the limit state function is prescribed by Equation 8.1. The reliability P, =Pr{Z > 0}
can be given by the integral of the joint density function of the set of basic random variables
Peier (x1,X2,...,Xy); that is:

P. = J J Peey ey (X1, X250, Xp) dxp dxa - dxy (8.2)
2=g(X1,X2,...,Xy) >0

Similarly, the probability that the limit state function is less than zero is called the failure
probability in terms of the certain functions. Obviously, the failure probability P;=Pr{Z <0}
can be expressed by

Py = JJ 2 (X1,X2, ., Xp) dxy dx; ... dx, (8.3)
2=8(X1,X2,.,%) <0 )

Then, there exists
Pr=1-P, (8.4)

Therefore, computation of the structural failure probability is equivalent to computation of
the structural reliability.

It should be pointed out that, in structural reliability evaluation, the probability that a
catastrophic load occurs in the service life of the structures is not taken into account. If it is
considered, then the aforementioned results should be properly revised. Taking an earthquake
as an example, if the probability that the peak of the ground motion Y exceeds the prescribed
value is Pr{Y > y}, then the PDF py(y) in terms of parameter Y can be determined. The failure
probability in the service life of the structures can thus be expressed by

Py =Pr(Z<0) = J: Pr{Z<0|Y = y}p,(y) dy (8.5)

in which the conditional probability Pr{Z<01Y =y} can be computed by employing Equa-
tion 8.3 according to the prescribed y.

8.1.2 Dynamic Reliability Analysis of Structures

Structural dynamic reliability still complies with the definition for the general structural
reliability problem. The new particularity only lies in the problem that dynamic action and
dynamic response are time-varying processes. For a dynamic system, the probability of
exceeding a limit state can be described as the first-passage probability or a fatigue failure
probability (Lin, 1967). In this chapter, only the first-passage problem is of concern.
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Suppose X(?) is the response of a stochastic dynamical system. The general definition of the
first-passage problem can be described as

F, = Pe{X(1) € Q1 € (0,T]} (8.6)

where € is the safe domain. This means that the response will never exceed the boundary of the
safety domain during the time duration (0, T]. In other words, once the response exceeds the
boundary, the structure will fail.

Depending on the specific background, the boundary of ; may be a one-sided boundary, a
double-sided boundary, circle boundary and so on. For a simple double-sided boundary
problem, the structural dynamic reliability in time 7 is defined as

Fy(—ay,a2,T) = Pr{(X(t)> —a) N (X(1)<a)|0 < t < T} (8.7)

in which —a; and a,(a; >0, a, >0) are the permissive lower limit and upper limit of the
stochastic structural responses respectively.

For convenience, we define the dynamic reliability function R(7) as the probability that ¥(7)
does not exceed the limit value in the time interval [0, T]; namely:

R (T) =Pr{X(1)<al0 <t < T} (8.8)

which is of course the reliability of a one-sided boundary problem.

8.1.3 Global Reliability of Structures

Generally speaking, the above-defined reliability is that when only one limit state function is
involved; in other words, it is only defined when one element (or member) of the structure fails
or when one specified failure mode is considered. For the reliability evaluation of a structure,
we usually need to take into account more than one index or more than one failure mode. For
instance, when we consider the serviceability of a multistory frame structure, not only might it
be required that the interstory drift between the first floor and the second floor not exceed a
threshold, but also require that all the other interstory drifts not exceed the corresponding
threshold. In this case, a family of limit state functions should be considered:

Zy =gi(é, &, -, €p)
Zp) = 82(51;52; cee 7511) (89)

Zn :gm(§17§27---7§n)

The failure event might be a combination of these limit state functions in different logical
relationships; that is:

Py = Pr{X" (Z;<0)} (8.10)

Here, we use R to denote different logical combination operators. For instance, when it is a
series system, Equation 8.10 becomes

Pf = PI‘{

J

(Zj<0)} (8.11)

m
=1
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whereas if it is a parallel system, Equation 8.10 becomes

m

P; :Pr{ﬂ(zj<0)} (8.12)

J=1

In addition, it can also be a combined system; say:

m m
Pf—Pr{ (z<0) ul (] Z<0) } (8.13)
j=1 j=my+1
or in any other type of combination.
Of course, the reliability is given by
P.=1—-P; (8.14)

The reliability problem (Equation 8.10) is generally known as the structural system
reliability. Because of correlation and combinatorial explosion problems, this is one of the
most difficult topics in reliability theory. Actually, for most of the so-called system reliability
problems encountered in engineering practice, it might be more reasonable to call it the global
reliability of structures. We will come to this problem in detail later.

8.2 Dynamic Reliability Analysis: First-Passage Probability
Based on Excursion Assumption

8.2.1 Excursion Rates

As pointed out in Equation 8.6, the first-passage failure problem requires that in the time
duration of interest the response of the system will never exceed the boundary of the safety
domain. One of the treatments to tackle this problem is that we can first set a virtual boundary, if
we can evaluate the times of excursion in the time duration, then we can capture the probability
that the times of excursion is zero. This, of course, is the reliability of the system. To this end, we
first consider the excursion rate of a response exceeding the virtual boundary. This is also
known as the level-crossing problem.

Figure 8.1 illustrates a sample function of the stochastic process and the situations that
the sample time process X(¢) passes the level x(¢#) =a (a > 0) with a positive and negative
rate of slope (passage upward and downward respectively). Obviously, for the stochastic
process, the time of passing the level in a time interval is a random variable. The
probability distribution density of this random variable at any time is called the rate of
passage (it is also sometimes called the expected rate of threshold crossing), which can be
designated as A(?).

The condition that the stochastic process passes the threshold with positive rate of slope in
the time interval (¢, ¢ + df) can be expressed by

{x(l)<a (8.15)

x(t+dt)>a
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up-crossing down-crossing

LA i
W=V ARV A4

Figure 8.1 Excursion of a sample process.

Considering that x(z + dt) = x(¢) + x(¢) dt, the condition can be rewritten as

{x(t)<a (8.16)

X(¢)dt>a—x(1)
which denotes the shaded area shown in Figure 8.2.

Equation 8.16
0N |

x (0

0 I\ xg

Figure 8.2 The area determined by Equation 8.16.

Assume the joint PDF of X(¢) and X(¢) is pyx(x, X, 7), then the probability that passages
happen in the time interval (¢, ¢ 4 df) is the integral of p,y(x, X,?) in the shaded area;
that is:

Aa(t) dt = dtJ J Dyy(x, %, 1) dx dx (8.17)
0 Ja—xd

According to the intermediate value theorem, the above integral is equal to

oo

Jalt) di = dtJ iy (a, %, 1) di (8.18)
0
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Namely:

=3

Jalt) = L Xpyi(a, , 1) dx (8.19)

This resultis known as Rice’s formula (Rice, 1944), which is the rate of crossing threshold at
time instant ¢ with positive rate of slope.

Similarly, the rate of passing x(#) = —a at time instant ¢ with negative rate of slope can be
deduced as

0
d_a(t) = Jim)'cpxj((fa,)'c, 1) di (8.20)

Equations 8.19 and 8.20 demonstrate that, for any stochastic process, the rate of passage can
be evaluated as long as the joint probability density of the process and its derivative process are
known. In particular, for the zero-mean stationary Gaussian stochastic process, we have

A 1 oy a?
)La:Aa:ﬁo_—ieXp(—F> (82])
X

In the case a =0, this becomes

1 oy

o (8.22)

- 2n ;x
Usually, 4, is called the expected rate of crossing zero with positive (or negative) rate of slope.
Here, oy and oy are the standard deviations of X(#) and X(¢) respectively.

For a general nonstationary Gaussian stochastic process there exists (Zhu, 1992)

o 1 a*2 p a*2 p at
Jalt X 1V/1=p2 - ) +V2 SR | (L.
0=z (VT i) e (i )o(n)|

B ZTEO'X Oy
(8.23)

in which a* = a — g[X(1)], p=p(?) is the correlation coefficient of X and X and ®(-) is the
standard normal distribution function.

8.2.2 Excursion Assumption and First-Passage Probability

Consider first the simplest situation of the one-sided boundary problem. In some cases, this can
also be a basis for more complicated problems. Although it seems much easier than other cases,
even for the simplest stationary response process the accurate solution of dynamic reliability
function unfortunately remains to be found. Therefore, most studies have been limited to
obtaining approximate solutions. In these solutions, those based on the Poisson crossing
assumption (Coleman, 1959) and the Markovian crossing assumption (Crandall et al., 1966)
are two representative methods.
The Poisson crossing assumption assumes that:

(a) in a tiny time interval, the positive (negative) crossing occurs at most once;
(b) the times of crossing happening in different time intervals are independent.
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The above assumption is essentially to regard the excursion process as a Poisson process.
Consequently, the probability that the response process X(7) passes the threshold with positive
rate of slope for k times in a time interval (¢, ¢ + dt) is

P,(k,t+dt) = P,(k,t)P,(0,dt) 4+ P,(k—1,8)P,(1,dt)

= Pl D1 — 2a(1) di] + Palk — 1, £)24(7) d1 (8:24)
Rewriting the equation as
Pl A0 = Pullo) 0yt 1)+ 2Pk~ 1,0
that is:
% + ()P, (k1) = 2a()Py(k —1,1) (8.23)

The general solution of this difference-differential equation is

t

Pa(k, H)exp U[ Ja(7) df} =Ce+ J[ Pa(k —1,7)4(7)exp U Ja(t0) du} de (8.26)

0 0 0

In the case k=0, the equation becomes

t !

P,(—1,7)24(7)exp U; Ja(th) du} dr (8.27)

P,(0, t)exp U

Oia(f) df} =Co+ J

0
Because k takes only positive numbers, P,(—1, t) =0, and at time ¢ =0 the event passing
y=a is impossible (namely, P,(0, 0) = 1); accordingly, Co =1 and consequently

Py(0,1) = CXP[— J; 2a(T) dr} (8.28)

According to the definition of the dynamic reliability function, there exists

T

Ro(T) = P,(0,T) = exp[— J Jalt) dz} (8.29)

0

Note that, in the present assumption, crossing events are independent; thus, the expected
excursion rate of the double-sided boundary problem is the sum of the expected excursion rate
of two one-sided boundary problems. Therefore, the structural dynamic reliability in the time
interval (0, T) for the double-sided boundary problem can be obtained as follows:

T

Fy(—ay,a,,T) :exp{ — J

a0 )] 0t (8.30)
0

When the threshold values a; = a, = a (the situation with a symmetric threshold value), the
above equation becomes

T

Fy(—aj,a,T) = exp{ - J

0

[A—a(t) + Aa(0)] dt} (8.31)
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Therefore, if the stochastic structural response is a nonstationary normal process, then the
structural dynamic reliability under a specified threshold can be obtained by substituting
Equation 8.23 in the above two equations. If the stochastic structural response is a zero-mean
stationary Gaussian process, then the structural dynamic reliability can be evaluated by
substituting Equation 8.21 in the above two equations.

Related studies demonstrate that, for stationary normal structural responses, when the
threshold approaches an infinitely high value, the above method may give an accurate solution
of the dynamic reliability (Cramer, 1966). However, when the threshold is not so high, there are
some errors in the results. For narrow-band processes the results deviate to conservation (the
computed reliability deviates to a lower value). In fact, for narrow-band processes, if the
threshold is not very high, then crossing events are not independent but occur in clusters
(Cramer, 1966; Vanmarcke, 1972, 1975).

In the Markovian crossing assumption, it is assumed that the next crossing event is related to
the present crossing event whereas it is independent of the past events. Therefore, the crossing
process is a Markov process. The structural dynamic reliability (for the symmetry limit
situation) under a general nonstationary normal process can be obtained by

F-aaT) = exp{— J:oz(l) dz} (8.32)

in which

(1) ZIX%gzexp(——la(0> Lexp[ — v/2)g (e (8.33)

2 1 —exp[— (*(1))/2]
where Y,(¢) and g(¢) are the spectral parameters as defined by Equations F.7 and F.8 respectively
in Appendix F, b is an empirical parameter, usually »=0.2, and

a

" o)

(8.34)

For stationary response processes, the structural dynamic reliability is given by

2\ 1 —exp|— L+ by
Fy(—a,a,T) = exp{%Texp(— E) ! 1p[exp((n£22/)g) }} (8.35)

in which 7y, and g are the spectral parameters as defined by Equations F.3 and F.4 in Appendix F
respectively and

r=— (8.36)

8.2.3 First-Passage Probability Considering Random Thresholds

In the above analysis, the values of the thresholds a; and a, are regarded as deterministic
variables. However, in most practical problems the thresholds might be random variables.
Therefore, structural reliability analysis with random thresholds should be discussed.
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First consider the situation with asymmetric failure thresholds (namely, a; #a,). Assume
that the joint PDF of the two-sided thresholds is f, 4, (41, #2); thus, the reliability that @, takes
the value varying in the range (u;, u; + du;) and a, in the range (u,, u, + du,) is

dFS/( —(ll,az,T) = FS( —ul,uz,T) ulaz(ul,uz) du1 du2 (837)

in which F(—uy, up, T) and F's( — ay, ap, T) are the reliabilities with deterministic thresholds
and thresholds limits respectively.
According to above equation, we have

FS,( —al,az,T) = J J FS( —ul,uz,T) a,az(ul,uz) dL{] duz (838)
0 Jo

Usually, the lower threshold a; and the upper threshold a, can be treated as independent
random variables with probability density f,, (#1) and f,, (1) respectively; therefore, combin-
ing Equations 8.30 and 8.38 gives

F(—ay,a,T)= {J:exp {— JOT/I_L,I (1) dt}fa, (1) duy } {J:exp {— J(j}"‘”(l) dt]faz(uz)duz}
(8.39)

For the situation with symmetric failure thresholds (a; = a, = a), this is equivalent to the
situation that a; and a, have identical probability distributions and are completely correlated.
Assume the PDF of the threshold « is f,(#); accordingly, the structural dynamic reliability is
given by

oo

Fs/(—CZ,CZ,T) :J FS(—u,u,T) a(u)du
0

oo T
_ J exp{ - J U u(t) 4 7u(1)] dt}fa(u) du (8.40)
0 0

The basic characteristic of dynamic reliability evaluation based on the crossing assumptions
is to estimate the reliability by the crossing characteristic of the response process for specified
thresholds. In the procedures, the structural analysis does not intervene in the structural
reliability evaluation. Accordingly, this family of methods in essence belongs to the separated
algorithms. The stochastic response analysis, which is the basis of the dynamic reliability
evaluation, can employ the methods described in Chapters 4 and 5.

As noted, although solutions based on Poisson or Markovian assumptions might have
acceptable accuracy in some cases, the accuracy usually cannot be guaranteed because these
assumptions are mainly based on empirical intuitiveness rather than rigorous mathematical
approximation. The underlying reason is that, to obtain an accurate solution of first-passage
reliability, all the finite-dimensional correlation information is needed, rather than only two-
dimensional information. This will be clear in Section 8.4.4.

8.2.4 Pseudo-Static Analysis Method

The essence of the pseudo-static analysis method is to convert the time process response of
the structures to some indices of them and compute the structural dynamic reliability by the
probability distribution or statistic moments of the indices.
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Usually, structural failure in a time interval [0, 7] may be simplified as
D > D, (8.41)

in which D is the extreme value of the response in the time interval [0, T'] corresponding to the
failure criteria of the strength and/or deformations and D, is the structural failure threshold and
is related to a certain criterion.

If the joint probability density of D and D., denoted by fpp_ (u1,uz), is known, then the
structural dynamic reliability can be computed by

F(T) =Pr{D<D.|0 <1< T}
= ” Joo, (ur, u2) duy duy (8.42)
D<D.
If D and D, are mutually independent, then
Jop, (1, u2) = fo(u1)fp, (u2) (8.43)

where fp(u;) and fp_ (1) are the PDFs of D and D, respectively.
Consequently, the structural dynamic reliability can be computed by

Fy(T) = ” Jo(ur)fp, (u2) duy duy

D<D,
[ uy) du u) du (8.44)
JO Uo fo(ur) d 1}]‘06( 2) duy
:J Fp(u)fp, (uz) duy
0
in which
Fp(u) = J:lfD(”l) duy (8.45)

is the CDF of D.

Obviously, for the strength and deformation failure criteria, the essence of Equation 8.44 and
the first equality of Equation 8.42 are identical. In particular, in the case the threshold value D,
is a deterministic variable, the structural dynamic reliability becomes

D

Fy(T) = L fo ) duy (8.46)

Equations 8.42, 8.44 and 8.46 are accurate expressions for structural dynamic reliability
evaluation. If the PDFs required in the equations are available, then the structural dynamic
reliability can be evaluated directly by the corresponding equations with the analytic method or
numerical integral method. Unfortunately, the PDFs are difficult to obtain, especially for
nonlinear structural systems. This difficulty had to be approached based on the probability
density evolution method.
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8.3 Dynamic Reliability Analysis: Generalized Density Evolution
Equation-Based Approach

From the point of view of the GDEE, the dynamic reliability assessment can be performed in
two different ways. One is to view the first-passage problem from the transition and absorbing
of probability, resulting in the absorbing boundary condition method (Chen and Li, 2005a);
the other is to view the problem by transforming it to an issue related to the corresponding
extreme value (Chen and Li, 2007a). Clearly, these two ways can be viewed as counterpart
ideas, having once been employed in Sections 8.2.2 and 8.2.4 respectively.

8.3.1 Absorbing Boundary Condition Method

Let us examine the reliability of the first-passage problem defined in Equation 8.6:
F, =Pr{X(t) € Qs, t € (0, T]} (8.6)

Asis pointed out, this means that the structural failure happens once the response exceeds the
safety boundary. The generalized density evolution equation in terms of the probability-
preserved system (X(¢), ) is given by (see Section 6.5 and Equations 6.123a and 6.123b)

apx@)(X,e, l) apx@(xaea Z)
ot Ox

Here, O is the basic random variable vector involved, pxe(X, 0, ) is the joint PDF and /1x(0, ) is
the formal solution of the velocity.

We now recall the random event description of the evolution of probability as elaborated in
Section 6.2. Equation 8.6 requires that all the samples must satisfy the criterion to ensure the
safety of the structure, otherwise the structure will fail. Of course, if a sample (a realized event)
violates the criterion, then this sample will contribute to the failure probability, but not
contribute to the reliability." Thus, equivalently, we can impose an absorbing boundary
condition on Equation 8.47:

+hy(0,1) ) (8.47)

pxe(x,0,1) =0 forx e Qf (8.43)

where Q; is the failure domain, which is the complementary set of the safety domain € in
Equation 8.6.

Combining Equations 8.48 and 8.47 will give the basic equations to obtain the PDFs
Dxe(x,0,1). We see that physical meaning of the absorbing boundary condition says that, once
a sample (a realized event) violates the safety criterion, the associated (adherent) probability
will never return to the safety domain. In this sense, we call such an obtained probability density
the remaining probability density and denoted by py(x, 7) (or pxg(x, 8, ) for the joint PDF):

Px(x,t) = Lz Dxe(x,0,1)d0 (8.49)
0

" Rigorously speaking, the analysis here has to exclude the so-called zero-measure set. But this will not lead to any
essential difference for the present problem.
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The reliability is then given by

F=| pnnae=| pwoar (8.50)
Qs — oo

The second equality holds because of Equation 8.48.
For instance, for the symmetric double-boundary problem of which the reliability is defined by

Fs =Pr{|X(?)] < xv, 1 € (0,7T]} (8.51)

where Xy, is the threshold. The absorbing boundary condition (Equation 8.48) becomes

Dy (X,0,1) =0 for|x| >xp (8.52)

Thus, the reliability is given by

Xb
FS:J Px(x,1) dx:J
%

=3

Py (x, 1) dx (8.53)

— oo

Except for the absorbing boundary condition, all the solving procedures for Equations 8.47
and 8.48 is the same as that elaborated in Section 6.6 and Chapter 7.

Figure 8.3 illustrates the effect of the absorbing boundary condition on the remaining PDFs.
They are the contours of the probability density surface against time (probability density
evolution surface) of the displacement response of a nonlinear structure subjected to earth-
quake ground motions. From the contours it is seen that, because part of the probability (related
to the failure events) is absorbed, the remaining probability density is quite different from the
original probability density. Figure 8.4 illustrates the dynamic reliability of the nonlinear
system evaluated through the approach elaborated in this section.
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Figure 8.3 Contour of the PDF surface: (a) without absorbing boundary condition; (b) with absorbing

boundary condition.

8.3.2 Extreme-Value Distribution of the Stochastic Dynamical Response

In general, the extreme value of a stochastic process is a random variable. As discussed in the
section above, how to get the extreme-value distribution (EVD) of a general stochastic process
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Figure 8.4 First-passage reliability.

is a difficult problem. Only some special results were achieved for some particular stochastic
processes (Newland, 1993; Finkenstadt and Rootzén, 2004). In contrast, based on the GDEE
described in Chapter 6, the EVD can be evaluated through constructing a virtual stochastic
process.
Denote the extreme value of the response X(7) of a stochastic system as
Xext = ext X(0,1) (8.54)

te[0,T]

For instance, if one considers the maximum absolute value of X(7), ¢ € [0,7], then
Equation 8.54 essentially stands for

|X],.x = max |X(0,1)] (8.55)

M relo,1]

From Equation 8.54, it is seen that the extreme value of X(¢), ¢ € [0, T], depends on @. For
convenience, it can be assumed to take the form

Xew = W(®,T) (8.56)

which means that the extreme value of X(¢), ¢ € [0, T}, is existent, unique and is a function of @
and 7.
Introducing a virtual stochastic process:

Y(1) = ¢[W(®,T),7] = ¢(@,1) (8.57)

where 7 is somewhat like the time and is termed the ‘virtual time.” Y(7) is a ‘virtual stochastic
process’ whose randomness comes from the random vector @. Usually, we require that the
virtual stochastic process satisfies the conditions

Y(1)],.0=0 Y (1) =W(O,T) (8.58)

T=T,
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For instance, if we let
Y(7) =W(O,T) 7 (8.59)

and 7o =1, then this process satisfies the conditions in Equation 8.58.
Differentiating Equation 8.57 on both sides with regard to 7 will yield
. O0¢p(0
7o) = 220 _ o0, (8.60)
ot
It is easy to find that Equation 8.60 is in a form similar to Equation 6.96b. Therefore, a
generalized density evolution equation, described in Chapter 6, could be employed here to
obtain the PDF of Y(r). After similar deductions like that in Chapter 6, we can obtain the
following equation (Chen and Li, 2007a):

apye ()’7 0> T)
Oy

apye(yvevf)

ot +6(0.7)

=0 (8.61)

with the initial condition (from Equation 8.58)

py@(y7e7f)|r:0 = S(y)p@)(e) (862)

where pye(y, 0, 7) is the joint PDF of (¥(1),0).
Once the initial-value problem (Equations 8.61 and 8.62) is solved, the PDF of Y(t) will be
given by

pr(y,7) = L pre(y,8,7)do (8.63)

From Equation 8.58 it can be seen that the extreme value X, equals the value of the virtual
stochastic process Y(t) at the instant of time 7 = 7; that is:

Xew = Y (7)) (8.64)

T=T,

According to Equations 8.63 and 8.64, the PDF of X, can be obtained immediately:

pxext(x) :py(y =X, T)|r:10 (865)

Example 8.1. The EVD of a Set of Random Variables Consider a set of mutually
independent random variables (X, X3, . . ., X;) with identical PDF px(x). Let

Xmax = max(X1,X,,...,X,) (8.66)
Then the closed form of the PDF of X, is available (Ang and Tang, 1984):

P (%) = [Px(x)]" ™ ' px(x)
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where
Px(x) = J px(x)dx

is the CDF of px(x).

If we note that Equation 8.66 can be viewed as a special case of Equation 8.56, then
the approach elaborated above can be employed to obtain the PDF of X ... Figure 8.5 shows the
comparison between the analytical solution and the EVD obtained by the PDEM when the
original distribution is uniform distribution over [1, 2] and normal distribution with mean being
4 and unity variance respectively. It is seen that, for r =2 and 3, the EVDs obtained by the
PDEM are almost identical to the analytical solution except in the vicinity of discontinuity.
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Figure 8.5 EVD: () X; ~ U[1,2]; (b) X; ~ N(4,1).

By the way, we point out that the approach elaborated here can also be extended to obtain the
PDF of an arbitrary function of some basic random variables. O

8.3.3 Extreme-Value Distribution-based Dynamical Reliability
Evaluation of Stochastic Systems

Dynamic reliability of stochastic systems could be evaluated in a straightforward way through
integration of the above EVD. For example, for the symmetric double boundary problem, the
dynamic reliability of the structure in time 7 can be described as

Fy(—a,a,T) =Pr{|X(7)| <a,7€[0,T]} (8.67)

where a is the value of the symmetric boundary. Viewed from the EVD, the above equation can
be rewritten as

Fy(—a,a,T) =Pr{|X(7)| 0 < a} (8.68)

max

Since the EVD py, (x) can be captured in the preceding section, it is quite easy to evaluate
the reliability in Equation 8.68 through a simple integration:

Fo(-a,a,T) = J () dx (8.69)
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If the boundary «a is a random variable with the PDF p,(«a), then the dynamic reliability
will be

R [ retoafpu@a (8.70)

where Q4 is the distribution domain of a.

The above analysis indicates that, viewed from the EVD, the problem of dynamic reliability
evaluationis transformed to a simple integration problem. In contrast toreliability theory based on
the level-crossing process, the above two methods based on the GDEE require neither the joint
PDFoftheresponse andits velocity, nor the assumptions on properties of the level-crossing events.

Figure 8.6 shows the PDF and CDF of the absolute maximum displacement at the top of a 10-
story frame structures. Figure 8.6a shows that the EVD obtained is obviously different from the
widely used regular distribution with the same mean and standard deviation. Figure 8.6b shows
the comparison between the CDF of the EVD obtained and that obtained by the Monte Carlo
simulation. Clearly, if the abscissa of Figure 8.6b is understood as the threshold, then the
ordinate gives the reliability, and thus the complementary to one gives the failure probability.

25.0 - . . . . . . . .
— PDEM 1.0t _+ McS
— Rayleigh — PDEM
20.0F  — Normal 1
--- Lognormal " 0.8}
15.0 '
L LL0.6]
3 5
o
10.0f
0.0 04l
50t \ 02
0 . L N 0 , R
-0.10 -0.05 0 0.05 0.10 0.15 0.20 0.25 0.30 -0.10 -0.05 0 0.05 0.10 0.15 0.20 0.25 0.30
Displacement (m) Displacement (m)
(a) (b)

Figure 8.6 EVD of a stochastic respons: (a) PDF; (b) CDF.

8.4 Structural System Reliability
8.4.1 Equivalent Extreme-Value Event

As discussed in Section 8.1.3, on many occasions the structural failure events are combinations
of some different random events, leading to the so-called system reliability; for instance, the
reliability of a structure might be defined by

P, = Pr{(G1(©)>0) N (G»(®)>0)} (8.71)

where G(+) and G,(-) are two different limit state functions corresponding to different failure
modes of a structure.

When the random events are combinations of more than one inequality, it is found
that the probability could generally be evaluated through an equivalent extreme-value event
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(Li et al., 2007). In order to give insight to the idea, we will start with the simplest occasions
involving two random variables.

Lemma 8.1. Suppose X and Y are correlated random variables, W,,;, being the minimum
value of X and Y and, therefore, also being a random variable, then there exists
Pr{(X>a)N(Y>a)} = Pr{Wy,>a} (8.72)

Although Equation 8.72 evidently holds from the point of view of a logical relationship, it is
worth giving a rigorous proof because this will help to understand the idea of inherent
correlation, as will be discussed later.

Proof: Denote the joint PDF of (X, Y) by pxy(x, ), then the probability of the random event
{X>a)N(Y>a)}is

Pr{(X>a)N(Y>a)} = ” pxy(x,y) dxdy

x>ay>a

- J: U:pr(x,y) dX} dy

X ifX<y
Y otherwise

(8.73)

Because

Winin = min(X, ¥) = { (8.74)

it follows that

oo

Pr{Wnin>a} = | pw,,(z)dz

a

= Pr{min(X,Y)>a}

= J Pxy(x,y) dxdy + “ Pxy(x,y) dxdy

xX<y,x>a y<x,y>a

poo [ oo

= Pxy(x,y dy] dx + J U pxy(x,y dx} dy

a LJX

(8.75)

0o [y
= pxv(x,y) dx} dy + J U Pxy(x,Y) dx] dy

= Pxy(x,) dX} dy

a LJa

Comparing Equation 8.73 with Equation 8.75 will immediately yield Equation 8.72. O

Lemma 8.2. Suppose X, Y are correlated random variables, W, being the maximum value
of X and Y and therefore also a random variable, then there exists

Pr{(X>a)U(Y>a)} = Pr{W,ux>a} (8.76)
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Proof: The probability of the random event {(X>a) U (Y >a)} is

Pr{(X>a)U (Y>a)} = JJ pxy(x,y) dx dy+JJ pxy(x,y) dxdy
x>a y>a,x<a
o e (8.77)
=J U pxr(x,y) dX} dy+J U Pxr(x,y) dX} dy
—oo [Ja a — oo
Bearing in mind that
Y ifX<Y
Winar = max(X, ¥) = {X otherwise (8.78)

we can get

oo

Pr{Wnax>a} = | pw,, (z) dz = Pr{max(X,Y)>a}

a

= J Pxy(x,y) dxdy + ” Pxy(x,y) dxdy

x<yy>a y<x,x>a

o0

_ U par(x) dx} dy + r Uw par (%) dy} dx (8.79)

a

([ ons] o+ [ [ woeoe])
LI pwinafocs | [[wisoa]

Exchanging the order of integration with respect to x and y in the last two terms will yield

wtvasa={[ [ s [ [micnao]

- {rm U:pxy(x y) dX} dy+ [ pxy X, y) dX} dy}
L[ v {[ [

o s [ [[pteredo

_ r Um par(x,y) dx] dy+ r [r pr(%,y) dx} dy  (8.80)

a

— oo

Comparing Equation 8.77 with Equation 8.80, we find that the first term on the right-hand side
of Equation 8.80 is identical to the second term on the right-hand side of Equation 8.77 while
the second term on the right-hand side of Equation 8.80 is identical to the first term on the right-
hand side of Equation 8.77. This means that Equation 8.76 holds true. O
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According to Lemmas 8.1 and 8.2, this indicates that if one wants to evaluate the probability
of a compound random event as a combination of two random events represented by
inequalities, one just needs to evaluate the probability of an event related to an extreme value
which is defined according to the logical relationship between the original two inequalities.
In this sense, say in the case of Lemma 8.1, the random event { W,,,;,, > a} could be referred to as
the equivalent extreme-value event of {(X >a) N (Y >a)} and Wy, as the equivalent extreme-
value random variable. Likewise, the random event { W, > a} is the equivalent extreme-
value event of {(X>a) U (Y>a)} and W,,,x is the corresponding equivalent extreme-value
random variable.

Evidently, the rules holds true when the compound random event is a combination of more
than two component random events. This idea leads to the following theorems.

Theorem 8.1. Suppose X,,X,,...,X,, are m random variables. Let W,,;, = min; <j<,,(X;),
then it goes that

Pr{ﬁ(Xj>a)} = Pr{Wmnin >a} (8.81)

Proof: Denote the minimum value of X{,X,...,X; (2 <j <m) as wY . namely:

min’

w9 = min(X;,X,, ..., X)) (8.82)
Define Wr(nlif] = X and Wr(;f'n) = Whin. There is arecursive relation that ng)n = min(ng; D X,
2 <j < m. Using Lemma 8.1 recursively we obtain

Pr{ﬁ(X,>a)} = Pr{[(X1>a)ﬂ(X2>a)]ﬁ(xj>a)}

J=1 Jj=3
m

= Pr{{(Wi>a) N (X;>a))\X>a)}

min

j=4 (8.83)
= P{(W" Vsa)n (X, >a)}
= Pr{(Wyl>a)}
= Pr{(Wmin>a)} n
Theorem 8.2. Suppose X1,X,, ..., X,, are m random variables. Let Wy, = max;<j<,(X;);

then it goes that
Pr{U(Xj>a)} = Pr{Wiax >a} (8.84)
J

The proof is similar to Theorem 8.1 and will not be detailed. Likewise, for any arbitrary
types of combination of random events, we can always construct the according equivalent
extreme-value events; for instance, the following theorem holds.
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Theorem 8.3. Suppose X, i=1,2,...,n;j=1,2,...,m, are m x n random variables.
Let Wexy = max<i<,(min; <j< (X s then it goes that

w00

i=1 |j=1

} S ——— (8.85)

For the sake of clarity, in the lemmas and theorems, the thresholds for different random
variables take the same value a. It appears at first glance that this will lead to loss of generality;
but this is not true, because the inequality can be equivalently transformed with a linear
transformation. For instance, consider a random event {(X <b) N (Y >¢)} where X and Y are
random variables with joint PDF pyy (X, 3). If we introduce a couple of new random variables

X=—-X+b+a (8.86a)
Y=Y-c+a (8.86b)

of which the joint PDF is
pxy(x,y) =pgy(—x+b+a,y+c—a) (8.87)

then the random event {(X <b) N (Y >c¢)} is equivalently transformed to {(X >a) N (Y >a)},
which is the case discussed in Lemma 8.1.

8.4.2 Inherent Correlation Property of Equivalent Extreme-Value Event

In constructing the equivalent extreme-value event, the random variables can be either
mutually dependent or independent. In other words, this indicates that although in the
equivalent extreme-value event only one equivalent random variable is employed explicitly
instead of the original multiple random variables, the correlation information in the original
random variables, together with the effects on the computed probability, is retained in the
equivalent extreme-value event.

In practical situations, the random variables involved in the probability computation of
random events, say as shown in Equation 8.72 or 8.76, are usually not basic random variables.
Instead, they may be functions of the same set of basic random variables where the randomness
comes from. For instance, when different response indices of a structure involving randomness
characterized by @ are considered, these response indices, if denoted by X and Y, are evidently
functions of @; that is:

X=Hy(®) Y =Hy(®) (8.88)

where @ = (0,0;,...,0;) are the basic random variables with joint PDF pg(0). In this
situation, the random variables X and Y are unlikely mutually independent in general,
except in some pretty special cases.” The joint PDF pyy(x, y) could be computed in

2 There are indeed some very special cases where two random variables as functions of the same set of random variables
are independent or uncorrelated. For example, refer to Wang (1976). However, in practical engineering, the chance of
encountering these cases is very rare.
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principle by

0? J
X,y) = — 9) o 8.89
Pxy(X,y) 0y HX(@)q’Hy(@)(Vm( ) (8.89)

Usually, the computation of Equation 8.89 is practically far from easy.
According to Equations 8.73 and 8.89, we can get

Pr{(X>a)N(Y>a)} = JJ L Pxy(x,y) dx dy

(8.90)

- J pe(6) do
Hx(®)>a,Hy (@) >a

From Equation 8.90 it is seen that the correlation information between X and Y is involved
in turn in the form of integration with regard to @ in the domain determined by Equation 8.88.
In other words, in Equation 8.90, the correlation information is involved.

On the other hand, according to Equations 8.74, 8.75 and 8.54, if we define

Wiin = min(X, Y) = min(Hx(0), Hy(®)) = Hy(0) (8.91)

then Equation 8.75 becomes

o0

PI'{Wmin>a} = J mein(W> dw

a

= Pr{min(X, Y)>a} (8.92)

- J Pe(8) d8
Hy(0®)>a

Noting Equations 8.73 and 8.91, it is seen that although using the equivalent extreme-value
event { Wi,in > a} in place of {(X >a) N (Y >a) } in computation of the probability with the first
equality in Equation 8.92 appears not to involve the correlation information between X and Y
explicitly, the correlation information is indeed retained.

The above discussions on the inherent correlation property in the equivalent extreme-value
event are obviously true in the case that more than two random variables are involved. Using the
equivalent extreme-value event in place of the original random events as combinations of more
than one random event makes it possible to reduce the multidimensional probability integration
to a one-dimensional probability integration, provided the PDF of the equivalent extreme-value
random variable is available. The correlation information is inherent in the equivalent extreme-
value event; therefore, in this process, no correlation information disappears.

8.4.3 Differences between the Equivalent Extreme-Value Event
and the Weakest Link Assumption

In structural reliability evaluation, the weakest link assumption is often employed. Consider a
structural system whose probability of failure is

Pi=Pr{(X>a)U(Y>a)} (8.93)
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Denote Pg; = Pr{X>a}, Pr; = Pr{Y >a}. When the weakest link assumption is adopted,
we may use

Pf = maX(Pfl,sz) (894)

in place of Equation 8.93 (Madsen et al., 1986; Melchers, 1999).
According to Lemma 8.2 in Section 8.4.1, the probability in Equation 8.93 is equal to

Py = Pr{Wmax >a} (895)

It is easy to see that, in the weakest link assumption, the failure probability of the system is
replaced by the maximum of the failure probabilities of the basic failure events; that is, the
following equality is assumed:

Py = max(Pr{X>a}, Pr{Y>a}) = Pr{max(X,Y)>a} (8.96)

However, because the orders of the operator Pr{-} and max{-} cannot be exchanged,
Equation 8.96 does not hold true in general.
In fact, Equation 8.93 could be computed by

Py = J pxr(x,y) dxdy
(X>a)U(Y>a)

= Jm UmmeY(x,y) dy} dx + J‘im Umpxy(x,y) dy] dx (8.97)
_ PotaP, ’
where
AP = Jiw U:PXY(X,Y) dy} dx = “A]pxy(x,y) dxdy (8.98)

in which A, is the area indicated in Figure 8.7.

Figure 8.7 Partition of the integral domain.
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Likewise, we can get
Py = Py + AP (8.99)
where AP, = ffAszy(x, y) dx dy and A, is the area shown in Figure 8.7.
Because pxy(x, y) > 0, there are AP >0 and AP, > 0; consequently:
P¢ > max(Pgy, Pry) (8.100)

This shows that Equation 8.94 does not hold in general cases.

If X and Y are completely positively correlated random variables, that is, ¥ = kX + b(k >0)

and the joint PDF is thus
pxy(x,y) = px(x)8(y —kx —b)

where 6(-) is the Dirac delta function. According to Equation 8.98 there is

a 00
APy = ([ Pxy(X,y) dY) dx

Ja

J — oo

_[ (prx(x)ﬁ(y—kx—b)dy) dx

a

— oo

a

= px(Xu(x— (a—b)/k)dx

— oo

in which u(-) is the Heaviside step function (see Appendix A).
Likewise, we can obtain

APy = pro)uty—kab)dy
It is easy to prove that either

a;kb <a<ka+b

or

a—>b
ka+b<a<T

holds true provided k > 0.

(8.101)

(8.102)

(8.103)

(8.104)

(8.105)

Therefore, from Equations 8.102 and 8.103 we can see that either AP; =0 or AP, =0 holds.
Therefore, either Py= Py, or P;= Py, holds according to Equations 8.97 and 8.99. That means

only in this case the weakest link assumption holds true.

In summary, the equivalent extreme-value event is different from the weakest link
assumption in essence. Only in the case that the basic failure events are completely
positively correlated the weakest link assumption is identical to the equivalent extreme-

value event.
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8.4.4 Evaluation of Structural System Reliability

For the first-passage problem, the reliability against the response index X(#) can be generally
described as

R="Pr{X(0®,7) € Q,, 1 € [0,T]} (8.106)

where € is the safe domain.
For most practical problems, Equation 8.106 can be rewritten as

R =Pr{G(®,1)>0, t € [0, 7]} (8.107)

where G(+) is a time-dependent limit state function. For instance, if Equation 8.106 takes the
form (as a double boundary condition)

R =Pr{|X(®,1)|<xv, 1 €[0,T]} (8.108)
where Xy, is the threshold, then we can get
G(O,1) = x, — |X(0,1)] (8.109)

Equation 8.107 could also be written equivalently in a different form as

R=Prs ) (G(8,1)>0) (8.110)

t€[0,7]

According to the situation similar to Theorem 8.1 in Section 8.4.1, if we define an extreme
value as

Winin = ,rerﬂé“}](G@’ 1) (8.111)

of which the PDF can be captured according to Section 8.3, then the reliability in
Equation 8.110 equals

R = Pr{Wp, >0} (8.112)

It is worth pointing out that if we want to evaluate the reliability in Equation 8.110 directly
with the probability integration analogous to Equation 8.73, then the infinite-dimensional
joint PDF of the stochastic process G(@,¢) is needed; that is, the correlation information
among any different time instants is required. Noting that in the widely used out-crossing-
process theory on the first-passage reliability problem, either with the Poisson assumption
or with the Markovian assumption (see Section 8.2.2), usually only the correlation
information between two different time instants is considered. Consequently, in general
situations, the out-crossing-process theory on the first-passage reliability problem unlikely
yields the exact solution. Whereas using the equivalent extreme-value event, as is discussed
in the preceding sections, total information of the correlation is inherent and an exact
solution can be derived easily.
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For system reliability (that s, if there is more than one limit state function combined together
to be considered), say, consider

R= Pr{ﬁ(Gj(G), 1)>0, t €0, Tj])} (8.113)

j=1

where 7 is the time duration corresponding to G,(-). Combining Equation 8.110 and Theo-
rem 8.1 in Section 8.4.1, we can define the equivalent extreme value as

Wex = min { min (G;(®, 1))} (8.114)

1<j<m [t€f0,T] " -

Therefore, the reliability in Equation 8.113 can be computed directly by
R = Pr{Wey >0} (8.115)

Example 8.2. System Reliability of Nonlinear Structures under Earthquake The
reliability evaluation of a 10-story nonlinear structure subjected to random seismic ground
motions is illustrated (Li et al., 2007). Denote the interstory drifts from the floor to the top by
X1(2),X5(¢), ..., X10(2) and the heights of the stories by /1, /5, . . ., hjo. The system reliability
of the structure can be defined by

il

where ¢, = 1/50 is the threshold of the interstory angle. For clarity, we define the dimensionless
interstory drift as

Xfét)k%, = T]}} (8.116)

Xj(l) _ Xj(t)

j=12,...,10 (8.117)
hj‘Pb

Thus, Equation 8.116 becomes

R = Pr{ﬁ{xj(t)d, telo, T]}}

= Pr{rlﬁ{Xj’mle < 1}}

where X max = max,cjo,7) {X;(¢)}. The PDFs of the X, obtained by the approach in
Section 8.3.2 are pictured in Figure 8.8. Further, we define an equivalent extreme value by

(8.118)

Xinax = lggo(Xj_max) (8.119)

The PDF of the equivalent extreme value X,y is also shown in Figure 8.8.
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Figure 8.8 EVD and the distribution of the equivalent extreme value.
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Figure 8.9 System reliability.

Table 8.1 The failure probability of the structure against inters-
tory drifts.

Story number Probability of failure
10 3.360 183e-008

9 0.000 000

8 0.000 000

7 0.022199

6 0.086 191

5 0.179421

4 0.194678

3 0.303173

2 0.449 662

1 0.279903

Failure probability of the structure 0.491 547
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The integral of the PDF of this equivalent extreme value random variable will then give the
system reliability and the probability of failure (Figure 8.9); that is:

R =Pr{Xpx<l1}= J px,. (x)dx  Pr=1-R (8.120)
0

The reliability and the probability of failure of each story can be defined by

1
Rj:Pr{)_(j7max<l}:Jpyj_max(x)dx PfJZI—R] _]:1,2,,]0 (812])

0
Table 8.1 lists the probability of failure of each story (Equation 8.121) and the probability of
failure of the structure (Equation 8.120). It is seen that the probability of failure of the structure
is larger than that of each story. In addition, in the present case, it is noted that the largest
probability of failure of the stories occurs in the second floor, not in the first. O]
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Optimal Control of Stochastic
Systems

9.1 Introduction

In a general sense, structural control can be understood as designing a structure which will
behave in a desired way. This is actually what structural engineers have been doing from the
past to modern times, although only part of the aim has been achieved so far. In a narrower and
more special sense, structural control is to attach some additional substructure or device
appropriately on a structure to regulate structural behavior; for instance, to mitigate vibrations
of structures (Housner et al., 1997).

Since Yao’s pioneering work (Yao, 1972), structural controls have been developed exten-
sively; for instance, in earthquake- and wind-induced structural vibration mitigation. When
considering if and how much energy input is needed by the control device, they are in general
classified into passive control, active control, hybrid control and semi-active control (Soong,
1990). When consideration is based on the control aim and the corresponding algorithm, they
include common control, optimal control, intelligent control and so on.

Considering the aim of this book, this chapter will only deal with the theory of active
structural control when uncertainties are involved. Stochastic optimal control and reliability-
based stochastic control will be stressed in this chapter.

Without loss of generality, the equation of motion of a nonlinear deterministic MDOF
structural system can be rewritten as a state-space equation (see Equation 5.178)

x = f[x(1), 1] 9.1)
where X(#) = [x1(£), X(), . . ., x,,(t)]" is the n-dimensional state vector, usually consisting of the
displacement and velocity vectors of the structural system, and f(-) = [f;(-), /() - - -, f,,(~)]T isan
n-dimensional operator vector. We note that the deterministic excitations can be incorporated
in f(-).

If there are control devices incorporated in the structural system, then a control vector
u(t) = [uy(0), ux(?), . . ., u,,(£)]* will have effects on the system response and, thus, Equation 9.1
becomes a state-control equation:

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5
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x = fx(7),u(?), 1] (9.2)

where m is the dimension of the control vector.

The task of optimal control is to seek a control process vector u(?), to <t <t; which
minimizes a given performance index. This index is usually a functional of the state and control
vector over a given time interval [y, #¢], for instance, taking the form (Stengel, 1994)

T = dlx(t), 1] + r CIx(0), u(), 4 dt 9.3)

to

where 7, is the initial time, f;is the terminal time, ¢[ - ] is the portion with respect to the terminal
constraint and L] - ] is called the Lagrangian. Generally, we require ¢[-] > 0 and L[] > 0 to
hold for all possible values of the arguments. The performance index is also referred to as the
cost function, or cost functional, and so on. Incidentally, without considering the effect of ¢ - |,
the cost function is in a form similar to the action integral in Lagrangian analytical dynamics,
that is why there is an analogy between optimal control theory and analytical dynamics and we
called L[] the Lagrangian.

The first- and second-order variations of the performance index are given respectively by

0 1oL oL
=— — — 4
57 =5y oxla+ J,O { oxt o au} dr (9.4)
and
0*¢ f 0’L 0’L o*L
27 _ s T T T T

8°J = 6x (tf)axz z:zf(SX(lf) + Jto |:5X " 6x+6u e du + 26x Gxauau} dr  (9.5)

For notational simplicity, denote the Hessian matrices by

2 p[x(tr), tf] *L *L *L

St ox? Q ox? ou? and Oudx (9:6)

Clearly, in the case Sy and Q are symmetric, positive semi-definite, R is symmetric, positive
definite and M’ =0, it follows from Equation 9.5 that the second-order variation of the
performance index

8T >0 (9.7)

In applications, one of the simplest cases is that S¢, Q and R are independent of x(¢;), x(-) and
u(-), but Q and R can be time varying, then the performance index (Equation 9.3) is in a
quadratic form:

J = %XT(lf)SfX(ff) + %r X" ()Q()x(¢) +u (HR(t)u(z)] dt (9.8)

fo

If randomness is involved in the system parameters and excitations, usually, the
system randomness can be modeled as a random function {(@), while the stochastic excitations
can be modeled by a stochastic process vector §(@, t). The system in Equation 9.2 can then be
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extended to

X= f[X(t)7U(l)7C(w)7§(w7 t)7l] (9'9)

As discussed in Chapters 2 and 3, through discretization or decomposition of the random
field and stochastic process, a set of basic random variables @ = (0, ©,, . . ., ©,) can be used to
represent the randomness involved in the system in Equation 9.9, where s is the number of the
random variables. By doing this, the system in Equation 9.9 becomes a random state-control
equation:

X = X (1), U(1), 1,8(w)] (9.10)

Here, we note that, because randomness is involved, the control vector U(-) and the state
vector X(-) are both stochastic processes. Meanwhile, when x and u are replaced respectively
by X and U, the performance index in Equation 9.3 is usually a random variable rather than a
deterministic value.

9.2 Optimal Control of Deterministic Systems
9.2.1 Optimal Control of Structural Systems

Before we come to the control of stochastic systems, let us first explore the optimal control of
deterministic structural systems. For simplicity, we will consider the sytems with perfect
observation and complete control. Without loss of generality, we consider the system in
Equation 9.2, which is repeated here as Equation 9.11 for convenience:

x = f[x(¢),u(z), ] x(t9) = Xo (9.11)

The goal of optimal control is to find a control process u(-) that minimizes the performance
index in Equation 9.3:

Iy

()] = dx(t), 1] + J Cix(2),u(e), 1 dr 9.12)

to

Here, we note that although the state process x(¢) is involved in the Lagrangian L] -], the
performance index 7 is essentially only a functional of the control process u(-), because once
the process u(-) is specified, x(¢) can be determined by solving Equation 9.11; in other words,
x(?) is a functional, not independent, of u(-).

Thus, the problem we encounter here is an optimal problem of minimizing the performance
index J in Equation 9.12 with the state-control Equation 9.11 serving as a dynamic constraint.
This can be resolved by the variational approach (Lanczos, 1970; Yong and Zhou, 1999; Naidu,
2003).

When introducing a Lagrange multiplier vector A(¢) = [4,(£), 22(2), . . ., Z4(£)]", the neces-
sary condition of minimizing J subject to the dynamic constraint in Equation 9.11 is that the
control u(-) makes the augmented performance index

5

Ta = o[x(tr), te] + J (L[x(2),u(z), 1] + AT () {f[x(¢),u(r), ] —x(2)}) dt (9.13)

to
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stationary; that is:
6JAa=0 (9.14)

In fact, it is seen that if the state-control Equation 9.11 as a constraint is strictly satisfied, then
the augmented performance index [J o in Equation 9.13 is equal to the original performance
index J in Equation 9.12.

Before computing the variation 8 7 A, integrating by parts with regard to x(¢) in Equation 9.13
yields

Ta =[x (lf) lf]+)tT(f0) (o) — A" (2¢)x(1r)

()00 AT O (). a0, A oxyae O
For notational convenience, denote
H [x(£),u(2),A(2), 1] = L[x(¢),u(t), ] +)\T(t)f[x(t),u(t), 1] (9.16)

Then, Equation 9.15 becomes

Ta = dx(t), 5] + AT (t0)x(10) = AT (1r)x(2r) + jl {H [x(1),u(t), A (1), 4] +A (0)x(1)} dr
9.17)

Later, we will find that M [-] in Equation 9.16 plays a role similar to that of the Hamiltonian
function in analytical dynamics and is thus called the Hamiltonian.

Now we consider the first order variation of 7 . Note that 6x and du are the variations of x
and u themselves, and 6x(#,) = 0 because x(#) is prescribed in Equation 9.11. The variation of
the first three terms in Equation 9.17 gives

S{px(tr), te] + AT (t0)x(t0) —AT(tr)x(tr) } = ==|  8x(tr) — AT (15)5x(tr) (9.18a)

1=t¢

while the variation of the last term in the right-hand side of Equation 9.17 gives

5“:{*‘ (1), (1), A (1), 1]+ A" (1)x(1)} dt} = J: [agzax(t) + aa—?:au(t) +XT(t)8x(t)] de

(9.18b)

Therefore, combining Equations 9.18a and 9.18b, we have

o oM

8TA = l& . —,\T(zf)] 8x(tr) + J:f { F@Z +)lT(z)}5x(z) + W5u(z)} dr (9.19)

To satisfy Equation 9.14 (that is, § 74 = 0), it is required that all the coefficients of dx(¢;),
6x(7) and ou(z) be zero because of the arbitrariness of these variations; that is:
O

= AT =0 20
oxl,_, A (%) (9.20a)




Optimal Control of Stochastic Systems 317

+A () =0 (9.21a)

and

=0 (9.22)

Equations 9.20a and 9.21a can be rewritten respectively in an alternative form

A(te) = <W> (9.20b)

i) = — <6 H [x(t),u(t),A(z)J])

= (9.21b)

Equations 9.20a-9.22 compose the Euler—Lagrange equations for optimal control, where
Equation 9.20b serves as the terminal condition for Equation 9.21b. It is seen here that, to solve
the optimal control problem, the differential Equations 9.21a and 9.21b with respect to
the Lagrange multiplier vector A(#) must be solved simultaneously with the state-control
Equation 9.11. (Thus, A(?) can be called an adjoint vector and Equations 9.21a and 9.21b
adjoint equations.)

Combining Equations 9.14 and 9.11, we find that

OH

U fix(¢),u(s),7 =x (9.23a)
That is:
. OH
X = 9.23b
a/\T ( )
On the other hand, Equations 9.21a and 9.21b give
. T 0H
= — —— 24
A= - (924)

Clearly, these two equations compose a dual equation set which is analogous to the
Hamiltonian equation in analytical dynamics and thus also called the Hamilton canonical
equation. Thus, the methodology employed here is also referred to as the Hamiltonian system
formula (Yong and Zhou, 1999).

Solving simultaneously the Hamilton Equations 9.23b and 9.24 and the stationary value
Equation 9.22, the control law and the state vector that optimize the performance index can be
obtained. To be clear, the solution flow can be stated as:

(a) solve the stationary value Equation 9.22 to establish an expression of u(¢) in terms of x(7)
and A(?); that is, u(z) = KC[x(7),A(2), 1];

(b) substitute this relation in Equations 9.23b and 9.24 to eliminate u(-) in their right-hand
sides;
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(c) solve the simultaneous Equations 9.23b and 9.24 with only x(¢) and A(#) as unknowns under
the initial and terminal conditions specified respectively by Equations 9.11 and 9.20b to
obtain the state vector x(¢) and the adjoint vector A(?);

(d) substitute A(?) in u(?) = K[x(#),A(?), ] to obtain the control process u(z) = G[x(t), t].

It is noted that in the step (c) a two-point boundary-value problem is encountered. In
particular, the adjoint equation, Equation 9.24, should be solved backward in time with
terminal conditions as specified in Equation 9.20b. As is well known in common dynamical
systems governed by state equations with given initial conditions, the future information is not
needed in solving the state equation physically. However, in the optimal control of dynamical
systems, certain future information must be available to guide the evolution of the state-control
process along the optimal trajectory. The reason why is that, in optimal control, an expected
result at the terminal time is prescribed in advance.

9.2.2 Linear Quadratic Control

Optimal control of linear systems is much more tractable. Now we consider the case
Equation 9.11 describes a linear system in the form

X = Ax(#) + Bu(r) + L&(7) (9.25)

where A =[Aj],x, is the system matrix, B =[B;],.,, is the control influence matrix,
L =[L;jl,x, is the force influence matrix and &(¢) =[&,(0), &(0), ..., (O]" is the r-
dimensional deterministic excitation vector. In this case, the operator f[-] in Equation 9.11
is given as

fx(7),u(?), ] = Ax(?) + Bu(z) + L&(7) (9.26)

where A, B and L may be functions of time. For notational simplicity, # will not occur explicitly,
but A, B and L can be understood as A(¢), B(¢) and L(¢) respectively. In the present stage we
assume the control u(?) is unbounded.

We consider the performance index Equation 9.12 in a quadratic form as in Equation 9.8:

It

J = %XT(zf)sfx(zf) + %J [x"(£)Qx(z) +u" (¢)Ru(z)] dz (9.27)

to

where S¢=[S¢;l,x, and Q=[Q;l,x, are symmetric, positive semi-definite matrices and
R = [R;j];;1xm 1s a symmetric, positive definite matrix. Again, Q and R can be understood as
Q(?) and R(¢) respectively if necessary. Thus, the terminal function and the Lagrangian in
Equation 9.12 are given respectively by

¢[X(If), tf] = %XT(tf)SfX(tf) (928)
and

Lx(1),u(t), 1] = = [x"(1)Qx(¢) +u' (r)Ru(r)] (9.29)

N —
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Because in the present problem the state-control equation is linear and the performance
index is quadratic, the corresponding optimal control is referred to as the linear quadratic (LQ)
control problem (Stengel, 1994; Williams and Lawrence, 2007).

Using the Euler-Lagrange equations, introducing Equations 9.29 and 9.26 into Equations
9.16 and 9.22 yields

Ru(?) +AT()B =0 (9.30)

or
u(/) = —R7'BTA(?) (9.31)

In addition, introducing the terminal function Equation 9.28 into Equations 9.20a and 9.20b
gives the terminal condition for the adjoint vector:

A(tr) = Sex(1r) (9.32)
while the adjoint equations, Equations 9.21a and 9.21b, become
Alt) = —ATA(2) — Qx(?) (9.33)

The physical meaning indicated above is clearer. In fact, the adjoint vector A(¢) in
Equation 9.31 contains the information over the future interval [#, #], because the terminal
condition is specified. Therefore, Equation 9.31 guides the evolution of the control efforts while
Equation 9.33 indicates that the adjoint vector is fed back to itself; simultaneously, the state
vector is fed back.

Note that the adjoint equation (Equation 9.33) and the state-control equation (Equation 9.25)
compose a linear simultaneous equation set. The linear relationship exhibited in the terminal
condition in Equation 9.32 implies that the linear relationship should also hold for all #; thus, we
can assume

A1) = S(H)x(1) (9.34)

where S(7) = [S;{(?)],,x» is to be determined.
Combining Equations 9.34 and 9.31 gives

u(r) = =R 'BTS(0)x(1) = — Geon(£)x(2) (9.35)

This is the control law for LQ control, where Geon(?) = [Geon,i{H)]mxn is the control gain
matrix and given by

Geon(t) = R7'BTS(7) (9.36)

Equation 9.35 means that the LQ control employs the linear state feedback control law. To
determine S(¢), introducing Equation 9.34 into Equation 9.33, we have

S(1)x(1) +S(1)x(r) = — ATS(1)x(r) — Qx(¢) (9.37)
Substituting Equation 9.25, the state-control equation, this equation becomes

S(1)x(t) + S(1)[Ax(r) + Bu(r) + LE(1)] = — ATS(1)x(¢) — Qx(?) (9.38)
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Introducing the control law (Equation 9.35) into it and letting the input £(r) = 0,' eliminating
x(#) on both sides, we have

S(t) = — ATS(r) —S(1)A +S(1)BR " 'B'S(7) - Q (9.39)
with the terminal condition given by combining Equation 9.34 with Equation 9.32:
S(tr) = St (9.40)

Equation 9.39 is the matrix Riccati equation. Note that S¢is a symmetric matrix, and that the
right-hand side of Equation 9.39 is also symmetric, S(#) must also be a symmetric matrix.
Solution of the matrix Riccati equation is usually not easy. A variety of approaches have
been investigated (Petkov et al., 1991; Stengel, 1994; Adeli and Saleh, 1999). The precise
integration method proposed by Zhong (2004) deserves recommendation for its high accuracy
and acceptable efficiency.

9.2.3 The Minimum Principle and Hamilton—Jacobi-Bellman Equation
9.2.3.1 The Minimum Principle

Denote the optimal control and the corresponding state vector respectively by u (¢) and x (7).
Because u*(~) should minimize the performance index in the admissible domain €,

I ()] = min Ju(")] (9.41)
there must be
T () +6u] —J(-)] =0 (9.42)

Here, we note that the notation J[u(-)] is equivalent to 7 (u), where u(-) denotes a time
history over time interval [0, #]; that is, u(-) £ {u(¢) € R" : 1 € [to, t;]}.
It follows from Equation 9.16 that

J (" +8u) = J(u) = Talw(-) +6u] = Talu'(-)]
= [ A H [x*(1), 0" () +0w,A™ (1), ] — H [x*(1),u*(2),A"(2), ]} dt

a * 62 *
= ft: {%511 +8u’ alz;[ ou + terms of higher order} dr

(9.43)

where the first term in the integrand will disappear according to Equation 9.22, which requires
O0H/0u = 0. Thus, when the terms of higher order are ignored, to satisfy Equation 9.42 it is
required that

Tn the case (1) #0, the situation will be much more involved. The control law (Equation 9.35) needs to be modified
with an additional term of input feedforward. The interested reader can refer to, say, Yang et al. (1987) and Soong
(1990). We will also consider this case later in Section 9.3.3.2.
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?H
Ou?

>0 (9.44)

This gives the sufficient condition for optimality, whereas Equation 9.22 is only the
necessary condition.
Combining Equations 9.42 and 9.43 also gives

H* = H [x(2),u(2),A" (1), 1] < H [x"(¢),u(t), H (1), (9.45)

where u(?) € Q, is any admissible, neighboring (nonoptimal) control history. This equation
states the Pontryagin minimum principle, which asserts that minimizing the Hamiltonian along
the optimal state trajectory is equivalent to minimizing the performance index. The minimum
principle was called the maximum principle in their original context, proposed first by
Pontryagin and his co-workers (Pontryagin et al., 1964; Gamkrelidze, 1999; Yong and Zhou,
1999; Naidu, 2003).

The procedures developed in the preceding sections are essentially based on the minimum
principle via calculus of variations. However, the minimum principle contains simultaneously
the necessary and sufficient conditions, and it holds in a range wider than the Euler-Lagrange
equations do because of the looser requirement on the differentiability and the boundary
conditions.

9.2.3.2 Hamilton-Jacobi-Bellman Equation

Another approach to finding the optimal control history is through dynamic programming via
solution of the Hamilton—-Jacobi-Bellman (HJB) equation. In this approach, we need to
introduce a value function, which is closely related to the performance index.
For clarity, we rewrite the performance index in a form with the initial condition as the
explicit arguments
ty

T [x(t0), to;u(-)] = Sx(z), 2] + J L[x(z),u(t), 7} dr (9-46a)

to

or in an alternative form, when replacing ¢y by any ¢ € [#o, t]:

Jx(),tu()] = ox( +J"’f xr,ur 7] dt

= o[x( ftf x(1),u(t),7] dr (9.46b)

Note here that we also replace the dummy variable ¢ in the integral by 7 to avoid confusion.
The value function is defined as the minimum of 7 [x" (), #; u( - )] when the state history x(z)
is on the optimal trajectory x (-); that is:

VIx*(2), 1] = min{J[x" (1), s u(- )]}
= Blx" (1), 1] - f,j, (@), u ( ),7]de (9.47)
= min{p[x" (), fl‘ L[x*(t),u(r), ] dt}
Compared with the performance index (Equation 9.3), we find that the value function is the

performance index when the lower limit 7, is changed to an intermediate value 7, ) < t < 1, and
we have the initial and terminal values given, according to Equation 9.47, by
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VIx(10), o] = min{7[x(10), t0;u(- )]} = T[x(t0), to;u" (- )] (9.48a)

and
VIX'(tr), 1] = d[x"(tr), 1] (9.48b)

respectively. The principle of optimality asserts that a trajectory of global optimality must also
be of local optimality. That is, for any 7,  <t; < t, we have

V()] = = [} LI (x), 0 (1), 7] de 4+ VIx* (1% (1), 07 (- ), 1]

1
. . ‘ . (9.49)
= mjn {VIx(:x° (1), (), 0] = [} £Bx(wx (1), u(-), u(@), 7] de}
Here, we use x(#1; X(?), u(+)) to represent that x(#,), which is used as the initial condition for the
time interval [#,, #], is the value on the trajectory of the control pair (x(-), u(-)) which starts with
the initial value of x(7).
Intuitively, this can be understood as shown schematically in Figure 9.1.

(X*[tlﬁtf]’u[tlstf])

\ (X"(tp),u"(t5))

x'(t)u (fl))

Tt 10])
@) &6l )

Figure 9.1 Schematical demonstration of the principle of optimality.

Suppose the solid curve is a trajectory of optimality denoted by (x [#, ], u [, ;]), where the
three points denote the initial point (x (¢), u (7)), an intermediate point (x (t1), u (¢,)) and the
terminal point (X (#p), u (7). Then, the principle of optimality asserts that if we consider the
problem of ﬁndmg the optimal trajectory with the initial condition X (), then the trajectory
(x [tl, t), u [t1, 7)) is the solution. Otherwise, if we suppose a trajectory different from (x [t1,
lf] u [ll, t¢]) —for instance, (x [t1, 61, ulty, t]) is the 0pt1ma1 trajectory with the initial condition
X (ll) — then the performance index of the trajectory (x [#1, t¢], u[tq, t¢]) must be smaller than
that of (x [, tf] u [tl, t¢]); thus, the performance index of the combmed trajectory (x [z, 11,

u'[z,1,]) + (X [t1, t¢], ul?y, t;]) will be smaller than that of(x (4wl 4] + (x [tl,tf] ufz,
t;]). The latter combined curve is the trajectory (x [, ], u [t, t¢]). This implies that (x [2, t],
u*[l, t7]) is not the optimal trajectory, which leads to a confliction. Rigorous proof of the
principle of optimality can be found in, say, Yong and Zhou (1999). Actually, it is easy to see,
from the definition in Equation 9.47, that

VIx' (1), 1] < T[x*(0), ()] = T[x(tsx(1),u(-), ()] = [ L] (v), 7] de
< min {V[x(z;;x (Oﬂl(')),tl]

- Jl L[x(t;x"(¢),u(-)),u(r),7]dr} (9.50a)

n
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On the other hand, for any ¢ > 0, there exists a control history u,(-) such that

VIx* (1), ]+8>J[ (0, ue(-)]

Tx(tx (), u;(-)), su(-)] = ff L[x(0), ws(2), 7] de]
> VIx(t;x7 (1), u.(-)), 11] f LIx(z:x7 (1), u,(+)), ws(1), 7] de
> min {Vix(n5x' (1), u(-), 0] = [} £x(zx (1), u(-)), (), ] de }
(9.50b)
Combining Equations 9.50a and 9.50b immediately leads to Equation 9.49.
By Equation 9.49 (or Equation 9.50a), we have
V[X*(t); t]t:fl[x*(tl)y [1} < - l 1t1 J[l E[X*(T),U(T),T] dr (9513)

Let ¢ | ¢, which means ¢, tends to 7 from the right-hand side, we get the total derivative of the

value function along the optimal control history:
dV[x*(1),t
MO < o). (9.51b)

Being a function of x and ¢, the total derivative of V is given by

dV[x"(1),1]  OV[x"(1),1]  OV[X'(1),1] .
r = a1 + x x(1) (9.52a)

When the state-control equation, Equation 9.11, is substituted, it becomes

dv[x(*lgz), 1] _ av[x;z), 1, av[x;t), 1] £l (1), u' (1), 1 (9.520)

Combining Equations 9.51b and 9.52b, we have

% < — L (1), (), 4] — av[xa*i’)’ e (), u* (1), 1 (9.53)
If we define the Hamiltonian by
H |x(2),u(1), GV[)g(Xt), 1 , } = Lx(1),u(z), 1]+ %f{x(l),u(l% 1] (9.54)
then Equation 9.53 becomes
VIO < g et L1,

(9.55)

IN

- mliln{ H [x*(z),u(z),%,z”

On the other hand, when using Equation 9.50b and employing the likewise derivation,
we have
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dV[x*(1), 1]

& +e> — Lx(1),u.(),1] (9.56)

Thus, when introducing Equations 9.52b and 9.54, there is

aV[X*(t)7 t] *
— +&> — H [X*(1),u,(2),1] (9.57)
> — m&n{ H [X*(t)au(t)7l]}
Combining Equations 9.55 and 9.57, we finally reach
w = — min {H [x"(1),u(t), ]} (9-58)

This is the celebrated HJB equation, which is due to Bellman’s work on dynamic
programming (Bellman, 1957; Naidu, 2003). Note that the HIB equation is a partial differential
equation. The initial and terminal values of the value function are given respectively by
Equations 9.48a and 9.48b. However, the initial value given in Equation 9.48a is unknown until
the solution is obtained, whereas the terminal value condition given by Equation 9.48b, which
is repeated here as Equation 9.59

VIX' (), tr] = p[x* (1), 1] (9.59)

is available beforehand because ¢[-] is a known function. Thus, the HIB equation, Equa-
tion 9.58, should be solved backward in time with the above terminal condition.

Actually, we note that the Hamiltonian used in Equation 9.54 is essentially consistent with
what is used in Equation 9.16, if we note that the partial derivative vector 0)/0x here is
identical to the adjoint vector A"(#) which is determined by Equations 9.21a and 9.21b.

In addition to the variational principle, dynamic programming provides an alternative
approach to finding the optimal control. For instance, in terms of LQ control, with the terminal
function and the Lagrangian given respectively by Equations 9.28 and 9.29, the terminal
condition (Equation 9.59) becomes

V[X(l‘f)7 tf} = %XT(tf)SfX(Zf) (960)

Note that now the HJB equation, Equation 9.58, is linear, it is reasonable to assume that the
value function takes a form similar to Equation 9.60 (Naidu, 2003):

VIx(1), 1] = =x" (1)S(2)x(?) (9.61)

where S(7) = [S;{?)] <, is a symmetric, positive definite matrix to be determined.
Thus, minimizing the Hamiltonian in Equation 9.54 requires

6671_1( =0, where H = % [x"Qx+u"Ru] +x'S[Ax + Bu] (9-62)
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This gives the control law
u() =R 'BTS(1)x(7) (9.63)

which is exactly the same as Equation 9.35.

Introducing the control law (Equation 9.63) into the HIB equation (Equation 9.58) and
eliminating the factors XT(t) and x(¢) on both sides will yield the matrix Riccati equation
identical to Equation 9.39.

The HIB equation and the minimum principle are, of course, equivalent in a sense. Actually,
as mentioned before, the Euler—Lagrange equations (Equations 9.23a, 9.23b and 9.24) via the
variational principle based on the minimum principle are the counterparts of the Hamilton
equations in mechanics. Likewise, the HIB equation via the principle of optimality is the
counterpart of the Hamilton—Jacobi equation in mechanics (Lanczos, 1970). Thus, the
Euler-Lagrange equations (Equations 9.23a, 9.23b and 9.24), which are ordinary differential
equations, are the characteristics equations of the partial differential equation — HIB equation
(on the characteristics equation, see Section 6.6.1). However, in the sense of conventional
differentiation, the smoothness of the value function is required in the HIB equation, while in
the sense of super- and sub-differentials and the viscocity solution, this requirement can be
loosened and the connection between the HIB equation and the minimum principle can be
established (Zhou, 1990; Vinter, 2000).

9.3 Stochastic Optimal Control

If randomness is involved in the system parameters and excitations, then we encounter the
problem of stochastic optimal control. Almost simultaneously with modern control theory
and stochastic process theory, stochastic control attracts the attention of researchers
(Astrom, 1970). A variety of stochastic control approaches based on different criteria have
been initiated by investigators in a wide range of science and engineering disciplines, such
as neighboring optimal control (Stengel, 1994), LQ Gaussian (LQG) control (Yong and
Zhou, 1999), covariance control (Yang, 1975; Hotz and Skelton, 1987), PDF tracing control
(Sun, 2006), optimal control based on the Hamilton formula (Zhu, 2006) and the thought for
reliability-based control (Scruggs, et al., 2006), and so on. In this section we will first
consider the optimal control of white-noise-excited stochastic systems (Stengel, 1994; Yong
and Zhou, 1999) and then come to the theoretical frame of GDEE-based control.

9.3.1 Stochastic Optimal Control of Nonlinear Systems: Classical Theory

Consider a nonlinear structural system excited by the white noise processes

X =£[X(2), U(¢), 1] + L&(2) (9.64)

where £(7) =[£,(2), &(D), - ., £(0]" is an r-dimensional stochastic process vector with the
mean vector and the covariance matrix given by

EE(N] =0 and E[E(E (1)) = D(1)8(1 ) (9.65)
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respectively, where D(7) = [D;(7)],«, is a symmetric, positive semi-definite matrix. Equa-
tion 9.64 can be rewritten as an Ito stochastic differential equation:*

dX = f[X(7),U(¢), 7] dr + L dW(z) (9.66)
where W(¢) is a Wiener process vector, of which the statistics of increments are given by
E[AW(£)] =0 and E[dW(r) dW'(2)] = D(z) d¢ (9.67)

The performance index (Equation 9.3) is now a random variable. Therefore, the expected
value can be used instead:

7= 5{¢[X(tf), ]+ sz LIX(1), U(D), ] dt} (9.68)

4}

In the case of stochastic control, although the variational principle can still be applied to
develop a set of stochastic differential equation as the Euler—Lagrange equations (Yong and
Zhou, 1999), the HJB equation is simpler and will be developed here.

Like the performance index, the value function defined in Equation 9.47 is now also a
random variable. Thus, here it is reasonable to define the value function as the expected
value:

VX (1), 1] = min{J[X(1), ]} = T[X"(1). 1
e{SIX*(ar), 1] = [} £IX* (7). U"(2), Tlde} (9.69)
m(ijn E{D[X" (1), 1] — [/ LIX*(x),U(1),7]dr}

As a mean-square integral, the differentiation and the expectation operator are interchange-
able; thus, the differentiation of the value function is given by

dVIX*(1),1] = — E{L[X* (1), U"(2), 1]} dt (9.70)

Because the value of X"(7) and U"(¢) at time ¢ can be measured and become known exactly
when the measured noise is ignored, from Equation 9.70 we have

dV[X*(1),1] = — L[X"(¢),U"(2), 7] dt (9.71)

On the other hand, being a function of X and ¢, as the counterpart of Equations 9.52a
and 9.52b, and noting that the It6 lemma (see Equation 5.196) should be employed
because X(¢) is associated with an It6 differential (Equation 9.66), the differentiation of V
is given by

" oV % Y }

dV[X*(1),1] = 5{ di4 —— dX+ - dX' —— dX

ot 0X 2 ox? (972)

2For details of the Itd stochastic differential equation, refer to Section 5.6.1.
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Replacing dX by the It6 differentiation (Equation 9.66), Equation 9.72 becomes

1 2
dV[X*(1),1] = S{aa—];dt—&—g—;[fdt—deW( )]+ —[fdt+LdW( )] 2 V[fdl+LdW( )]}
2
_ %th—&—Z;f—i- 5{[fdt+LdW( )]Tg Yl Law(: )]}
ov. oy, 1. (%Y T
= Edt%—&f—k =Tr (6 5E[fdt+LdW(r)][f dr4-LdW ()] )
) G 1. (°V T
= 6_tdt+&fdt+ =Tr (6—LD( )L )dt
(9.73)
Here, use has been made of the matrix identity
x'Ax = Tr(Axx") (9.74)
where Tr(-) is the trace of a matrix.
Combining Equations 9.73 and 9.71, we have
i . oV )% o*V .
— L[X*(1),U"(1),t] dt = B dr+ &fdt+ 2T (6 > LD(7)L >dt (9.75)
and thus
oV . . oV %y -
FTin {E[X (1),U"(2), 1] + aXf+ 2Tr<8X2 LD(7)L )} (9.76)
or
oV . ov, 1. (oY
— = — mi X ——f+ - Tr LD(7)L" 77
&= - {£x 0,000 + e ge(Sgmeont) o)

Note from Equation 9.77 that the right-hand side part to be minimized in the stochastic
context is always not smaller than the deterministic counterpart (Equation 9.54), because the
effect of the white noise induces a nonnegative correction term; that is, the third term in the
bracket.

When defining a generalized Hamiltonian

oy 9%V

v, 1 (Y
Ho | X(0, U, S5 52 (52

t} = L[X(1),U(1), |+ =zt + = Tr e

<3 LD(t)LT> (9.78)

Equation 9.77 becomes

%’ _ m&n{ He [X*(z),U(z),a—v &y z” (9.79)
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This is the HIB equation in the stochastic context, which is of course the counterpart of
Equation 9.58, where the Hamiltonian 7 (-) isreplaced by the generalized Hamiltonian Hg(-).

To solve a stochastic optimal control problem with the approach elaborated above, the
control law, which might be linear or nonlinear feedback control, is first determined by
minimizing the right-hand side of Equations 9.77 and 9.79, then the control law is introduced
into Equations 9.77 and 9.79 and the state-control equation (Equation 9.64) to give the control
gains and simultaneously the state response.

9.3.2 Linear Quadratic Gaussian Control

Consider the case where the system in Equation 9.64 is a linear system with the state-control
equation

X = AX(#) +BU(z) + L&(¢) (9.80)

where A = [A;(D)],1xn B = [Bif(1)]1x,m and L = [L;(?)],, are the same as in Equation 9.25. Now
the operator f[-] in Equation 9.64 is given by

f[X(2),U(2),1] = AX(?) +BU(?) (9.81)
If the terminal function ¢[-] and the Lagrangian L[ -] take the quadratic forms
d[X(1r), 7] = %XT(zf)st(zf) (9.82)
and
LIX(),U(1), 1] = % X" (1)QX(1) + UT()RU(1)] (9.83)
then Equation 9.79 becomes
% = — min {% [XTQX* +U'RU] + 2—; (AX* +BU) + %Tr(%LD(t)LT> } (9.84)
with the terminal condition given by
VIX*(t), ] = %X*T(tf)SfX*(tf) (9.85)

Being a linear system (Equation 9.80) and a linear partial differential equation, then,
compared with the deterministic counterpart (Equation 9.58), itis reasonable to assume that the
value function takes the form

VIX(1),1] = %XT(t)S(t)X(Z) +v(2) (9.86)

where S(7) = [S;(#)],,x» 1S a symmetric, positive-definite matrix and v(7) is a correction term due
to the correction term in the HIB equation (Equation 9.84) compared with the deterministic
counterpart. Our task is to determine S(¢) and v(¢) and then obtain the control law and solution
of the optimal problem.
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Introducing Equation 9.86 into Equation 9.84 and noting that

vV o1 o’V
= XN08() and 5 =8(0) (9.87)
we have
aa_’: __ ngn% {[XTQX + UTRU] + 2X"S(AX + BU) + Te(S()LD(LT)}  (9.88)

The minimization requires that 0H¢/0U = 0, which gives the control law
U(t) = —R'BTS()X(1) (9.89)
Thus, substituting Equations 9.89 and 9.86 in Equation 9.88 results in

)% Lot/ ¢ i
o = X (08X (1) + (1)

- % [X"QX +X"SBR ™ 'B"SX + 2X"S(A —BR " 'B'S)X] — %Tr(S(r)LD(t)LT)
] 1

= - EXT(Q +2SA —SBR'BTS)X — ETr(S(z)LD(z)LT)

(9.90)

Further, comparing the coefficients of X in the first equality and the third equality and letting
them be equal, we have

S(f) = —2SA+SBR™'B'S-Q (9.91)
and
W) = — %Tr(S(l)LD(t)LT) 9.92)
Note that
2SA = (SA +ATS) + (SA — ATS) (9.93)

where the first term on the right-hand side is symmetric and the second term is nonsymmetric.
Because all the terms but the first one in the right-hand side of Equation 9.91 are symmetric, the
first term must also be symmetric; thus, the second term in the right-hand side of Equation 9.93
must disappear. Consequently, Equation 9.91 becomes®

S(/) = —A"S—-SA+SBR'B'S-Q (9.94)

This is the same as the matrix Riccati equation and identical to the deterministic counterpart
in Equation 9.39, of which the terminal condition is given by

3The analysis used here also holds for the deterministic counterpart when the HIB equation is used to treat the LQ
controls at the end of Section 9.2.3.2, where the last step to obtain the matrix Riccati equation is left to the reader.
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S(1) = S¢ (9.95)

On the other hand, it follows from Equation 9.92 that

oe) = — Jt LTH(S(LD(OLT) dr = ;Jr T(S(OLD(OLT)dt  (9.96)

1

which is due to the correction term in the HIB equation (Equation 9.84); therefore, the value
function in Equation 9.86 is actually given by
1 ("
VIX(1),1] = 5XT(z)S(t)X(t) + EJ Tr(S(t)LD(t)LT) dt (9.97)
t

Certainly, it is always no less than its deterministic counterpart (Equation 9.61).

In the preceding section, the It stochastic differential equation is considered and the
Gaussian assumption on the excitations is used. Such a developed stochastic control is thus
called LQG control.

Here we see that the LQG control gain matrix is identical to the deterministic LQ control.
This means that, for a zero-mean Gaussian excited linear system, the control gain matrix can be
computed offline and then used in practical applications or simulations.

In addition, using a perturbation technique, the optimal control of an additive zero-mean
Gaussian excited nonlinear system can be achieved by combining deterministic optimal control
of a nominal deterministic nonlinear system and LQG control of a quasi-linearized system
perturbed along the nominal optimal control history (Stengel, 1994). However, one should be
careful to appreciate that it applies only for a low degree of variation in the excitations.

Inthe classical theory of stochastic optimal control, the control-state equationis modeled as an
It6 stochastic differential equation. Furthermore, the performance index takes an expectation of
some type of index. Such treatments make it straightforward to extend deterministic optimal
control theory to stochastic optimal control theory without substantial difficulties. On the other
hand, it also implies that such developed stochastic optimal control theory only applies in the
cases of weak disturbance by white-noise excitation, excluding the nonstationary strong
excitations such as earthquakes, strong wind and large sea waves frequently encountered in
civil engineering. Moreover, taking only an expectation as the performance index implies that
such a control obtained is optimal essentially in the sense of variance, not in the sense of
reliability. It is not adequate for precise control of performance of engineering structures.

9.3.3 Probability Density Evolution Analysis of Stochastic Optimal Control
Systems

9.3.3.1 General Principle

As pointed out in Section 9.1.1, when general random fields or stochastic processes are
involved in nonlinear systems, the controlled system is governed by

X =f[X(1),U(1).{ (). &(, 1), 1] (9.98)

where {(@) and (@, 1) are respectively the random fields and stochastic processes involved and
@ represents the embedded random event. By introducing orthogonal decomposition of
random fields and stochastic processes (see Chapter 3), Equation 9.98 becomes
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X = f[X(1),U(1),1,0(@)] (9:99)

where O(@) = (0(@), Ox(@), . .., O(®)) is a random vector with known probability density
pe(0) =pe(fy, 02, . . ., O5). Note that, in contrast to classical stochastic control theory, when we
consider the random state-control equation (Equation 9.99), it is no longer the It6 type
stochastic differential equation.

Because of the randomness involved in the system, the control history U(-) and the
corresponding state X(-) are both stochastic processes dependent on @(@). Thus, the perfor-
mance index

tf

Jmm%we,ﬂzﬂmm¢¢+Jcm@¢mx&oﬂm (9.100)

to

is a random variable with dependence on @(w).

In classical stochastic control theory of nonlinear systems, the performance index is defined
as the expected value of Equation 9.100, as shown in the preceding sections (see Equation 9.68).
However, this is not the only option. In contrast, a direct, sample-based treatment, if possible,
might be more reasonable. This is the case when the GDEE elaborated in Chapters 6 and 7 is
incorporated.

The variational principle in the context of the stochastic controlled system in Equation 9.99
will be employed here. The problem to be tackled here is to minimize the stochastic
performance index J[X(#), U(®, - )] in Equation 9.100 in the sense of a sample under the
dynamic constraint imposed by Equation 9.99. In this case, a Lagrange multiplier vector
A®, 1) =[11(0,1),72(0,1),...,7,(0, )] can be introduced. Note here that the adjoint vector
A(®, 1) has a dependence on @.

Denote the random Hamiltonian by

H [X(£),U(1),A(1),£,0] = L[X(O,1),U(®, 1), 1] +A" (@, )f[X(¢),U(2),£,0]  (9.101)

Using the variational principle in a way similar to Section 9.2.1, we obtain

M0=—FHB@EQ”M”M} 9.102)
A(ty) = g—i ) (9.103)

and

0 H [X(1),U(1),A(1), 1, O]
ou

=0 (9.104)

Equations 9.102-9.104 are the stochastic Euler—Lagrange equations of the controlled
system. Combined with the state-control equation (Equation 9.99), the stochastic optimal
control problem can be resolved.

Without loss of generality, the solution obtained of the state vector and the control process
and their derivative processes can be expressed in the following form:
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X = Hx(®, ) (9.105a)
X = hx(@,1) (9.105b)
U =Hy(®,1) (9.106a)
U=hy(®,r) (9.106b)

With Equations 9.105a—9.106b understood as the Lagrangian description of the controlled
system, according to the probability density evolution theory elaborated in Section 6.5.2, the
GDEE with respect to any component of the state vector X(¢) and the control history U(#) can be
obtained. For instance, if we denote the joint probability density of (X,(), ®) by px,e(x¢, 0, ),
where X,(¢) is the ¢th component of X(7), 1 < £ < n, then we have the GDEE

apX[@(va 07 t)
ot

apX[@(x/a ea Z)

+hx_e(0, l) Ay

=0 (9.107a)
where /ix (- ) is the ¢th component of hx(-).

Likewise, the joint density of the control history component Uy(¢) (the ¢th component of
U(?)) and O satisfies

apU;@(u(W 07 [)
ot

apU;»@(ué/v ev t)

+hU_,/;(0, t) e

=0 (9.108a)

Solving these equations, we can get the density functions of X;(¢) and U,() respectively by

px.(xe, 1) :J px.e(x:,8,1)do (9.108b)
Qg

pu,(ue, 1) = J pu,e(u,0,1)do (9.108b)
Qg

Similar to Section 6.6.2, the probability density evolution analysis of a stochastic optimal
control system includes the following steps:

Step 1: Specify the representative point set Py = {0, = (014,024,...,054); ¢ =
1,2,...,n5} in the space Qg and the corresponding assigned probabilities P,
q=1,2,... ng, as elaborated in Sections 7.2-7.4.

Step 2: Solve the simultaneous Equations 9.99 and 9.102-9.104 at the representative points to
obtain the quantities of interest; for instance, the state X(8,, 7) and its derivative process
X(8,, 1), the control history U(8,, #) and its derivative process U(@,, 7).

Step 3: Substitute the quantities obtained, solve the GDEE, say Equations 9.107a and 9.108a,
by the numerical methods elaborated in Section 7.1 and obtain the joint densities
px,0(x¢,8, 1) and py,e(ur, 0y, ).

Step 4: Repeat steps 2 and 3 running over all ¢ and sum the results to obtain the desired
probability densities by
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el Hsel

pXi(xh Z) = ZPX¢®(x[7eq7 t) and PU; (UZ, t) = ZPU;@(W»GW Z) (9109)
q:l q=

9.3.3.2 Probability Density Evolution Analysis of Linear Quadratic Control of Stochastic
Systems

For a linear system with a quadratic performance index, the control problem will be much more
tractable. Consider the random state-control equation of a linear system:

X = AX(7) +BU(¢) + L£(®, 1) (9.110)

which is the stochastic counterpart of Equation 9.25. Here, A = [A;],,,, is the system matrix,
B =[Bjl,,xm 1s the control influence matrix, L =[L;],«, is the force influence matrix and
£O,)=[£1(0,1),(0, 1), ...,£(0, H]"is the r-dimensional excitation vector, which can be
represented by random functions of @ through the methodology in Chapter 3. For simplicity, in
the present stage we do not consider the randomness involved in the structural parameters.
Consider a quadratic performance index:
15
J[X(1),U(®, )] = %XT(zf)st(zf) - %J X"(@,1)QX(0, ) +U'(®,)RU(®, )] ds
to

(9.111)

where S¢=[St;l,xn and Q =[Q;jl,x, are symmetric, positive semi-definite matrices, R =
[Rijlxm is a symmetric, positive definite matrix and U(®, -) represents a time history
dependent on @.

In this context, the Hamiltonian defined in Equation 9.101 becomes

H [X(1),U(1),A(1),1,0] = % [X"(®,)QX(®,1)+U"(0,/)RU(®, )]

+AT(®,1)[AX(®, 1)+ BU(®, 1) + LE(®, 1)) 1
Thus, the Euler-Lagrange equations in Equations 9.102-9.104 become
Alt) = —ATA(r) — QX(1) (9.113)
A(te) = SeX(¢) (9.114)
and
U'R+A"B=0 (9.115)
respectively. From Equation 9.115, we get the control law
U(t) = —R'BA(2) (9.116)
Substituting this in the state-control equations (Equation 9.110) yields
X = AX(7) —BR " 'BTA(¢) + L£(®, 1) (9.117)

whose initial condition X(7p) = X is specified.
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We note that the two-point boundary value problem consisting of Equations 9.113,9.114 and
9.117 is a linear equation set, and the terminal condition (Equation 9.114) is also in a linear
relationship; therefore, it is reasonable to suppose that the relationship between the solutions of
A(?) and X(?) takes the linear form

Alt) =S(0)X(1) +(2) (9.118)

where S(7) = [S;{(1) ], and $(2) = [f1(2), P(2), . . ., tlln(t)]T are to be determined.
Differentiating Equation 9.118 with respect to time ¢ yields

A =SX +SX +(1) (9.119)
Substituting the state-control equation (Equation 9.117) in this gives
A =SX+S[AX —BR 'B"A + LE(®, 1)] + (1) (9.120)

Replacing the left-hand side by the right-hand side of Equation 9.113 and introducing
Equation 9.118 to eliminate A, we reach

—AT[SX + (1)) — QX = SX+S{AX —BR 'BT[SX + {(1)] + LE(O, 1)} +s(¢)

(9.121)
Making the coefficient matrices of X be zero, we obtain
S= —ATS—SA+SBR 'B'S—Q (9.122)
and
U(t) = [~ AT+ SBR ~'BT|y(7) — SLE(®, 1) (9.123)

Equation 9.122 is a matrix Riccati equation, of which the terminal condition is specified
according to Equation 9.114 by

S(lf) =S (9124)

Once S(7) is determined by solving Equation 9.122, we can introduce it into Equation 9.123
and then solve it backward in time with the terminal condition, according to Equation 9.114:

V() =0 (9.125)
The control law may be given by combining Equations 9.116 and 9.118:

U(t) = —R'BTS(1)X(1) — R 'BTY(0, 1)

= — C(1)X(1) = Cropu (1) (®, 1)

(9.126)

Here, the gains

C(1) =R'BTS(¢) and Ciypu(f) = R™'BT(2) (9.127a,b)
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are respectively the state feedback gain matrix and the input feedforward gain matrix. The latter
term is due to the fact that {s(¢) results from the existence of the input load £(@, 7). Incidentally,
we note that if the excitation disappears (that is, £®, 7) =0), then from Equations 9.123
and 9.125 it is seen that the solution process Y(z) =0. Thus, the input feedforward term
disappears if the input disappears. The solution now becomes the conventional ‘pure’ state
feedback control.

In Equation 9.126, the first part of the control force comes from the linear state feedback,
where the control gain is available in advance offline and the information of the state comes
from the online measured data or optimal estimate. The second part of the control force,
however, cannot be obtained through the online measured information because a backward
differential equation needs to be solved and this differs from sample to sample. Some
techniques could be employed to treat this part reasonably. A possible option is to use the
mean effect; that is, the control law is given by

U(t) = — C(2)X(2) — Crnpue (2)¥(2) (9.128)

where (1) = E[P(O, 7)]. Note that for an earthquake, usually we have E[£(@, 1)] = 0; thus,
from Equations 9.123 and 9.125, we have E[Y(0, ¢)] = 0. In this case, the control law becomes

U(r) = — C(0)X(2) (9.129)

By substituting the control law (Equation 9.129) in the state-control equation (Equa-
tion 9.110), the state vector and the optimal control force process can be obtained. The GDEEs
Equations 9.107a—9.108b can thus be solved to obtain the PDF of the state vector and the control
history.

It is worth pointing out that, in the design stage of the controller, all the above computations
can be carried out offline. In practical implementations, the only online computations needed
are in Equation 9.129, for which the computational effort is small.

Selection of the Weighting Matrices
In the the Riccati equation, the weighting matrices Q and R are involved in the coefficients.
Different weighting matrices will of course lead to different control laws. Although it is very
important to select appropriate weighting matrices, between which the relative relationship
accounts for the trade-off between the controlled response and the input control demand, there
is no available rational criterion. In most cases the selection of the weighting matrices is based
on engineering experience and determined through a trial-and-error strategy (Stengel, 1994;
Zhang and Xu, 2001; Agranovich et al.,2004). This problem will be more significant in optimal
control of stochastic systems because of the variation of the system parameters and the
fluctuation of the excitations.

In the context of civil engineering, the weighting matrices Q usually take the block form

Q 0 0
Q=10 Q 0 (9.130)
0 0 Q

where Qg, Qy and Q, are diagonal matrices of appropriate dimension, corresponding to the
weights on the displacements, velocities and accelerations. For simplicity, we can use times of
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unit matrices of appropriate dimension; thus:

Yy 0 O
Q=(0 yI O (9.131)
0 0 v,I

where 4, ¥y and v, are the corresponding weighting coefficients. If we suppose the weighting
matrix R also takes the form of multiples of unit matrices of appropriate dimension, namely

R =yl (9.132)

then the four parameters Y4, Yy, Y, and Yr determine the weighting matrices Q and R. Therefore,
if we establish a criterion for the selection of the weighting matrices, we come to a parametric
optimality problem.

To consider the optimal control problem where the accelerations are weighted, a more
involved filtering process should be taken into account. Consistent with the preceding sections,
we now set ¥, = 0 for simplicity. Further, we let v, £ v, = 7,. The weighting matrix Q is now

Q="7ol (9.133)

where I is the unit matrix of appropriate dimension.
Because only the relative relationship between Q and R matters, now only one parameter, the
weighting ratio
8w = ] (9.134)
Tr

is involved.

Example 9.1. Probability Density Evolution Analysis of a Linear SDOF System Consider
an SDOF linear system subjected to random ground-motion excitations. Using the random
Fourier function model for seismic ground motion (see Equation 3.41), 221 representative
ground-motion acceleration histories can be generated (Li and Ai, 2006). Figure 9.2 shows the
relationships of the maximum acceleration and the maximum control force versus the weighting
ratio of the 221 representative excitations. Figure 9.3 shows the mean maximum quantities (the
maximum acceleration, relative displacement and the control force) versus the weighting ratio
gw- Itis seen that the tendency of the mean maximum relative displacement versus the weighting
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Figure 9.2 Maximum quantities versus weighting ratio (yq = 100).
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Figure 9.3 Mean maximum quantities versus weighting ratio (yq = 100).

ratio (Figure 9.3b) is somewhat opposite to that of the mean maximum acceleration (and control
force) versus the weighting ratio. From the figures, a trade-off among the relative displacement,
acceleration and control force means that it is reasonable to choose the weighting ratio

gw=10x10".

Figure 9.4 shows the standard deviations of the relative displacement and the acceleration
responses of the uncontrolled and controlled systems. Obviously, the control greatly reduces
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Figure 9.4 Standard deviations of the responses of a controlled and uncontrolled system.
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Figure 9.6 Probabilistic information of the control force.

the standard deviation of the displacement by about 12 times. Similarly, the control also
reduces the standard deviation of the acceleration response by about four times.

Figure 9.5a and b shows the probability densities of the acceleration of the uncontrolled and
controlled systems at some instants of time. Clearly, the distribution range of the acceleration is
greatly narrowed.

As previously pointed out, the control force process is also a stochastic process, even if the
control gains are deterministic. Figure 9.6 shows the standard deviation and the probability
density of the control force at some instants of time. From the figure, it is seen that during
the stage of strong ground motion, larger control forces are needed to suppress the response
of the controlled structure. In addition, at different instants of time, the PDFs are quite
distinct. OJ

9.4 Reliability-Based Control of Structural Systems
9.4.1 Reliability of Controlled Structural Systems

Reliability of the control is one of the critical issues in stochastic control. In the past decade or
so, some investigators have proposed a few frameworks to incorporate reliability theory in
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stochastic control (Spencer et al., 1994; Field and Bergman, 1998; Scott May and Beck, 1998;
Battaini et al., 2000; Yuen and Beck, 2003; Scruggs et al., 2006; Zhu, 2006; Li et al., 2008).
Depending on the purpose, the problem involves two aspects: the first is to minimize the
performance index with the reliability of the synthesized system not lower than a prescribed
level (P1, for brevity); the second is to maximize the reliability of the synthesized system with
some indices of the system bounded in a prescribed range (P2, for brevity). Zhu (2006) has done
some work in P2, while most other studies have focused on P1. In this section, we will only deal
with P1.

Without loss of generality, we consider the controlled stochastic system in Equation 9.99,
repeated here as Equation 9.135 for convenience:

X = f[X(1), U(2), 1, 0(o)] (9.135)
Once we determine a control law, say in the form of
U(1) = G[X(1), 1,0,k (9.136)

where k is an undetermined parametric vector related to the feedback gains, then substituting
Equation 9.136 in the dynamic Equation 9.135 yields

X = E{X(I),Q[X(Z),[,@)’ K],l,@(@')} (9137)
= f[X(9),1G,k,0O(w)]

Solving these equations we get the Lagrangian description (formal solution) of the state
vector

X = Hx(0,1,G,k) (9.138)

where Hx() = [Hy.1(-), Hx2(), - - - Hxa()]".

Thus, we can further obtain the reliability (or probability of failure) of the system by
employing the approach based on the absorbing boundary condition or extreme-value
distribution elaborated in Chapter 8. Here, we exemplify the approach based on the ex-
treme-value distribution. Considering the ¢th component of X, the extreme value is given by

W(®,k) = ext {X,(1)} = ext {Hx(®,7,k)} (9.139)

Therefore, we can then construct a virtual stochastic process
Z(x) = $[W(0,K),7] = ¢(®,7,k) (9.140)

which satisfies the conditions

Z(1)|,.o=0 and Z(1)|,_, = W(O,Kk) (9.141)

Thus, the joint density of (Z(7), ®), denoted by pze(z, 0, 7), satisfies the generalized density
evolution equation (see Equations 6.123a and 6.123b)

ang(Z, ea T) + qD(O, 1, K) apZ@(Zv 07 T)

=0 142
ot oz ® )
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Solving it under the initial condition
p76(z.8,7)|,_y = 5(=)pe(8) (9.143)
and then using the integration we have
pz(z,7) = J pze(z,0,7) dO (9.144)
Qg

Equations 9.142-9.144 can be solved via the numerical algorithms elaborated in Chapter 7.
On doing the above, we get the reliability

R(G,k) = J pw(w, G, k) dw = J pz(z,1.,G,k) dz (9.145)
Qg S
and simultaneously the probability of failure

Pi(G, k) = 1 —R(G, k) (9.146)

where €, is the safe domain.
Denote the desired reliability by Rp. Thus, if

Pi(G,x) =1 —-R(G,k) < 1—Rp = Psp (9.147)

where Prp =1 — Rp is the highest acceptable probability of failure, then the designed control
with the form G and parameter vector k satisfies the desired purpose. If G is first determined by
some method, then the optimal parameter k should be searched for. For instance, let k%, j=0,
1,2, ..., denote the parameter vector used in the jth iteration. We might choose the k¥ ™ by

U+ — k)] _ Pi(k") —Pip
k) —kU-D|]  Pr(k0)) — P (kU 1)

(9.148)

where |||l is the norm of the vector. For the single-parametric problem, Equation 9.148 is easy to
realize. However, for general multiparametric problems, it may be much more complicated.
Engineering experiences are very important in selecting the new parameters.

9.4.2 Determination of Control Criterion

Actually, in stochastic optimal control, what is really important is how to determine the control
laws. In other words, how to design the controller, including the mechanism G and the control
parameters k. In the preceding sections, we determine the control laws in fact based on some
modifications on the sample counterpart. However, this might not ensure optimality. A more
reasonable way might be based on the concept of reliability or exceeding probability.

For instance, if Z(¢) is a physical quantity to be considered in the controlled system, then
denote the extreme value

Zew = ext Z(0,1) (9.149)

IE[[(),ff]
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The control law might be determined by minimizing the performance index
TG, K] = E[Zex] (9.150)
or minimizing the performance index
T2(G, K] = E[Zex] + a0 [Zex] (9.151)

where « >0 is a coefficient. Alternatively, the control law can also be determined by
minimizing the performance index

J31G, k] = Pr{Zex> 7} (9.152)

where Z, is a prescribed threshold.
Clearly, the above performance indices will yield different control laws, which is in need of
further investigation.



Appendix A:
Dirac Delta Function

A.1 Definition

The Dirac delta function has various physical backgrounds in many different disciplines. If a
function f(x) satisfies the two conditions

) for x = x,
fx)= {O 0therwise0 (A1)
Jw fx)dx=1 (A2)

then f(x) is called the Dirac delta function and usually denoted by
f(x) =8(x—x0) (A.3)

Itis also usually called the Dirac function for simplicity, and can be illustrated by Figure A.1.

The condition in Equation A.1 says that the Dirac function is zero except at the point x,
where its value is infinite. The condition in Equation A.2 means that the total area below the
curve of the function is unity. Clearly, it is a function with some interesting features.
Mathematically, rigorously speaking, the Dirac function belongs to the family of distribution
functions (also called generalized functions) (Zemanian, 1965; Zayed, 1996).

To give amore visual image, we consider the PDF of a uniformly distributed random variable

1
— —a<x<
pUniform(x; a) = 2a fOT/.L .a SXS M+a (A4)
0 otherwise
It is easy to verify that
ali_r}})pUniform (X; a) = 6()( - /‘L) (AS)

which shows that, as the distribution width of a uniformly distributed random variable narrows
and tends to zero, the uniform distribution tends to a Dirac delta function. Of course, the
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() Sx) = 6(x—x)

oo, forx = x
? Ox =xo) = 0, otherwise
! oo
: '[ O(x —xg)dx =1
: —o
1

o Xo X

Figure A.1 The Dirac delta function.

uniformly distributed random variable reduces simultaneously to a deterministic variable
(Figure A.2a).

) J&x)

=)

olf

(@) (b)

Figure A.2 The Dirac delta function as a limit of other functions: (a) uniform distribution; (b) normal
distribution.

Likewise, if we consider the probability density of a normally distributed random variable

1 —(x— 2 o2
PNormal (X; 0-) = ¢ (r=p)/2 (A6)
210
then we can verify that
ol_iinopNormal (x; U) = 5()6 - :U“) (A7)

Thus, as the standard deviation of a normally distributed random variable narrows and tends
to zero, the normal distribution also tends to a Dirac delta function. Simultaneously, the
normally distributed random variable reduces to a deterministic variable (Figure A.2b).

A.2 Integration and Differentiation

According to the conditions in Equations A.1 and A.2 in the definition, it is easy to verify that
for a general function g(x) the integral involving a Dirac delta function is given by

Jim g(x)8(x —xp) dx = g(xo) (A.8)

This indicates that a Dirac delta function identifies the value of the adjoint function in the
integrand.
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Based on this, if we consider the Fourier transform of 6(¢ — #,), then we have
Flé(t—1t)] = J &(t— to)e’i“” dt = e~ 1o (A9)

Conversely, we know that the inverse Fourier transform on Equation A.9 gives

1

f—l[e—iwto] _ 1 ﬁ

- e—lwtoelwtdw:
2n ) _ o

J el =) de = §(1 — 1) (A.10)

If we let 15 =0, then Equations A.9 and A.10 become
F6(n] =1 (A.11a)
and
F 1 =8(¢) (A.11b)

respectively. According to Equation A.8, we know that for a time history x(7) there is
x(t) = J x(1)é(t—t)de (A.12)

That is, the Dirac delta function can be regarded as a basis unit of a general time history.
The Dirac delta function can also be regarded as the derivative of a discontinuous function —
the unit step function (Heaviside’s function)

_J1 fort > 1
u(t—to) = { 0  otherwise (A-13)

If we denote #(t — ty) = du(t — to)/dz, then it is easy to verify that

J i(t—t9)dt = u(eo) —u(—o0) =1 (A.14a)
i—t0) = Tort=rto (A.14b)
0 otherwise '

Comparing these with Equations A.1 and A.2, it is clear that
u(t—19) =6(t—to) (A.15)
Thus, the Dirac function can be regarded as the derivative of the unit step function.

We now consider the integral of a Dirac function involving a compound function; for
instance:

Zlg(x)] = J;g(x)é[q:(x) — Xo] dx (A.16a)
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If we change the integral variable x by ¢~ '(y), then Equation A.16a becomes
Zlo() = | Wlgle™ 0Nl —x] dy = gl (o) (A160)

where |J| = |dg ~!/dy| is the Jacobian. Here, it should be noted that the Jacobian cannot be
omitted.

We now consider the integral of Dirac’s function when the x take only integer values over a
neighboring small interval near the integers:

. [ . [ . 1 fori=j
IU::}T})LSS(X_I)dx:}T})J 6(x—])dx:{0 otherwise (A-17)

=&
when i and j are integers; the above integral Z ; is called the Kronecker delta and is denoted

by

_J1 fori=j
djj = {O otherwise (A.18)

Thus, it is seen that the Dirac delta function can be regarded as the continuous version of
the Kronecker delta and, in turn, the latter can be regarded as the discretized version of the
former.

A.3 Common Physical Backgrounds
A.3.1 Probability Distribution of Discrete Random Variables
If X is a discrete random variable with the distribution that
Pr{X=x;}=P;, j=12,---,n (A.19)

and Z7=l P; = 1, then the PDF of X can be written as
n
px(x) = Pd(x—x) (A.20)
=

Actually, according to the definition in Section 2.1.1, the CDF of the random variable with
the distribution in Equation A.19 is given by

Fx(x) =Y Pu(x—x;) (A21)
j=1

where u(+) is the unit step function defined in Equation A.14. Noting px(x) = dFx(x)/dx (see
Equation 2.1) and Equation A.15, this immediately yields Equation A.20.

Thus, introducing the Dirac delta function, the discrete and the continuous random variable
can be treated in a unified theory frame. In this context, a discrete random variable can be
viewed as the limit of a sequence of continuous random variables; this can be understood very
clear particularly when we note Equations A.4—A.7.
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A.3.2 Concentrated and Distributed Loads

Consider a simply supported beam AB in Figure A.3. A distributed vertical load w(x) and n
concentrated forces Fi, F,, - - -, F, are applied.

12

w(x)

- ||||| | I e ,
T R N

o -
l X1 R) Xn ! X

Figure A.3 Loads on a simply supported beam.

The load applied on the beam can be written in a unified way as
n
g(x) = —w(x) = D Fd(x—x)) (A.22)
j=1

Actually, it is easy to know that if the reaction force of support A is R 4, then the shear force of
the beam at x is given by

O(x) = Ry — [0 w(x)dx = Y Fju(x - x;) (A.23)
. =

Noting ¢(x) = dQ(x)/dx and Equation A.15, this immediately leads to Equation A.22.
This is actually the mathematical expression of the physical sense that a concentrated force is
an idealized situation when the applied area of the distributed force is very small.

A.3.3 Unit Impulse Function

If f(7) is a time history of a force applied on an initially rest mass particle 71, then the impulse of
the force is given by

K= th(t) dt = my (A.24)
0

where v is the velocity of the mass particle. If the time duration of the force is shortened, then to
achieve the same velocity v the force should be enlarged. In the limit, as ¢t — 0, for a specified v
we have

t
my = lin} J f(t) dt = constant (A.25)
t— 0

Therefore, we find that

F(t) = mvd(t) (A.26)
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This indicates that 6(¢) is a unit impulse function. The applied 8(¢) produces a sudden
increment of the momentum on the mass point. We have elaborated this fact in Section 5.2.1.

A.3.4 Unit Harmonic Function

Consider the inverse Fourier transform of a function g(w) = 278 (w — wy), we have

1 (= . .
F'2n8(w —wp)] = %J 218 (0 — wp e’ dw = '’ (A.27)

Thus, the Fourier transform of a unit harmonic function gives

Fle' = J e'e ™ do = J e (@70 dy = 278(w — wo) (A.28)
The physical sense is clear: in a unit harmonic function the frequency content is so simple

that only one single frequency is involved; this is just what is implied in Equation A.28.
Further, in the case g(w) = 7[8(w — wg) + 8(w + wp)], Equations A.27 and A.28 become

1 (” )
F! {n[ﬁ(w —wy) +6(w+wg)]} = ﬁJ 7[8(w — wp) +8(w + wp)]e'’ dw = coswyt
(A.29)
and
Fleoswot] = [~ coswote ™! dt (A.30)

=T[8(w — wo) +8(w + w)]

respectively.



Appendix B:
Orthogonal Polynomials

B.1 Basic Concepts

Let [a, b] denote a finite or infinite interval and a function w(x) is defined over it. If w(x)
satisfies the following properties:

(@) w(x) >0, x € [a,b]
) [ w(x)dx>0 and
(©) f: xX"w(x)dx,n=1,2,... exists

then w(x) is called a weight function over [a, b].
For the n-order polynomials, whose first-term coefficient a,,#0:

fa(x) =a X"+ ... +a1x+ag n=0,1,2,... (B.1)

if they satisfy

wa(x) G(X)fin(x)dx =0 n#m;n,m=0,1,2,... (B.2)

a

then the sequence of polynomialsf,,(x), f,,(X), . . . is orthogonal over [a, b] with respect to w(x),
and f,,(x) are orthogonal polynomials over [, b] with weight function w(x).
In the case n =m, there is

b
J W2 (x) dx = h, (B.3)
where £, is a positive number.
Let
Ja(x)
= B4
@, (x) N (B.4)
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Then from Equations B.2 and B.3, there is

b .
1 ifn=m
[ wwamenma={y Sl am=0i2. (B3

Here, ¢,(x) are called standard orthogonal functions with weight w(x).
Using

&,(x) = 216 n,m=0,1,2,... (B.6)

w(x)

then ¢,(x) is transformed into standard orthogonal functions in common cases.
For a space of functions with weight w(x), the inner product is defined by

m@:jwumwAMMr (B.7)

where f(x) and g(x) are points in the space.
It can be proved that a space with the inner product defined as above is a Hilbert space.
Thus, any function f(x) in it can be expanded into a generalized Fourier series; that is:

) =Y e (x) (B.5)
i=0
where the coefficients
b
ai= {00 = | W ()ei(x) dr (B.9)

are considered as the projections of f(x) on the basis functions @/ x).

Obviously, the weighted orthogonal decomposition mentioned above is an extension of the
orthogonal decomposition in the Hilbert spaces. As the weight function w(x) = 1, itis reduced
to the orthogonal decomposition in the Hilbert spaces. On the other hand, if we first make the
transformation

Flx) = (B.10)

then the orthogonal decomposition of f (x) also belongs to the orthogonal decomposition in the
Hilbert spaces. Note thatf(x) form a Hilbert space. It follows that the weighted Hilbert spaces
are equivalent to the transformed Hilbert spaces.

There are a variety of orthogonal polynomials, each of which comes from a specific
generating function (Andrews et al., 2000). Denoting these generating functions by G(x, f), in
general there is

G(x,1) =D fulx)?" (B.11)
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This implies that the orthogonal polynomials are essentially the coefficients of the series
expansions of the generating functions with respect to the parameter z.

Among the properties of orthogonal polynomials, the property of recursion is most useful.
For three orthogonal polynomials f,, — 1 (x), f,(x) and f, +(x) defined in Equation B.1, they
satisfy the recursion relation

ap Ay 14y, —
fn+l(x): a“(x—A,,) n(x)—%B,,ﬁ,,l(x) (B.IZ)
where
1 5
A, = h_J xw(x)f,”(x) dx (B.13)
Iy
By =5 (B.14)

Rearranging Equation B.12 and expressing it in terms of the weighted standard orthogonal
functions yields

X()Dn(x) = an@n—l(x)+Bn€0n(x)+7n€0n+l(x) (BIS)
where
1/2
Ay — lhn
a, = 7 (B.16)
anhy
1 5
B, = . xw(x)f,”(x) dx (B.17)
anhl/j1
¥, = el (B.18)
an+lh111/2

B.2 Common Orthogonal Polynomials

The so-called ‘common’ here means that these orthogonal polynomials are closely related to
the contents in this book. They are Hermite, Legendre and Gegenbauer polynomials respec-
tively (Andrews et al., 2000; Dunkl and Xu, 2001).

B.2.1 Hermite Polynomials H,,(x)

The Hermite polynomials are orthogonal in (—oe, ) with respect to the weight function
2 . . . 2 .« . .

e~ /2. Since the weight function e ~*/2 is just the density function of the standard normal

distribution, He, (x) play an important role in the expansion of functions on probability spaces
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associated with the normal distributions. Hermite polynomials are generated by

2y d
He,(x) = (= 1)'e"? (™) n=0,1,2,... (B.19)

It can be verified that
hy = J e V2H?2 (x) dx = V2mn! (B.20)

and the recursion coefficients, corresponding to Equation B.15, are given by

ap=+n B,=0 vy, =vVntl (B.21)

Using Equation B.19, the first few polynomials are as follows:

He, =1

H, =x

H,, = x*—1

H:. = x3—3x (B.22)
3

H,, = x*—6x*+3

In fact, the recursion formula relative to H, (x) can be rewritten as

H, ., (x) = xHe,(x) —nHe,_, (x)
{He(. [ (B.23)

Graphs of the first six Hermite polynomials are shown in Figure B.1.

B.2.2 Legendre Polynomials P,(x)

The Legendre polynomials are orthogonal with respect to weight function w(x) = 1 over the
interval [—1, 1]. As noted, their weight function and the defining interval are analogous to
the density function of the uniform distribution and its interval respectively. Thus, for the
probability space associated with the uniform distributions, the Legendre polynomials are of
great significance.

The Legendre polynomials are generated by

1 a

:W@(xz—l)” n=0,1,2,... (B.24)

Py(x)
We can verify that

1
2
_ 2 _
Iy —J_an(x) dx—2n+1 (B.25)

and give the recursion coefficients in Equation B.15:

1
an:L ano i

= B.26
4n? —1 ¥ V4n?+8n+3 (B.26)
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He (x)
0
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0 x
() (b)
y Hez(x) y
Hez(x)
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(c) (d)
Y He (%) Y
Hes(x)
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\VAERVAEE / Ve
(e) ()
Figure B.1 Orthogonal polynomials.
Using Equation B.24, the first few polynomials are as follows
P()(X) =1
Pi(x)=x
1
Py(x) = 5(3)(2 -1)
1 _ (B.27)
P3(x) = 3 (5x° —3x)
1
Py(x) =3 (35x* —30x? 4 3)
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A Legendre polynomial of any order can be obtained from the following recursive formula:

72n+1 n

- P,(x)— —P,_ B.2
P () = Py () (B.28)

Pn+l(x)

Graphs of the first six Legendre polynomials are similar to those shown in Figure B.1.

B.2.3 Gegenbauer Polynomials ci (x)

The Gegenbauer polynomials are orthogonal with respect to weight function (1 — x?)*~ (1/2)
over the interval [—1, 1], and in general are expressed by

-1)"Q2a)" d" 1
C’(qa)(x): ( ) ( a) 127(17x2)n+a7(1/2) a>~,n=0,1,2,...
2l (a4 1/2)" (1 — x2)* ~(1/2) dxn 2
(B.29)
where « is a given parameter.
It can be proved that in this case there exists
1 21 72011—* 2
hy = J (1—x)* 12 (x)] dx = “—(’”"‘2) (B.30)
1 nl(n+ o) (a)]

where I'(-) denotes the Gamma function.
In like manner, for Equation B.15, there are

_n+2a—1 |n(n+a)l'(n—142a)

T mra) | nr 1+ (n 1 2q)

B,=0 (B.31)

n+1 (n+a)T(n+1+2a)
n+1D)(n+1+a)T'(n+2a)

= 3t a)

The first few polynomials are as follows:

cPx) =1

€| (x) = 2ax

€)= 2a(1 + )’ ~a (B.32)
€7 (x) =3a(l +a)2+a)x’ ~2a(l —a)x

and the others can be obtained by the recursive formula

W 2201t
(%) == )

n+2a—1
_Wcli—)l(x) (B.33)

In some other books, Gegenbauer polynomials are also called hyper-spherical polynomials.
Graphs of the first six Gegenbauer polynomials are also similar to those shown in Figure B.1.



Appendix C:

Relationship between Power
Spectral Density and Random
Fourier Spectrum

C.1 Spectra via Sample Fourier Transform

Consider two real-valued stationary stochastic processes X(@, f) and Y(@, f), where @ denotes
the embedded random event. We define the finite Fourier transforms of a sample of X(#) and Y(¢)
over the time interval [—T, 7] as

T
Xair(o,0) = J X(@, t)e " dt (C.1)
-7
and
T )
Yir(o,0) = J Y(w,t)e " dt (C.2)
-7
respectively; then, the cross-PSD can be obtained by
.1 »
Sxy(w) = Thm ﬁE[XiT(w,(u)YiT(w, (u)] (C.3)

— o0

Here, &£ - | is the ensemble average with respect to @; the superscript asterisk denotes complex
conjugate.
Equation C.3 can be proved as follows.
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Proof: Using Equations C.1 and C.2, we have

: 1 * : 1 ! —iw ’ —iw '
ThilLﬁS[XiT(w,w)Yﬂ(w,w)]:TlgnmﬁE{JTX(w,t)e ’dlUTY(w,t)e ’dl}}

1 r . T .
= lim —g|:J X(w, tl)e_“”“ dt J Y((D’, lz)elwlz dlz}
-T -T
1 T (T .
= lim —¢& |:J J X(ZD'7 tl)Y(w, lz)elw(tz_[l) de, dlz:l
-T
T T A
J J EX(w, 1)Y (, 1)) ") diy dtz}
-T

T T A
J J Rxy(t1, )€~ dgy dtz}
_rlor

(C4)

Now, change the region of integration from (¢, t,) to (¢, t), where T =t, — t1, dt = dt,. This
changes the limits of integration as shown in Figure C.1. Thus, Equation C.4 is changed to

1 0(f (T '
|1, et

1 (° T A 2T [ (T—7 .
i {J |:J ny(‘l?)em” Cl11:| dr+ J |:J RXy(r)e“‘” d11:| d‘E}
T—=2T \J or J-c7 o -1

= lim — UZT(ZT — T)Rxy(t)e " dr + JO

I
5
|

(2T 4 1)Rxy(t)e " d‘c}
—or
27

0
1 i —iwt _ L —iwt
Tlllnm l:J_ - (1 + ZT)RX)/(T)G dr+ JO (1 ZT) ny(‘[)e d‘E:l

= J Ryy(t)e " dt

= Sxy(w)

(C.5)
(
This proves Equation C.3.

It follows from Equation C.3 immediately that the auto power spectral density is given by

.1 X
Sx(w) = lim —&[Xsr(w, 0)X' (o, )]
T—e2T
| (C.6)
— Tim — 2
= lim 2T€ [|Xﬂ(wa )] }
Because Equations C.1 and C.2 can be understood as random Fourier spectra, Equations C.3
and C.6 establish the relationship between the PSD and the random Fourier spectra. In other
words, they bridge the gap between the PSD and the sample properties. From this point of view,
it is convenient to derive the frequency properties of random vibration systems, as has been
elaborated in Chapter 5.
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4

Figure C.1 Change of integral region.

C.2 Spectra via One-sided Finite Fourier Transform

In practice, the measured data are usually over the time interval [0, 7]. We define the sample
one-sided finite Fourier spectra of the real-valued X(¢) and Y(¢) over the time interval [0, 7] as

T
Xr(w,0) = | X(@,t)e @ dt (C.7)
0
and
T .
Ye(o,0) = | Y(w, e d (C8)
Jo

respectively; then, the cross-PSD can be obtained by
1
This can be proved as follows.

Proof: Using Equations C.7 and C.8, we have

lim &£ %XT(W, w) Y (@, a))} = lim 18{ “Tx(w, fy)e " ien dtl} “T Y(@, t;)e dlz]}

T — oo T— oo 0 0

1 (T )
= lim T(S|: J X((D’, l1)Y(£D', lz)elw(mfn) d dlz:l
0

T (T
= lim I{J J EX (@, 1,)Y (@, 1))~ 1) dr, dtz}

LT (T A
=l |:J J ny(ll,lg)elw(tz_ll)dll d12:|

(C.10)
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153

Figure C.2 Change of integral region.

Now, change the region of integration from (#;,,) to (¢;,7), where T =1, — t;, dt = dt,. This
changes the limits of integration as shown in Figure C.2. Thus, Equation C.10 can be rearranged
into

1 T ¢T .
lim — |:J J ny(ll, tz)Clw(tz*n) dn dl2:|

([ ol [ [ ] o

I
5
|

I
5
|

(C.11)

Jim, UOT (1 + %)ny(r)e*i‘“ de + L (1 - %)ny(r)e*i“” df}

= J Ryy(t)e " dr

I
E

- Sxy((,z))

This proves Equation C.9. O
Of course, the physical sense of Equations C.7—C.9 is similar to Equations C.1-C.3. Further,
if we define standardized spectra by

~ X I ;
Xp(mw) = X@9) L[y peiongy (C.12)
T \/T 0
and
Yo(o,w) = 1@ _ 1 Ty(w f)e =il dy (C.13)
W) = ———" = —— , .
’ T \/T 0
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respectively, then according to Equation C.9 we have

%

Syy(w) = Tnjnwg@(w, 0) Y (@, )] (C.14)

In particular, these relations establish the theoretical basis for the random Fourier spectrum
methodology in Chapter 3 (for example, Equation 3.12). In addition, for practical applications
they are particularly useful when we want to obtain the PSD of stochastic processes if a set of
sample time histories is available (Bendat and Piersol, 2000).



Appendix D:
Orthonormal Base Vectors

To satisfy Equations 7.134 and 7.135, the orthonormal base vectors for the coordinate

transformation in dimensions of s = 4,5,...,23 could be chosen as follows:
1
€ :5(17 717070)0)
1
€ = ﬁ(o 0717_ )O)
for s=4 (D.1)
1
e3 25(1’1’ -1, -1,0)
1
e4:\/72_0(1,1,1,1, _4)
1
€ :ﬁ(h —1,0,0,070)
€ = 7(0 0717 1,0,0)
e; = —(O 0,0,0,1, — 1) for s=5 (D.2)
V2
1
e, ==(1,1, -1, — 1,0,0)
2
es = 1 (L,1,1,1, =2, —=2)
S_m s Ly by by )

Stochastic Dynamics of Structures  Jie Li and Jianbing Chen
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82424-5
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€]

€ =

€3 =

€5 =

€6

e =

€ =

€3 =

€4 =

€7 =

(1, -1,0,0,0,0,0)
(0,0,1, — 1,0,0,0)

mooqL 1,0)

sw s\~ -

(1,1, =1, —1,0,0,0)

l\)l'—‘

(17171717 27 _2?0)

(1,1,1,1,1,1, —6)

8l %F
\S] \S]

(17 - 1707070707070)

5l

mmL 1,0,0,0,0)

(0,0,0,0,1, —1,0,0)

&% 3|

moooomh—n

%|

(1,1, —1, — 1,0,0,0,0)

NI'—‘

(0,0,0,0,1,1, — 1, — 1)

l\)l'—‘

(L1,1,1,—-1,—-1, -1, = 1)

%!*
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€ =

€3 =

€4 =

€7 =

€3 =

e =

€ =

€3 =

€4 =

€5 =

€3 =

€y =

e =

(1, —1,0,0,0,0,0,0,0)
(0,0,1, —1,0,0,0,0,0)
(0,0,0,0,1, —1,0,0,0)

(0,0,0,0,0,0,1, — 1,0)

§|~ §|~ §|~ Nia

for s=28

(1,1, =1, = 1,0,0,0,0,0)

l\)\'—‘

(0,0,0,0,1,1, — 1, — 1,0)

l\)l'—‘

(,1,1,1, -1, -1, -1, = 1,0)

-
~§|

(LLL1L1,1 1,1, -8)

3l

(1, - 1,0,0,0,0,0,0,0,0)
(0,0,1, —1,0,0,0,0,0,0)
(0,0,0,0,1, —1,0,0,0,0)

(0,0,0,0,0,0,1, —1,0,0)

§|— §!~ §!~ Sl -

moooooomL—U for

S|

(1,1, =1, —1,0,0,0,0,0,0)

l\)lv— l\)l'—‘

(0,0,0,0,1,1, — 1, —1,0,0)

(17171717 1 17717713030)

-
~%\

(1717171717171717 4574)

3

(D.5)

(D.6)
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€ =

€ =

ﬂ~m~

(O 0,1, —

e; = mooaL

§|

€4 =

€5 =

= §|~S|

€ =

(513717

N\»—l\)\'—

€3 = (lalalala

-
~%\

N
(e

1
e =
/110

e =
e, =—(0,0,1, —
e3 =—(0,0,0,0,1, —
es =—(0,0,0,0,0,0, 1, —
es =—(0,0,0,0,0,0,0,0,1, —

€ =

m~m~m~swswsw

(1717 71

(0,0,0,0,1,1, — 1,

NI"N\'—‘Nl"

(0,0,0,0,0,0,0,0,1,1

) ) )

€10 = (17171717_17_1a

-
- %

(1,1,1,1,1,1,1,1

) ) ) ) ) ) ) )

€1 =

iy

mooooaL

(0,0,0,0,1,1, — 1,

la_la_lv

(0,0,0,0,0,0,0,0,0,0, 1, —

(15 _17070707070707070?0)
1,0,0,0,0,0,0,0)

1,0,0,0,0,0)

1,0,0,0)

(0,0,0,0,0,0,0,0,1, —1,0)

for s=10 (D.7)

- 170707070707070)

~1,0,0,0)

~1,0,0,0)

eo =——(1,1,1,1,1,1,1,1, —4, —4,0)

) ) ) ) ) ) ) )

(LL1L1,1,1,1,1,1,1, - 10)

(15 - 1707 07 07 07 07 070707070)
1,0,0,0,0,0,0,0,0)
1,0,0,0,0,0,0)

1,0,0,0,0)

1,0,0)

1) for s=11 (D.8)

~1,0,0,0,0,0,0,0,0)

—1,0,0,0,0)

1771)

_la _laOaOaOaO)

—2,-2,-2,-2)
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1
e, =—(1, —1,0,0,0,0,0,0,0,0,0,0,0
I ﬁ( )
e 1(001 —1,0,0,0,0,0,0,0,0,0)
2 = \/Z s Ly ) Uy Uy Uy Uy Uy Uy Uy Uy
e = —(0,0,0,0,1, — 1,0,0,0,0,0,0,0)
3 = \/z s Ly s Yy Uy Uy Uy Uy Uy
1
ey = 72(000000,1, 1,0,0,0,0,0)
1
es = %(00000000,1, 1,0,0,0)
1
e = 7(0000000000,1,— ,0)
for s=12 (D.9)
1
7 =5 (1,1, =1, -1,0,0,0,0,0,0,0,0,0)
1
s =5(0,0,0,0,1,1, =1, ~1,0,0,0,0,0)
1
5 =5(0,0,0,0,0,0,0,0,1,1, 1, = 1,0)
1
910:%(17171717_17_17_17_17070707070)
1
ellzﬁ(l,l,l,l,l,l,l,l,—2,—2,—2,—270)
1
e12—\/1_56(1,1,1,1,1,1,1,1,1,1,1,1, 12)
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1
e1:7§(1,—1,0,0,O,O,O,O,O,O,O,O,O,O)
1
e = %(00,1, 1,0,0,0,0,0,0,0,0,0,0)
1
e; = 72(0000,1, 1,0,0,0,0,0,0,0,0)
1
ey = %(000000,1, 1,0,0,0,0,0,0)
1
es = ﬁ(oooooooo,l, 1,0,0,0,0)
1
e = %(oooooooooo,l, 1,0,0)
1 _
e = 7(000000000000,1,—1) for s=13
1
s =5 (1,1, =1, -1,0,0,0,0,0,0,0,0,0,0)
1
5 =5(0,0,0,0,1,1, ~ 1, = 1,0,0,0,0,0,0)
e10f§(00000000,1,1, 1, - 1,0,0)
1
ell:%(1,1,1,1,—1,—1,—1,—1,0,0,0,0,0,0)
1
e12:\/_2_1(1,1,1,1,1,17171, 2, -2, -2, —2,0,0)
1
e13:\/—8_1(17171717171,1,1,1,1,1,1, 6, —6)

(D.10)
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e =

€ =

€3 =

€4 =

€5 =

€ =

€ =

€0 =

€1 =

€ =

€3 =

€14 =

(17 - 1707070707070,0,0,070707070)

N

(0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0)

E\H

(0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0)

E\H

(0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0)

EIH

(0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0)

E\H

(0,0,0,0,0,0,0,0,0,0,1, —1,0,0,0)

EIH

(0,0,0,0,0,0,0,0,0,0,0,0,1, —1,0)

&\H

(1,1, -1, - 1,0,0,0,0,0,0,0,0,0,0,0)

l\)l'—‘

(0,0,0,0,1,1, — 1, —1,0,0,0,0,0,0,0)

l\)l'—‘

(0,0,0,0,0,0,0,0,1,1, - la - 1707070)

N =

Sl -

9 ) ) ) ) ) ) ) ) ) ) )

%\* 8-
H e

) ) ) ) ) ) ) ) ) ) ) ) ) )

ﬁ_
—_
o

(,1,1,1, -1, -1, -1, -1,0,0,0,0,0,0,0)

(1,1,1,1,1,1,1,1, =2, —2, —2, —2,0,0,0)

(1,1,1,1,1,1,1,1,1,1,1,1, — 6, — 6,0)

—(1,1,1,1,1,1,1,1,1,1,1,1,1,1, — 14

(D.11)
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e = %(1 -1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
e = %(0 0,1, -1,0,0,0,0,0,0,0,0,0,0,0,0)
e; = %(0000,1, 1,0,0,0,0,0,0,0,0,0,0)
ey = 7(000000,1, 1,0,0,0,0,0,0,0,0)
es = L\/_(OOOOOOOO,I, 1,0,0,0,0,0,0)
e = %(0000000000,1, 1,0,0,0,0)
e; = %(000000000000,1, 1,0,0)
es = 7(00000000000000,1,—1) for s =15
%(1 1, -1,-1,0,0,0,0,0,0,0,0,0,0,0,0)
elO:%(O,O,O,O,l,l,—1,—1,0,0,0,0,0,0,0,0)
e“:%(0,0,0,0,0,0,0,0,l,l,—1,—1,0,0,0,0)
elz—E(OOOOOOOOOOOO,l,l, 1, —1)
e13:\/ig(1,1,1,1,—1,—1,—17—1707070,070,0,0,0)
e14—7§(00000000,1,1,1,1, L—1,-1,-1)
1
eIS:Z(—l,—l, L,-11,1,1,1,—-1,—-1,—-1,—1,1,1,1,1)

(D.12)
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e = \%(1—1000000000000000)

e = E(OO,I, 1,0,0,0,0,0,0,0,0,0,0,0,0,0)

ey = %(0000717 1,0,0,0,0,0,0,0,0,0,0,0)

ey = %(000000,1, 1,0,0,0,0,0,0,0,0,0)

es = %(00000000717 1,0,0,0,0,0,0,0)

€6 = %(00000000001 ~1,0,0,0,0,0)

e = 7(000000000000,1, 1,0,0,0)

es = 7(0000000000000071, 1,0)
%(1 1, —1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0)

elo:%(0,0,0,0,l,l,—1,—1,0,0,0,0,0,0,0,0,0)

e“=%(0,0,0,0,0,0,0,0,1,1,—1,—1,0,0,0,0,0)

elg—E(OOOOOOOOOOOO,l,l, 1, —1,0)

e13:%(1,1,1717—1,—1,—1,—170,0,0,07070707070)

e14—%(00000000,1,1,1,1, 1, -1, —1,—1,0)
1

eis=g(—1L—1L—1—LLLLL =1, =1, =1, =1,1,1,1,1,0)

1
el :ﬁ(l, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, — 16)

for

s=16

(D.13)
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1
el:—(17_170707070707070705050505050707070)
V2
1
€ = —(0 0717 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
V2
1
es = ——(0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0,0)
V2
1
es =——(0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0)
V2
1
es = ——(0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0
5 = \/E( )
1
es = ——(0,0,0,0,0,0,0,0,0,0,1, — 1,0,0,0,0,0,0
6= \/E( )
1
e; = ——(0,0,0,0,0,0,0,0,0,0,0,0,1, —1,0,0,0,0
=5 )
1
es = ——(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, — 1,0,0)
\/’
f =17
e = —(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, — 1) or s
\/’
1
elo—E(l 1, -1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
1
ell_5(00707071717_17_170707070707070707070)
1
elZ_E(O070707070707071717_17_1707070707070)
1
es =5(0,0,0,0,0,0,0,0,0,0,0,0, 1,1, ~ 1, = 1,0,0)
1
ew=——(1,1,1,1, =1, =1, — 1, — 1,0,0,0,0,0,0,0,0,0,0)
V8
1
e;s =—(0,0,0,0,0,0,0,0,1,1,1,1, —1, — 1, — 1, — 1,0,0)
V8
1
e=3(~1L 1L -1 -LLLLL ~1—1, 1, -1 1,1,1,1,0,0)
1
el7*72(171717171,1,1,1,1717171»1»17171a 87_8)

(D.14)
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e :%(1, ~1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

e :\%(0,0,1, ~1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

e :%(0,0,0,0,1, ~1,0,0,0,0,0,0,0,0,0,0,0,0,0)

e :%(0,0,0,0,0,0,1, ~1,0,0,0,0,0,0,0,0,0,0,0)

es :\/%(o,o,o,o,o,o,o,o, 1, —1,0,0,0,0,0,0,0,0,0)

e :%(o,o,o,o,o,o,o,o,o,o,1, ~1,0,0,0,0,0,0,0)

e :\%(0,o,o,o,o,o,o,o,o,o,o,o, 1, —1,0,0,0,0,0)

es :\%(0,0,0,0,0,o,o,o,o,o,o,o,o,o,1, ~1,0,0,0)

e :%(o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,1, ~1,0) o s 18
el :%(1,1, ~1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

el :%(0,0,0,0,1,1, —1,-1,0,0,0,0,0,0,0,0,0,0,0)

en :%(0,0,0,0,0,0,0,0,1,1, ~1,-1,0,0,0,0,0,0,0)

e :%(0,0,0,0,0,0,0,0,o,o,o,o,1,1, —1,-1,0,0,0)

e :%(1,1,1,1, ~1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0)

ers :%(0,0,07070,0,070717171717 ~1,-1,-1,-1,0,0,0)
6162;‘(—1, ~1,-1,-1,1,1,1,1, -1, -1, =1, — 1,1,1,1,1,0,0,0)
e :%(1,1,1,1,1,1,1,1, ~1,-1,-1,-1,—-1,—1, -1, —1,0,0,0)
e :J%_z(l’l’l’1’1’1’1’1’1’1’1’1’1’1’1’1’1’1’ —18)

(D.15)
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1
el:_(17_1aOaOaOaOa070707070707070707070707070)
V2
1
e, = 7(00,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
1
e; = —(0,0,0,0,1, — 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
\/§
e = 7(000000,1, 1,0,0,0,0,0,0,0,0,0,0,0,0)
1
es =—(0,0,0,0,0,0,0,0,1, — 1,0,0,0,0,0,0,0,0,0,0)
ﬂ
e6 = - (0,0,0,0,0,0,0,0,0,0,1, — 1,0,0,0,0,0,0,0,0)
V2
1
e = 7(000000000000,1, 1,0,0,0,0,0,0)
1
es = ——(0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, — 1,0,0,0,0)
V2
1
ey = 7(0000000000000000,1, 1,0,0)
1 fi =19
elo_T(OOOOOOOOOOOOOOOOOO’I’_]) or s
1
e ==(1,1, — 1, —1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2
1
e =>(0,0,0,0,1,1, — 1, ~1,0,0,0,0,0,0,0,0,0,0,0,0)
1
e1325(070707070707070,1,1,_15_1a0a0a0a0a0a0a0a0)
1
e =5(0,0,0,0,0,0,0,0,0,0,0,0, 1,1, =1, =1,0,0,0,0)
1
e15:E(07070>0,0,0,0,07070»0»07070aanalala_13_1)
1
e16:7(17171717 1 17_17_15OaOaOaOaOaOaOaOaOaOaO’O)
V8
1
el7:—(0,0,0,0707070,0,1,1,1,1,—1,—17—1,—1,0,0,0,0)
V8
1
elSZZ(Ll?l?l?l?lvl?l?_17_17_17_17_17_17_17_170707070)
1
eog=——=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, —4, —4, —4, —4)
V80

(D.16)
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1
e, =—(1,—1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1
e, =——(0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
) = \/E( )
1
e; =——(0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3= \/E( )
1
es = ——(0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0,0,0)
V2
1
es = ——(0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0)
V2
1
es = —(0,0,0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0
6 = \/5( )
1
e; =——(0,0,0,0,0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0)
V2
1
es = —(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, — 1,0,0,0,0,0
§ = ﬁ( )
1
ey =——(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, — 1,0,0,0
g = \/E( )
1
elO*75(();Oa050503030707070707070707070707051;7130) for s=20
1
ell:E(lala_17_1707070707ana0a070a0a0a07070707070)
1
elZZE(anaovoalvlv_17_150507050707()’0’07070707070)
1
e =5(0,0,0,0,0,0,0,0,1,1, = 1, =1,0,0,0,0,0,0,0,0,0)
1
el4:5(0705070707070707070707071515—1a_17070707070)
1
e15:5(O,O,0,0,070,0,07070,0,0,0,0,0,0,1,1,_17_170)
1
el6:7§(1;131313 1 1771771707Oa0?0’07070707070707070)
1
e17 = —(0,0,0,0,0,0,0,0,1,1,1,1, =1, —1, — 1, —1,0,0,0,0,0
17 \/g( )
1
e1821(1a1a1a1a17171717 1 la_la_17_la_la_la_17070707070)
1
eo=—==(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, —4, —4, —4, —4,0
19 \/%( )
1
e20:\/ﬁ(lal71717171717171715151117]71a1a1717171’_20)

(D.17)
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1
€ :_(17 - 1507();07070707070707070707070707070a07030)
V2
1
e, =——(0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
V2
1
e;=——(0,0,0,0,1,—1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
V2
1
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V2
1
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1
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1
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1
elzi( 7_1707070507070707070507070705()’0707070’070’0)
5
e;=——(0,0,1,—1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
5
e;=—=(0,0,0,0,1,—1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
I
es=——(0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
5
es=—(0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0,0,0)
s
es=——(0,0,0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0,0,0)
I
e;=——-(0,0,0,0,0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0,0,0)
8
es=—(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, —1,0,0,0,0,0,0,0)
5
eo=——(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, — 1,0,0,0,0,0)
Vi
elO_75(07070705070707070a050707()’())0’070’07la_170’070)
1
ell:75(0707070507070705070a070707070a0705070707177170) for s=22
1
91225(1,17 1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
1
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1
25(00000000,171,— -1,0,0,0,0,0,0,0,0,0,0,0)
1
25(000000000000,1,1,— —1,0,0,0,0,0,0,0)
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:5(0000000000000000,1,1,— —1,0,0,0)
1
017——<17]7171,—1 -1 _17_]70705070707())0’010a070a070a070)
V8
e l(000000001111 l,—-1,-1,-1,0,0,0,0,0,0,0)
18 = —=\Y,Y,Y,u,u,u,uv,y, ., L, ,, L, — 4, —4,—1,— L,U,U,U,U, U, Y,
NG
1
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1
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v 80
1
ey =——(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, — 10, — 10,0)
2120
en=——(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, —22)
V506
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1
elzi( 7_1707())070707070a0707070a070a0707070a070707070)
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i
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I
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elO_%(07Oa0507070a070a070a070a07()’070707()’17_1a0707070)
1
€] :E(Oa070507070707()’07070707070a0707070a070517_13070)
1 for s=23
612:ﬁ(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,070,0,0,1,—l)
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1
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1
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Appendix E:
Probability in a Hyperball

The probability in a hyperball of radius r in dimension s is

F(r,s) :J p(x)dx = J P(X1,X2, .., Xg) dxy dxy ... dxg (E.1)

[Ix]|<r %+x§+m+x%§r

where p(x) = p(x1,x2,...,X;) is the joint PDF of a set of standardized random variables.
Here, the independent normal distribution is considered; that is:

1

2, 2 2
Xi+x5+ ... +xs)
p(x) = exp| — E.2
= e . (£2)
Using a multiple integral equality:
] Tcs/2 1

2 2 2 g (s/2)—1
Lf+x§+m+xi<r2f(\/x1 + x5+ ... +x2)dx;dxy ... dxg =7 T/2) Lu f(rv/u) du
(E.3)

where f(-) is any arbitrary integrable function, we can get

F(r,s) = gz p(x) dx = IY%+X§+‘_'+X%9J(\/X%+X%+ oo+ x2)dxydx; . dog

/2 ! 1 (r u)2
=7 Ul =1 — _exp| — du
I(s/2) L (2m)*/? P 2

y | o 2, (E.4)
= —23/2F(s/2) Jo u exp(— 7) du
1 (P ,
_ (5/2)=1g—x g4
I(s/2) J e ®
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where the Gamma function is (Zayed, 1996; Andrews et al., 2000)
I(t) = J x'"le ¥ dx (E.5)
If we define
Y
I(t,y) = J x' e ¥ dx (E.6)
0

then Equation E.4 becomes

B [(s/2,1%/2) B [(s/2,1%/2)
FOO="T62) ~ Tz

(E.7)

where use has been made of T'(¢) = I'(¢, o) according to Equations E.5 and E.6.
For convenience, in the following sections, Equation E.4 is integrated by considering the
cases s as even and as odd numbers.

E.1 The Case s is Even

In the case s = 2m (m > 1), Equation E.7 becomes

r 2 I 2
F(r,2m) = Lo /2) _T0m,r7/2) (E8)
[(m) I(m, )
The integral in Equation E.6 gives
L(m,y) = Gi(m,0) = Gi (m, ") (E9)
where

Y m 'jfl
Gi(m,y) = — J Y le Ydx=e " X"/ H(mfk) (E.10)

0 j=1 k=1

in which the convention is used that [[}_, (m—k) = 1.
Therefore:

(m,r?)2) 1

F(r,2m) = Fm. o) = 0m) [G1(m,0) — G (m,r*/2)] = 1—

G] (m, }’2/2)
[(m)

(E.11)

E.2 The Case s is Odd

In the case s = 2m+ 1(m > 0), Equation (E.7) becomes

C(m+1, 12 C(m 41, 12
F(r,2m+1) _r(r(:;;;)/ 2_ é(m?;, ! )2) (E.12)
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According to Equation E.6, we can find that

5 2 /2 r/V2 s
rg,ﬂ/azzj x—V%—X¢x:2J e 7 dz =2vm(®(r) - ) (E.13)
0 0
where ®(r) = [ _(1/V 2)e /2 dz is the CDF of the standardized normal distribution.
Likewise, we get
~ )2 ) )2
F(1+%772/2)=L 126 =% gy — 1/2e—xi (V)/ _|_L e dyl/2
= — r 7'2/2 Jr/ﬁ - dZ
0

and then for m > 2:
N r
C(m+2, ?/2) = (

where

m Jj—1
Gr(m,x) = ex{Z)c'”(l/z)Uz) [Hm—l—
=2 k=2

1+42 2) =
+2,r/ H2]—1 —Gy(m,r*/2)
j=2

(E.14)

(E.15)

(E.16)

A

If we use the convention that 3 37" ) f;(-) = Oform=0andm = 1,and e, fi(+) = 1,itis

seen that G,(m,x) =0 for m=0 and m=1.

Substituting Equation E.15 in Equation E.12 will then yield

PmtLR) T LR
FO2msl) = T i) " Tmt e E17)
Ga(m,r*/2) r .
T Tm+) +ZQMU_1_;Ef /ﬁ
where I'(m+1) = (f/Zm)H 2/ —1).

Combining Equations E.11 and E.17 finally gives

[(s/2,%/2)
[(s/2,%)
G (m,r*/2)
I'(m)
Ga(m,r?/2)
© T(m+1)

F(r,s) =

12]D0) —1— (1 - om)

—¢€

for s=2m;m>1

—r12| for s=2m+1;m>0

T
(E.18)
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where Gi(-) and G,(-) are given by Equations E.10 and E.16 respectively and 6 is
the Kronecker delta.
Clearly, it follows from Equation E.7 that
F(r,s)|,_o=0 F(r,s)]| =1 (E.19)

F—>00

The probabilities F(r,s) for different s given by Equation E.18 are shown in Figure 7.2b.

E.3 Monotonic Features of F(r, s)
E.3.1 Monotonic Feature of F(r, s) with Respect to the Radius r

According to Equation E.18, we can get

GF(g,er) = llr(m) Q2m=1g =12 (E.20)
and further:
L, 2
N
Obviously, it is seen that

% =0 for r=0 (E.22)

T’r >0 for >0
%:O for r=0andr=+v2m—1 (E.23)

The above two formulae mean that, in the case s is even, F(r, s) is increasing monotonically
against the radius while has an inflexion at the position r = /2m — 1.
Likewise, from Equation E.18 we can get that

OF (r,2 1 2
Ak \/;e/ (E24)
O*F(r,2m+1 2 2
(ri@r;n‘i‘ ) _ \/;(Zm—ﬂ)rz’"le’ /2 (EZS)
Therefore, we have

F(r,2 1

OF(r,2m+1) (’”a’:” )0 for r=0
E.26

OF(r,2m+1) (E.26)

o >0 for r>0
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O*F(r,2m+1)

52 =0 for r=0andr=+v2m (E.27)

These two formulae indicate that in the case s is odd F(r,s) is increasing monotonically
against the radius while has an inflexion at the position r = v/2m.
Equations E.22, E.23 and E.26 and E.27 could be unified to

LFE(;’ 5) =0 for r=0
- r (E.28)
(r,s)>0 for r>0
or
2
F
OF(r,s) 65’2’ ) =0 for r=0andr=+vs—1 (E29)

respectively. Therefore, in any case F(r, s) increases monotonically against the radius and has
an inflection at the position r = v/s — 1.

E.3.2 Monotonic Feature of F(r,s) with Respect to the Dimensions

From Equation E.18, the recursive relations follow

1 7’2 " 2
F(r,2(m+1)) = F(r,2m) — ot 1) (2> e m>1 (E.30)
| )
F(r,2m+3)=F(r,2m+1)—m<5> e "7 m>0 (E31)

The above two formulae could be written in a unified form as

1 }"2 S/Z 2
F 2)=F - (= -r2 > 1 E.32
542 =P - e (5) < o (32
Obviously, there is
F(r,s+2)<F(r,s) forr>0 (E.33)

This means that the probability contained in a hyperball of the same radius decreases, at least
in a jumping way, as the dimension increases.
If we denote

Fy5,(r) =F(r,s1) —F(r,s2) (E.34)
then it can be proved that
Fy3<0 F3<0 F> <0 forr>0 <E35)

and the minimum values of F3(r), F3»(r) and F5((r) occur at r = \/2/ar, \/7/2 and 2/2 /7
respectively.
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According to the above observations, we guess that

Fsi15(r)<0 forr>0, s > 1 (E.36)

holds and the minimum values of F; | ¢(r) occur at increasing value of r against s.
The monotonic features of the probability contained in a hyperball, F(r, s), can be observed
clearly in Figure 7.2b.



Appendix F:
Spectral Moments

In the first-passage probability analysis based on the excursion assumption, computation of
spectral parameters and passage rate is useful. They will be introduced herein.

According to Equations 2.81a and 2.81b in Chapter 2, the auto-PSD Sy(w) of a stationary
stochastic process is an even function; consequently, the nth-order spectral moment of the
stationary stochastic process can be defined as

a,,:J 0"Gx(w) dw n=0,1,2,... (F.1)
0

in which Gx(w) is the single-sided PSD.
By the equation, the following spectral parameters can be further defined:

€3]

== F.2
Y1 a (F.2)
an
=, /=2 F.
T2 0 (F.3)

1/2 1/2
(e 7310%) 'Y% '

where 7, is the frequency at the area centric of Gx(w), generally indicating where the spectral
density concentrates, Y, is the gyration radius of Gy(w) with respect to the coordinate origin and
q is the gyration radius of Gx(w) with respect to the frequency v;. The value of g varies over 0—1.
The smaller the value of ¢, the narrower the figure of Gx(w) is; in contrast, the greater the value
of g, the wider the figure of Gx(w) is. Usually, the stochastic process with 0 < g < 0.35 is called
a narrow-band stochastic process, whereas it is a white noise if ¢ = 1.

The spectral parameters are illustrated in Figure F.1.

For nonstationary stochastic processes, when the concept of evolutionary power spectral
density is introduced (see Section 5.3.2), the nth-order spectral moment can be defined as

ay(t) = J 0"Gx(w, t) dw n=0,1,2... (F.5)
0
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Figure F.1 Spectral parameters.

Evidently, the spectral moments of nonstationary stochastic processes are functions of
time. Consequently, the spectral parameters defined by the spectral moments are also related to
time:

nin =20 (k)
1) =20 (£7)

_ ) " _ (Bo-rmn)"”
0= (1-oiem) ~ (@) "9

If Gx(w, t) is understood as an instant PSD, then at a specified time point the above spectral
parameters have the geometric interpretation shown in Figure F.1.



Appendix G:

Generator Vectors in the Number
Theoretical Method

As discussed in Section 7.3.3, in the number theoretical method a uniform point set
Prnrv = {Xk = (X1.4s X2k, - -+, Xsx) © kK =1,2,...,n} over the hypercube C* = [0, 1]" can
be generated by Equation 7.140 (repeated here for convenience):

Xjk = (2kQ; — 1)mod(2n)  j=1,2,...,85k=1,2,...,n
G.1
xjp = 2% (G.1)
n

or equivalently:

2% —1 . [(2kQ;—1 _
valent(T ]—1,2,...,.5‘,](—1,2,...,]1 (G2)

Here, the integer vector (n, 01, Qa,. .., Q) is called the generator vector.
Tables G.1-G.12 are the generators which can be used to generate good uniform point sets
(Hua and Wang, 1978).

Table G.1 s=2n=F,, Q;=1, Q,=F,,_1). (Reproduced with permission from Hua Luo-Keng and
Wang Yuan. Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978
Yuan Wang)

n 8 13 21 34 55 89 144 233 3717 610
Q0 5 8 13 21 34 55 89 144 233 377

n 987 1597 2584 4181 6765 10946 17711 28657 46368 75025
0, 610 987 1597 2584 4181 6765 10946 17711 28657 46368
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Table G.2 s=3, Q;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)
n 35 101 135 185 266 418 597 828 1010
0, 11 40 29 26 27 90 63 285 140

03 16 85 42 64 69 130 169 358 237

n 1220 1459 1626 1958 2440 3237 4044 5037 6066
0, 319 256 572 202 638 456 400 580 600

Qs 510 373 712 696 1002 1107 1054 1997 1581

n 8191 10007 20039 28117 39029 57091 82001 140052 314694
Q0 739 544 5704 19449 10607 48188 21252 34590 77723
Qs 5515 5733 12319 5600 26871 21101 67997 112313 252365
Table G.3 s=4, Q;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)
n 307 562 701 1019 2129 3001 4001 5003 6007
0, 42 53 82 71 766 174 113 792 1351
0; 229 89 415 765 1281 266 766 1889 5080
0, 101 221 382 865 1906 1269 2537 191 3086

n 8191 10007 20039 28117 39029 57091 82001 100063 147312
0, 2448 1206 19668 17549 30699 52590 57270 92313 136641
03 5939 3421 17407 1900 34367 48787 58903 24700 116072
Qs 7859 2842 14600 24455 605 38790 17672 95582 76424
Table G4 s=5, Q;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)
n 1069 1543 2129 3001 4001 5003 6007 8191
Q> 63 58 618 408 1534 840 509 1386
03 762 278 833 1409 568 117 780 4302
0Oy 970 694 1705 1681 3095 3593 558 7715
0Os 177 134 1964 1620 2544 1311 1693 3735

n 10007 15019 20039 33139 51097 71053 100063 374181
0> 198 10641 11327 32133 44672 33755 90036 343867
03 9183 2640 11251 17 866 45346 65170 77477 255381
Qq4 6967 6710 12076 21281 7044 12740 27253 310881
0Os 8507 784 18677 32247 14242 6878 6222 115892




Table G.5 s=6, Q;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)

n 2129 3001 4001 5003 6007 8191 10007 15019
0> 41 233 1751 2037 312 1632 2240 8743
0; 1681 271 1235 1882 1232 1349 4093 8358
(on 793 122 1945 1336 5943 6380 1908 6559
0Os 578 1417 844 43803 4060 1399 931 2795
Qs 279 51 1475 2846 5250 6070 3984 772

n 20039 33139 51097 71053 100063 114174 302 686

0, 5557 18236 9931 18010 43307 107538 285095

0; 150 1831 7551 3155 15440 88018 233344

(on 11951 19 143 29 683 50203 39114 15543 41204

0Os 2461 5522 44446 6065 43534 80974 214668

0Os 9179 22910 17340 13328 29955 56747 150441

Table G.6 s=7, Q;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)
n 3997 11215 15019 24041 33139 46213 57091 71053
0, 3888 10909 12439 1833 7642 37900 35571 31874
0; 3564 10000 2983 18 190 9246 17534 45299 36082
(o 3034 8512 8607 21444 5584 41873 51436 13810
0Os 2311 6485 7041 23858 23035 32280 34679 6605

0Os 1417 3976 7210 1135 32241 15251 1472 68784
o 375 1053 6741 12929 30396 26909 8065 9848

n 84523 100063 172155 234646 462891 769518 957838

0, 82217 39040 167459 228245 450265 748 528 931711

0; 75364 62047 153499 209218 412730 686 129 854041

[on 64 149 89839 130657 178 084 351310 584024 726949

0Os 48878 6347 99554 135691 267 681 444998 553900

Qs 29969 30892 61040 83197 164 124 272843 339614

0, 7936 64404 18 165 22032 43 464 72255 89937

Table G.7 s=8, Q,=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)

n

Q>
Qs
Q4
Qs
s
Q7
Qs
n

Q>
Qs
on
Qs
Qs
Q7
Os

3997
3888
3564
3034
2311
1417
375
3211
84523
82217
75364
64 149
48878
29969
7936
67905

11215
10909
10000
8512
6485
3976
1053
9010
100063
4344
58492
29291
60031
10486
22519
60985

24041

17441
21749
5411

12326
3144

21024
6252

172155
167459
153499
130657
99 554
61040
18165
138308

28832
27850
24938
20195
13782
5918

25703
15781

234 646
228245
209218
178 084
135691
83197
22032
188512

33139
3520

29553
3239

1464

16735
19197
3019

462891
450265
412730
351310
267681
164124
43 464
371882

46213
5347

30775
35645
11403
16 894
32016
16 600
769518
748528
686 129
584024
444998
272843
72255
618224

57091
17411
46 802
9779
16 807
35302
1416
47755
957838
931711
854041
726 949
553900
339614
89937
769518

71053
60759
26413
24409
48215
51048
19876
29096
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Table G.8

s=9, O;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.

Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)

n 3997 11215 33139 42570 46213 57091 71053
Q> 3888 10909 68 41409 8871 20176 26454
03 3564 10000 4624 37957 40115 12146 13119
Q4 3034 8512 16181 32308 20065 23124 27174
0Os 2311 64385 6721 24617 30352 2172 17795
Qs 1417 3976 26221 15094 15654 33475 22805
07 375 1053 26661 3997 42782 5070 43500
0Os 3211 9010 23442 34200 17966 42339 45 665
Qo 1962 5506 3384 20901 33962 36122 49857
n 100063 159053 172155 234646 462891 769518 957 838
0 70893 60128 167459 228245 450265 748 528 931711
0s 53211 101 694 153499 209218 412730 686 129 854041
Q4 12386 23300 130657 178 084 351310 584024 726949
0Os 27873 43576 99554 135691 267681 444998 553900
Qs 56528 57659 61040 83197 164 124 272843 339614
07 16417 42111 18165 22032 43464 72255 89937
0Os 17628 85501 138308 188512 371882 618224 769518
Qo 14997 93062 84523 115204 227266 377811 470271
Table G.9 s=10, Q;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)
n 4661 13587 24076 58358 85633
O 4574 13334 23628 57271 37677
0s 4315 12579 22290 54030 35345
Q4 3889 11337 20090 48 695 3864
0Os 3304 9631 17066 41366 54821
Os 2570 7492 13276 32180 74078
07 1702 4961 8790 21307 30354
0Os 715 2084 3692 8950 57935
Qo 4289 12502 22153 53697 51906
Q1o 3122 9100 16 125 39086 56279
n 103661 115069 130703 155093 805098
o 45681 65470 64709 90485 790 101
0s 57831 650 53373 20662 745388
Q4 80987 95039 17385 110048 671792
Os 9718 77293 5244 102308 570685
Os 51556 98366 29008 148396 443949
07 55377 70366 52889 125399 293946
0Os 37354 74605 66949 124635 123470
Qo 4353 55507 51906 10480 740795
Q1o 27595 49201 110363 44198 539222
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Table G.10 s=11, Q;=1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)

n 4661 13587 24076 58358 297974
(053 4574 13334 23628 57271 294481
(03 4315 12579 22290 54030 284041
(on 3889 11337 20090 48 695 266778
Os 3304 9631 17066 41366 242894
Qs 2570 7492 13276 32180 212668
0y 1702 4961 8790 21307 176 456
Os 715 2084 3692 8950 134 682
Q9 4289 12502 22153 53697 87835
Q1o 3122 9100 16125 39086 36464
On 1897 5529 9797 23747 279147
n 689 047 1243423 2226963 7494007

0, 685041 1228845 2200854 7354408

0 646274 1185282 2122833 6838211

(on 582461 1113244 1993814 6253169

0Os 494796 1013577 1815311 5312043

Qs 384914 887449 1589415 4132365

0, 254 860 736338 1318777 2736109

Os 107051 562016 1006567 1149286

Q9 642292 366527 656448 6895461

Qo 467527 152163 272523 5019180

On 284044 1164 860 2086257 3049402

Table G.11 s=12,13, 14, Q; = 1. (Reproduced with permission from Hua Luo-Keng and Wang Yuan.
Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan Wang)

n 18984 53328 77431 297974 1243423
0, 18761 52703 76523 294481 1228 845
0 18096 50834 73810 284041 1185282
(on 16996 47745 69 324 266778 1113244
Os 15475 43470 63118 242894 1013577
Q6 13549 38061 55264 212668 887449
(o2} 11242 31580 45854 176 456 736338
Os 8581 24104 34998 134682 562016
Qo 5596 15720 22825 87835 366527
Qo 2323 6526 9476 36464 152163
Ou 17785 49959 72539 279147 1164 860
Oz 14053 39477 57320 220583 920477
O3 10158 28534 41430 159433 665302
Qs 6143 17255 25054 96414 402327
n 2428705 14753 436 19984 698 34248063

0, 2400231 14580465 19750396 33846536

05 2315141 14063 582 19050236 32646 662

[on 2174435 13208 845 17892427 30662508

Os 1979761 12026276 16290543 27917337

(continued)



Table G.11 (Continued)

Os 1733402 10529739 14263 366 24443334
0, 1438245 8736780 11834661 20281228
Os 1097753 6668 420 9032903 15479816
Qo 715916 4348908 5890941 10095390
Q1o 297211 1805439 2445610 4191077

On 2275252 13821268 18722002 32084 164
Oz 1797913 10921619 14794199 25353030
O3 1299495 7893924 10692946 18324655
Ois 785841 4773681 6466329 11081440

Table G.12 s=15, 16, 17, 18, 0; = 1. (Reproduced with permission from Hua Luo-Keng and Wang
Yuan. Applications of Number Theory to Approximate Analysis. Science Press, Beijing. © 1978 Yuan
Wang)

n 70 864 139489 1139691 2422957
0, 70353 138484 1131480 2398 094
0; 68825 135476 1106904 2323761
O 66291 130487 1066142 2200720
0s 62768 123553 1009487 2030234
O 58283 114724 937347 1814052
0, 52867 104 063 850242 1554392
Oy 46559 91 647 748799 1253920
Qo 39405 77566 633750 915717
Oo 31457 61921 505923 543256
On 22772 44825 366239 140357
O 13412 26401 215705 2134112
O3 3445 6781 55406 1683011
Q4 63 806 125597 1026186 1214641
Ois 52844 104019 849 882 733 806
Ois 41501 81691 667 455

017 29859 58775 480219

Ois 18002 35435 289522

n 4395774 14271038 55879244

0, 4364102 14168215 55476633

0; 4269316 13 860486 54271700

O 4112097 13350069 52273127

0s 3893578 12 640 642 49495314

O 3615335 11737315 45958274

07 3279371 10646597 41687493

Os 2888108 9376347 36713742

Qo 2444365 7935718 31072856

Oo 1951338 6335088 24805477

On 1412580 4585990 17956 764

O 831972 2701027 10576061

O3 213699 693780 50314090

Q4 3957988 12 849750 41669 876

Ois 3277986 10642098 32725430

Oie 2574365 8357770 23545197

017 1852197 6013224 14195319

Ois 1116683 3625352 2716545
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